عنوان المقالة: Shifted Jacobi Tau Method for Solving the Space Fractional Diffusion Equation
أ.م.د. محمد غازي صبري الصافي | Assist. Prof. Dr. Mohammed Ghazi Sabri Al-Safiِِِ | 3390
- نوع النشر
- مجلة علمية
- المؤلفون بالعربي
- المؤلفون بالإنجليزي
- Osama H. Mohammed، S.F. Fadhel، mohammed G.S. Al-Safi
- الملخص الانجليزي
- In this paper, approximation techniques based on the shifted Jacobi together with spectral tau technique are presented to solve a class of initial-boundary value problems for the fractional diffusion equations with variable coefficients on a finite domain. The fractional derivatives are described in the Caputo sense. The technique is derived by expanding the required approximate solution as the elements of shifted Jacobi polynomials. Using the operational matrix of the fractional derivative, the problem can be reduced to a set of linear algebraic equations. Numerical examples are included to demonstrate the validity and applicability of the technique and a comparison is made with the existing results to show that the proposed method is easy to implement and produce accurate results.
- تاريخ النشر
- 05/01/2014
- رقم المجلد
- 10
- رقم العدد
- 3
- ISSN/ISBN
- 2278-3008/2319-7676
- رابط DOI
- http://dx.doi.org/10.2139/ssrn.3227808
- الصفحات
- 34-44
- رابط خارجي
- https://poseidon01.ssrn.com/delivery.php?ID=780025027093085075004100092111117031007048068055025069102114093123090077028115002024007063049014102035101119121091090030025072000033062052083123074113068005087070090005062075024079122064104093094070116126026118015001075027105124013004123102100074117098&EXT=pdf
- الكلمات المفتاحية
- Fractional Calculus, Jacobi Polynomials, Tau Method, Operational Matrix