عنوان المقالة:نظام تشخيص نيتروسوفيكى ذكي لبيانات تخطيط القلب Intelligent Neutrosophic Diagnostic System for Cardiotocography Data
أ.د. أحمد سلامة | Prof. Dr. Ahmed Salama | 10265
- نوع النشر
- مقال علمي
- المؤلفون بالعربي
- بلال أمين-أحمد سلامة- الحناوى- خالد محفوظ-منى جمال
- المؤلفون بالإنجليزي
- Belal Amin, AA Salama, IM El-Henawy, Khaled Mahfouz, Mona G Gafar
- الملخص الانجليزي
- Cardiotocography data uncertainty is a critical task for the classification in biomedical field. Constructing good and efficient classifier via machine learning algorithms is necessary to help doctors in diagnosing the state of fetus heart rate. The proposed neutrosophic diagnostic system is an Interval Neutrosophic Rough Neural Network framework based on the backpropagation algorithm. It benefits from the advantages of neutrosophic set theory not only to improve the performance of rough neural networks but also to achieve a better performance than the other algorithms. The experimental results visualize the data using the boxplot for better understanding of attribute distribution. The performance measurement of the confusion matrix for the proposed framework is 95.1, 94.95, 95.2, and 95.1 concerning accuracy rate, precision, recall, and F1-score, respectively. WEKA application is used to analyse cardiotocography data performance measurement of different algorithms, e.g., neural network, decision table, the nearest neighbor, and rough neural network. The comparison with other algorithms shows that the proposed framework is both feasible and efficient classifier. Additionally, the receiver operation characteristic curve displays the proposed framework classifications of the pathologic, normal, and suspicious states by 0.93, 0.90, and 0.85 areas that are considered high and acceptable under the curve, respectively. Improving the performance measurements of the proposed framework by removing ineffective attributes via feature selection would be suitable advancement in the future. Moreover, the proposed framework can also be used in various …
- تاريخ النشر
- 01/02/2021
- الناشر
- Computational Intelligence and Neuroscience
- رقم المجلد
- 2021
- رقم العدد
- 2021
- رابط DOI
- https://doi.org/10.1155/2021/6656770
- رابط الملف
- تحميل (141 مرات التحميل)
- رابط خارجي
- https://www.hindawi.com/journals/cin/2021/6656770/
- الكلمات المفتاحية
- Intelligent Neutrosophic Diagnostic System