عنوان المقالة: Electrocoagulation as a green technology for phosphate removal from river water
علي وحيد نغيمش العتابي | Ali W Alattabi | 2940
نوع النشر
مجلة علمية
المؤلفون بالعربي
المؤلفون بالإنجليزي
Khalid S Hashim, Rafid Al Khaddar, Nisreen Jasim, Andy Shaw, David Phipps, P Kot, Montserrat Ortoneda Pedrola, Ali W Alattabi, Muhammad Abdulredha, Reham Alawsh
الملخص الانجليزي
The current study investigates the removal of phosphate from water using a new baffle plates aluminium-based electrochemical cell (PBPR) taking consideration the influence of key operating parameters. This new cell utilises perforated baffle plates as a water mixer rather than magnetic stirrers that require extra power to work. As this unit is new, a comprehensive study has been carried to assess it performance. This study also includes preliminary estimates of the reactor’s operating costs, the amount of H2 gas produced and the yieldable energy from it. SEM (scanning electron microscope) was used to investigate the influence of the electrocoagulation process on the morphology of the surface of aluminium electrodes, and an empirical model developed to reproduce the phosphate removal process. The results showed that 99% of phosphate was removed within 60 min of electrolysis at an initial pH (ipH) of 6, inter-electrode distance (ID) of 0.5 cm, current density (J) of 6 mA/cm2, initial concentration of phosphate (IC) of 100 mg/L, and minimum operating cost of 0.503 US $/m3. The electrochemical cell produced enough H2 gas to generate 4.34 kWh/m3 of power. Statistically, it was proved that the influence of the operating parameters on phosphate removal could be modelled with an R2 of 0.882, the influence of these operating parameters on phosphate removal following the order: . Finally, SEM images showed that after several electrolysing runs, the Al anode became rough and nonuniform which could be related to the production of aluminium hydroxides.
تاريخ النشر
01/08/2018
الناشر
Separation and Purification Technology
رقم المجلد
رقم العدد
210
رابط DOI
https://doi.org/10.1016/j.seppur.2018.07.056
الصفحات
135-144
رابط خارجي
https://www.sciencedirect.com/science/article/pii/S1383586618313261
الكلمات المفتاحية
ElectrocoagulationPhosphateMultiple regression modelHydrogen gasSEMOperating cost
رجوع