تهدف هذه الورقة إلى مقارنة بين طرائق التنبؤ الحديثة والتقليدية )الشبكات العصبية االحتمالية ودالة التحويل(. إن التنبؤ بالتدفق النقدي ذو
أ همية متزايدة و يساعد اإلدارة في عمليات التخطيط والسيطرة وتقو يم األداء واتخاذ القرار، وفي هذه الورقة استعملت الشبكات العصبية االصطناعية
لتشخيص شكل التدفق النقدي للفترة المقبلة والتنبؤ بالتدفق النقدي، و تم التطبيق في الشركة العامة لتوزيع كهرباء بغداد. و أ هم ما تم التوصل إليه من
خالل هذه الورقة هو أن أفضل طريقة للتنبؤ بالتدفق النقدي كانت الشبكات االحتمالية العصبية، التي توفر أداة قوية ومرنة لمعالجة تلك النماذج،
كونها تتصف بالتكييف الذاتي والجودة.
الملخص الانجليزي
This paper aimed to compare the modern methods of cash flow forecasting with the traditional ones. In other
words, the researcher compared between the Probabilistic Neural Networks and Transfer Function. It is worth
mentioning that cash flow forecasting , nowadays, is very important and helps the upper management plan,
control, assess the performance and make decisions. More specifically, in this paper, the Artificial Neural
networks were used to diagnose the nature of the cash flow for the next period of time and then forecast the cash
flow. The experiment was conducted in The General company for Electricity Distribution in Baghdad. The study
found out that the best type of cash flow forecasting is the Probabilistic Neural Networks, which provide a
robust and flexible tool for processing since they are characterized for being self-adaptive and qualitative