عنوان المقالة:Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model
احمد حسن احمد حسن | Ahmed Hassan Ahmed Hassan | 5631
نوع النشر
مقال علمي
المؤلفون بالعربي
Elkhawad Elfaki; Ahmed Hassan Ahmed Hassan
المؤلفون بالإنجليزي
Elkhawad Elfaki; Ahmed Hassan Ahmed Hassan
الملخص العربي
Recently, regression artificial neural networks are used to model various systems that have high dimensionality with nonlinear relations. The system under study must have enough dataset available to train the neural network. The aim of this work is to apply and experiment various options effects on feed-foreword artificial neural network (ANN) which used to obtain regression model that predicts electrical output power (EP) of combined cycle power plant based on 4 inputs. Dataset is obtained from an open online source. The work shows and explains the stochastic behavior of the regression neural, experiments the effect of number of neurons of the hidden layers. It shows also higher performance for larger training dataset size; at the other hand, it shows different effect of larger number of variables as input. In addition, two different training functions are applied and compared. Lastly, simple statistical study on the error between real values and estimated values using ANN is conducted, which shows the reliability of the model. This paper provides a quick reference to the effects of main parameters of regression neural networks.
الملخص الانجليزي
Recently, regression artificial neural networks are used to model various systems that have high dimensionality with nonlinear relations. The system under study must have enough dataset available to train the neural network. The aim of this work is to apply and experiment various options effects on feed-foreword artificial neural network (ANN) which used to obtain regression model that predicts electrical output power (EP) of combined cycle power plant based on 4 inputs. Dataset is obtained from an open online source. The work shows and explains the stochastic behavior of the regression neural, experiments the effect of number of neurons of the hidden layers. It shows also higher performance for larger training dataset size; at the other hand, it shows different effect of larger number of variables as input. In addition, two different training functions are applied and compared. Lastly, simple statistical study on the error between real values and estimated values using ANN is conducted, which shows the reliability of the model. This paper provides a quick reference to the effects of main parameters of regression neural networks.
تاريخ النشر
18/12/2018
الناشر
Scientific Research Publishing - Scirp.org
رقم المجلد
رقم العدد
6
ISSN/ISBN
2327-5901
رابط DOI
https://doi.org/10.4236/jpee.2018.612002
الصفحات
17-38
رابط خارجي
https://www.scirp.org/journal/paperinformation.aspx?paperid=89210
الكلمات المفتاحية
Neural Networks, Regression, Combined Power Cycle, MATLAB Neural Networks Toolbox
رجوع