عنوان المقالة:وظيفة فقدان سوفت ماكس المحسنة الجديدة للكشف عن أورام المخ باستخدام التعلم العميق A Novel Enhanced Softmax Loss Function for Brain Tumour Detection using Deep learning
أ.م.د مصطفى سلام كاظم | Mustafa Salam Kadhm | 15853
- نوع النشر
- مقال علمي
- المؤلفون بالعربي
- وظيفة فقدان سوفت ماكس المحسنة الجديدة للكشف عن أورام المخ باستخدام التعلم العميق
- المؤلفون بالإنجليزي
- Sunil Maharjan, Abeer Alsadoon, PWC Prasad, Mustafa Salam, Omar Hisham Alsadoon
- الملخص الانجليزي
- Background and Aim in deep learning, the sigmoid function is unsuccessfully used for the multiclass classification of the brain tumour due to its limit of binary classification. This study aims to increase the classification accuracy by reducing the risk of overfitting problem and supports multi-class classification. The proposed system consists of a convolutional neural network with modified softmax loss function and regularization. Results Classification accuracy for the different types of tumours and the processing time were calculated based on the probability score of the labeled data and their execution time. Different accuracy values and processing time were obtained when testing the proposed system using different samples of MRI images. The result shows that the proposed solution is better compared to the other systems. Besides, the proposed solution has higher accuracy by almost 2% and less processing time of 40∼50 milliseconds compared to other current solutions. Conclusion The proposed system focused on classification accuracy of the different types of tumours from the 3D MRI images. This paper solves the issues of binary classification, the processing time, and the issues of overfitting of the data.
- تاريخ النشر
- 14/11/2019
- الناشر
- Journal of Neuroscience Methods
- رقم المجلد
- رقم العدد
- رابط DOI
- https://doi.org/10.1016/j.jneumeth.2019.108520
- رابط خارجي
- https://www.sciencedirect.com/science/article/pii/S0165027019303772
- الكلمات المفتاحية
- Multiclass classification; Brain tumour detection; Neural network; Deep learning; Loss function; Softmax function.