عنوان المقالة:وظيفة فقدان سوفت ماكس المحسنة الجديدة للكشف عن أورام المخ باستخدام التعلم العميق A Novel Enhanced Softmax Loss Function for Brain Tumour Detection using Deep learning
أ.م.د مصطفى سلام كاظم | Mustafa Salam Kadhm | 16045
نوع النشر
مقال علمي
المؤلفون بالعربي
وظيفة فقدان سوفت ماكس المحسنة الجديدة للكشف عن أورام المخ باستخدام التعلم العميق
المؤلفون بالإنجليزي
Sunil Maharjan, Abeer Alsadoon, PWC Prasad, Mustafa Salam, Omar Hisham Alsadoon
الملخص الانجليزي
Background and Aim in deep learning, the sigmoid function is unsuccessfully used for the multiclass classification of the brain tumour due to its limit of binary classification. This study aims to increase the classification accuracy by reducing the risk of overfitting problem and supports multi-class classification. The proposed system consists of a convolutional neural network with modified softmax loss function and regularization. Results Classification accuracy for the different types of tumours and the processing time were calculated based on the probability score of the labeled data and their execution time. Different accuracy values and processing time were obtained when testing the proposed system using different samples of MRI images. The result shows that the proposed solution is better compared to the other systems. Besides, the proposed solution has higher accuracy by almost 2% and less processing time of 40∼50 milliseconds compared to other current solutions. Conclusion The proposed system focused on classification accuracy of the different types of tumours from the 3D MRI images. This paper solves the issues of binary classification, the processing time, and the issues of overfitting of the data.
تاريخ النشر
14/11/2019
الناشر
Journal of Neuroscience Methods
رقم المجلد
رقم العدد
رابط DOI
https://doi.org/10.1016/j.jneumeth.2019.108520
رابط خارجي
https://www.sciencedirect.com/science/article/pii/S0165027019303772
الكلمات المفتاحية
Multiclass classification; Brain tumour detection; Neural network; Deep learning; Loss function; Softmax function.
رجوع