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SYNOPSIS 
A review is made of published evidence on the 

physical properties of unsaturated and compacted 
clays with the object of recognising the more im- 
portant factors affecting the consolidation process 

in such soils. An attempt is then made to formulate 
and solve a set of general equations to describe the 
consolidation process. Because of the complexity 
of these equations it is found desirable to sub-divide 
the process into a number of less general treatments, 
each being relevant to a particular range of satura- 
tion values. The treatments include the effects of 
decreasing permeability and a compressible pore 
fluid, and the resulting non-linear partial differen- 
tial equations are solved by finite difference approxi- 
mations on a digital computer. The computed 
results exhibit the two important characteristics 
found in consolidation tests on unsaturated clay, 
viz. a continuously curved settlement/root-time 
plot and a mid-plane pore pressure dissipation plot 
which is flatter than the theoretical Terzaghi plot. 
As a result of this preliminary investigation it is 
tentatively concluded that a major cause of this 
difference between Terzaghi theory and the observed 
behaviour of compacted clay, in the region of or 
wetter than optimum, is the marked decrease in 
permeability that occurs during the consolidation 
process, the effect of the compressibility of the pore 
fluid being of secondary importance. 

On passe en revue les renseignements publies sur 
les proprietes physiques des argiles non saturees et 
compact&es afin de reconnaitre les facteurs impor- 
tants affectant le procede de consolidation dans de 
tels ~01s. Puis on essaye d’exprimer et de resoudre 
un groupe d’equations generales pour d&ire le 
procede de consolidation. A cause de la com- 
plexite de ces equations il est utile de subdiviser le 
procede en un certain nombre de traitements moins 
generaux, chacun concemant une serie particuliere 
de valeurs de saturation. Les traitements compren- 
nent le decroissement de la permeabilite ainsi qu’un 
fluide interstitiel compressible, et les equations 
differentielles partielles non-lineaires en resultant 
sont resolues sur une calculatrice digitale par des 
approximations de difference determin6es. Les 
resultats computes font ressortir les deux carac- 
teristiques importantes decouvertes dans les essais 
de consolidation sur de l’argile non saturee, a savoir 
un trace graphique en courbe continue du tassement 
et de la racine de la duree, et un trace graphique de 
la dissipation de la pression interstitielle en plan 
moyen qui est plus plat que le trace theorique de 
Terzaghi. A la suite de cette enqudte preliminaire 
on conclut a titre d’essai qu’une cause principale 
de cette difference entre la theorie Terzaghi et le com- 
portement observe de I’argile compactee, dans le 
voisinage de l’optimum ou plus humide, est le 
decroissement marque en permCabilit6 qui se produit 
pendant le procede de consolidation, l’effet de la 
compressibilite du fluide interstitiel Btant d’une im- 
portance secondaire. 

INTRODUCTION 
The prediction of the rate of dissipation of construction pore pressures in earth dams and 

embankments is a problem of considerable practical importance. The extremely complex 
nature of the physical properties of a three-phase material such as a compacted clay containing 
both air and water as pore fluids renders an exact description of the consolidation process 
rather remote. Consequently the Terzaghi theory designed for saturated clay is commonly 
applied as a first approximation to the case of compacted clays. The following is an attempt 
to review the physical properties involved in the consolidation process in unsaturated clay, 
with the object of recognizing the more important factors. 

This is followed by a relatively simple treatment of the consolidation process in compacted 
clays of various degrees of saturation which necessarily contains a number of simplifying 
assumptions. In this preliminary investigation solutions are obtained only for the practical 
case of one-dimensional vertical consolidation. 

PHYSICAL PROPERTIES OF COMPACTED CLAY 

One general difference between artificially compacted and naturally occurring unsaturated 
clay is that compacted clay will probably contain a proportion of much larger air voids than 
are likely in a natural deposit that has dried out slightly since deposition. However, it seems 
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263 LAING BARDEN 

reasonable to accept certain similarities in these two materials and to use evidence reported 
in the extensive literature of agricultural and soil science (Collis-George, 1953 ; Childs, 1956 ; 
Orlob and Radhakrishna, 1958 ; Marshall, 1959 ; Remson and Randolph, 1962). In the litera- 
ture of soil mechanics excellent discussions of this topic have been presented by Aitcheson 
(1956), Hilf (1956) and Yoshimi and Osterberg (1963). Although the details are not fully 
understood there appears to be general agreement between the various disciplines on the 
following points. 

In the following the suffix ‘a’ refers to air and ‘w’ to water. 
(1) The porosity and the structure of the clay depend on the method of compaction and the 

moisture content. 
(2) Water preferentially wets the surface of the clay particles and even in dry soils there 

will be a thin layer of water separating the air from the clay surface. If sufficient water is 
present there is a gradual transition from the highly viscous adsorbed water firmly attached 
to the clay surface to the free pore water which can move freely under potential gradients. 
According to Carman (1953) the water will redistribute itself until the curvature of the air- 
water menisci are equal. The presence of curved menisci and surface tension forces is the 
cause of a (capillary) pressure difference between the pore air and water pressures andif theair 
pressure is atmospheric this causes considerable suctions in the pore water. The menisci can 
also cause water to be trapped in cavities and hence to be attached to the clay skeleton. Thus 
the water can be considered as made up of ‘free’ water which can flow through the pores 
under potential gradients and ‘dead’ water, either trapped or adsorbed, which cannot flow, 
the relative amounts of each type depending on the degree of saturation. 

(3) Similarly the air can exist in different conditions and may be effectively attached to the 
clay skeleton or free to ilow through the clay. Because of surface tension water will flow from 
larger to smaller pores ; also water vapour will move from large to small pores (Carman, 1953). 
Hence there is a tendency for air to congregate in the larger pores while the smaller ones are 
full of water. For a high enough air content these larger pores are continuous and the air is 
free to flow through the clay. However, as the water content increases the thin necks between 
pores tend to close and the air ceases to be continuous over any distance and is said to be 
occluded. Excellent evidence of the phenomenon of occlusion is presented by Gilbert (1959) 
who showed that for Vicksburg silty clay the air voids are fully continuous at a moisture 
content 4% below optimum and are occluded at a moisture content of 30/o above optimum. 

The main disagreement concerns the condition of the occluded air, and whether at high 
degrees of saturation it can exist as small bubbles in the free pore water and hence flow with 
the water. Hilf (1956) does not favour the presence of air as small bubbles and on p. 37 
states ‘under equilibrium conditions it follows that bubbles can exist only when the water is 
saturated with air at the pressure of the bubble’. His argument in support of the above state- 
ment is sound, but during a consolidation process equilibrium conditions do not exist and on 
p. 39 Hilf states ‘their transitory existence during compression is recognized’. 

Hilf’s further two arguments on p. 41 and p. 42 however do not apply if the air is occluded. 
The basis of these arguments is that as saturation is approached the bubbles become very 
small and hence the pressure difference ($a-~,) would become very large. Assuming 9, 
is atmospheric throughout this implies a drop in pw and since pw does not fall, but actually 
rises as saturation is approached, Hilf concluded that the mechanism cannot involve the 
compression of small bubbles. The fallacy is the assumption that p, equals atmospheric 
pressure throughout, since if the bubbles are occluded there is no means of measuring their 
pressures, which will in any case vary depending on the size of the bubble, and which, as 
saturation is approached, will probably reach very high values greatly in excess of atmos- 
pheric. 

In the present treatment of the transient state it is assumed that in the occluded state air 
can exist as small bubbles that are free to move with the pore water, as well as isolated air- 
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filled voids that are generally static. There is a possibility that free bubbles may become 
trapped by the skeleton as they flow through the clay. 

Having considered briefly the nature of the material it is necessary to consider the possible 
forms of the consolidation process. In general it will be treated as the transient flow of two 
immiscible pore fluids through a compressible porous medium. The secondary processes of 
the diffusion of water vapour through air and the diffusion of dissolved air through water 
will be neglected as their effects will be small and their complexity great. 

In the present state of knowledge the flow of fluids through a porous medium is best treated 
in terms of Darcy’s law. To apply Darcy’s law to the present problem of vertical flow a 
large number of assumptions are implicit, the more important being as follows. 

(1) The form of the expression involves a force potential rather than a velocity potential 
(Schiedegger, 1957) 

K@ v=y--. . . . . . . . . . 
P az 

(1) 

where v is the macroscopic velocity, K the permeability of the medium, p the viscosity of the 
fluid, and + the total potential. 

(2) In the expression for total potential + the osmotic pressure potential and the adsorption 
potential will be ignored. The gravitational potential will also be neglected at this stage as 
the inclusion of gravity would require the treatment of a non-homogeneous soil with,many of 
the properties varying with depth. 

For experimental results at laboratory scale this effect is negligible, but it could be impor- 
tant at field scale and should be included in a more refined treatment. The expression for 
Darcy’s law therefore simplifies to 

K a+ v=-- . . . . . . . . . 
CL a2 

where p is the absolute pressure of the fluid and y its density. In the following K/p will be 
written as k with a suitable suffix where necessary to indicate the appropriate fluid. 

(3) A theoretical treatment by Slepicka (1960) based on dimensional analysis indicates 
that a more general form of Darcy’s law is v = k(i)” with n> 1 for very small velocities, 
it= 1 for a considerable range of intermediate velocities, n < 1 for high velocities. This con- 
firms the experimental findings of Hansbo (1960), Swartzendruber (1962) and Abelev and 
Tsytovich (1964), at very low velocities ; and of a large number of workers at high velocities 
(Muskat and Botset, 1931; Muskat, 1946). 

Thus in assuming the simplest form with n = 1 there is a probability of error under the low 
velocities common at the field scale, whereas the effect will be negligible at laboratory scale. 
The use of a power law will not be attempted here and Darcy’s law is applied asv = kap/&. 

(4) Darcy’s law has been fully verified for the steady state flow of water through saturated 
clay, except under very low gradients, and also for the steady flow of air through dry porous 
media provided the flow was laminar. There is also a considerable amount of experimental 
evidence in soil science and petroleum engineering literature to confirm that it also gives at 
least a close approximation in the case of the flow of two or even three immiscible fluids (air, 
water and oil) through a porous medium (Wykoff and Botset, 1936 ; Richardson et al., 1952 ; 
Rose, 1954). There is, nevertheless, a great deal of experimental work yet to be done in 
studying the application of Darcy’s law to the simultaneous flow of air and water through an 
unsaturated clay which is undergoing a change in both structure and degree of saturation. In 
the meantime it is reasonable to assume that Darcy’s law can be applied to each of the separate 
fluids, the main problem being to establish the approximate manner in which the permeability 
to each fluid varies during a consolidation process with the consequent compression of the 
skeleton and the change in the degree of saturation. 
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Thus for combined flow of air and water : 

(5) For the 
: 

K = f(n, A). 

Theoretical attempts to predictf (n, A) will have little general success for materials with a com- 
plex structure such as clay. 

For the flow of both water and air through porous media, usually sands of constant porosity 
and structure, it is known that permeability is a complex function of degree of saturation s 

(Wyckoff and Botset, 1936; Orlob and Radhakrishna, 1958; Christiansen, 1944) : 

k =f(s). 

This function is not unique but depends on whether s has been reached by wetting or 
drying, and again attempts to predict it on theoretical grounds have not been successful. 

For the present problem we must expect : 

k, = fa (n, A. s) . . . . . . . . (3a) 

k, = fw (12, A, s) . . . . . . . . (3b) 

where fs andfw are not single-valued functions and will have to be established experimentally 
in every case. Experimentally it is very difficult to separate the relative effects of changes in 
n, A, and s (Lambe, 1954 ; Sibley and Miller, 1962). Further consideration will be given to 
fa and fw in a later section. 

GENERAL EQUATIONS FOR THE CONSOLIDATION PROCESS 

In common with the majority of consolidation theories the pore pressures will be expressed 
in terms of a pore pressure excess u rather than in terms of the absolute pressure 9. In the 
present case, since gravity has been neglected, this merely implies in excess of atmospheric 
pressure PO and hence u=$ -PO. This procedure allows the use of the familiar boundary 
condition u=O at the free drain and makes the computation slightly simpler than if p =p,, at 
the free drain. 

Thus ps=pO+u, and g=$; 

Pw = PO+% and !?& = %? 
az az ’ 

Consider separately the continuity of the mass of the air and the water phases flowing 
vertically through an element of clay, under isothermal conditions. In the case of the mass 
continuity of the air phase the solubility of the air in the water may be an appreciable factor. 
Based on Henry’s law the mass of air m dissolved in unit volume of water is given by the 
expression 

m = hpa = h (p,+u,) 

where h is a constant related to Henry’s coefficient. In the case of the mass continuity of the 
water phase the mass of water vapour flowing in the air phase is neglected. 
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Continuity of mass in air phase gives 

271 

g t%Ya+ mV,)=~(msn+y.(l--s)n). . . . . 

Continuity of mass in the water phase gives 

; (VW yw) = f (?z s yw) . . . . . . . (5) 

where v is the macroscopic velocity given by Darcy’s law, y the density of the fluid, s the 
degree of saturation of voids by water, and PZ the porosity of the clay. 

Assuming the water to be incompressible, yw=constant. Assuming air to obey the ideal 
gas law ya = c p, = c (p, + u,) where c is a constant. Equations (4) and (5) become : 

iz 4Po-+ ~a) ka sn+c(p,+u,) (l-s) n 1 (6) 

. . . . . . . 
where k, and k, are given by equation (3). To solve for the four independent variables 
ua, uW, s and n it is necessary to produce two further equations. For a given pair of pore fluids 
the capillary difference can also be expressed as an empirical function of n, h and s, 

(u,-2,~~) = fc (n, A, s). . . . . . . . . (8) 

Assuming that there is no time dependence (creep) in the void ratio-effective stress relation, 

n =fn(a’). . . . . . . . . - (9) 
According to Bishop (1960) the effective stress in an unsaturated soil can be expressed as 

u’ = O-“*SX (zd,-+&). . . . * . . * (10) 

In considering stress-volume change relationships the stress paths of both components 
(u-ZCJ and (zc,-2~~) must be considered and ‘this places a severe restriction on the type 
of prediction which can be made’ (Bishop and Blight, 1963). Since in equation (10) x is again 
a complex function of (n, h, s) equation (9) can be written 

rt = fn[u--~+fx (n, h, s)]. . . . . . . - (11) 
For certain simple materials such as uniform rounded sands, where structure is not so impor- 
tant, it may be possible to derive theoretical expressions for fa, fw, fc and f,, but this approach 
seems very unlikely. For compacted clays it is obviously impossible and these functions will 
have to be found experimentally in each case. 

If experiments on a wide range of clays did show that the empirical expressions for any 
particular function were essentially of the same form and differed only in the values of the 
coefficients involved, then direct progress might be possible. Equations (6), (7), (8) and (11) 
could probably be solved for the four main variables uB, ztW, s and n using numerical methods 
and with the help of a computer to provide a very comprehensive solution. Unfortunately 
the number of empirical coefficients necessary to describe fully the complex functions f8, fw, 
fc and f, is certain to be high. The number of combinations of practical values of these coef- 
ficients necessary to provide an adequate cover of the problem would require a very large 
number of separate solutions and would make it impossible to present the results in a conve- 
nient form. 

In view of this difficulty it appears relevant to consider alternative treatments, less general 
than the above, but which may be simpler to apply in practice. The following simplified 
treatment is based on the classification of any particular consolidation process as one of five 
somewhat idealized processes, whose differing characteristics depend mainly on the range of 
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s-values involved. The complex functions fa (a, A, s) etc, are replaced by simple functions 
of a single variable and for this purpose pore pressure seems the most relevant parameter as it 
strongly influences all three parameters (rt, h, s). 

IDEALIZED CLASSIFICATION OF CONSOLIDATION PROCESS FOR COMPACTED CLAY 

The values of s quoted as boundary values and the terms ‘ dry ’ and ‘ wet ’ of ‘ optimum ’ are 
intended merely as a guide to the state of the soil and will vary from clay to clay. It is not 
suggested that s = 0.9 at the optimum for all clays. 

(1) Extremely dry clays (s < 05). It is unlikely that compacted clay fill will be placed in 
such a dry condition but the material will be included for the sake of completeness. The water 
is firmly attached to the skeleton by capillary forces. The air voids are completely inter- 
connected and only air will flow from the consolidating clay (Yoshimi and Osterberg, 1963). 
Because of the low value of s the parameter x in equation (10) will be small (Bishop et al., 
1!%4), and hence equation (10) can be applied as u’=u-ua. 

(2) Clay dry of optimum (05 < s < 0.9). The water still does not flow from the clay to any 
appreciable degree, possibly because the capillary difference (zc,-NJ is still large enough to 
ensure that u, rarely exceeds zero. The air voids are still continuous and air is again the only 
fluid to flow from the compressed clay (Yoshimi and Osterberg, 1963). In this case equation 
(10) cannot be simplified. 

(3) For clays in the region of the optimum moisture content there is probably a short 
transition stage (between the flow of air only in process 2 and the flow of liquid in process 4) 
when both air and water flow simultaneously and separately according to equations (6), (7), 
(8) and (11). At this transition stage the value of (zL,-%~) has probably reduced sufficiently 
to give u, > 0 and water can now drain. Also the increase in s will have reduced k, and in- 
creased k, to the extent that the drainage rates of the two fluids are of similar order. 

(4) For clay wet of optimum (s>O*9) the value of k, drops off rather abruptly due to the 
sealing by water of the thin necks between the air filled larger voids. The air then exists in its 
occluded state and cannot flow as a separate continuous fluid. Certain smaller air bubbles 
may be free to flow with the free pore water forming a homogeneous compressible fluid flowing 
under the gradient au,/&. The majority of the air will be static, trapped by the skeleton. 
Because of the high value of s the parameter x in equation (10) will approach unity and hence 
equation (10) can be applied as u’=u-uuw (Bishop et al., 1964). 

(5) For very wet clays (s > 0.95) it can be concluded that the small amount of air present 
will be trapped by the skeleton and the fluid flowing from the clay will be fairly incompressible. 

The above five processes have each been treated separately using simple parameters to 
describe their respective physical conditions. It is implied that any consolidation process in 
compacted clay can be satisfactorily treated by assuming it to follow only one of these idealized 
processes. In the region of optimum moisture content, however, it is possible that a large 
load increment could cause an overlap. For example, consolidation might start on the dry 
side with only air flowing from the clay, which could cause s to increase to the value at which 
the air became fully occluded: thus process 2 could change, via process 3, into process 4. Such 
a@arent discontinuity cannot be taken into account in the following treatment, any con- 
solidation process being considered as essentially one of the above idealized processes 1 to 5. 
The only way to remove such apparent discontinuity is to revert to the much more difficult 
solution of the general equations (6), (7) and (ll), which requires knowledge of the complex 
functions fa, fw, f. and f,. 

TREATMENT OF PROCESS 1 

For very dry clays the water phase can be considered as effectively bound to the clay 
skeleton. The air voids can be treated as continuous and only air will flow from the clay. 
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The value of k, is so high that despite the compressibility of the air the transient process will 
in general not take long. It is therefore unlikely that equilibrium will be maintained between 
air and water according to Henry’s law which will be neglected from the mass continuity 
equation (4) which will be expressed as 

. . . . . (12) 

where n, is the porosity with respect to air filled voids. For air flow the effect of gravity is 
small, regardless of the scale, and so the error will be negligible in applying Darcy’s law in the 
previously adopted approximate form, 

. . . . . (13) 

The variation of k, =fe (n, A, s) throughout a consolidation process is unknown. For simplicity 
it will be assumed to vary linearly with ug, as both PZ and (1 -s) decrease as u, dissipates, 
whence 

k, = k,, (1 +b u,) . . . . . . . . (14) 

where kaf is the final value of k, when the pore pressure excess u, has finally dissipated to zero. 
Assuming air to behave as an ideal gas under isothermal conditions, 

y* = ;.p. = ~@,+u.) = Yo(lfdzJ,) . . . 

where d= l/pO=constant. For a dry soil the parameter x becomes small and equation (10) 
can be applied with little error as CT’ = a-u,. 

Assuming a linear relation between porosity and effective stress, 

n, = n,,(l+au,) . . . . . . . (16) 

where naf is the final value of n, when the pore pressure excess u, has finally dissipated to zero. 
On substituting equations (13), (14), (15) and (16) into equation (12), 

~[y,(l+du,)k.~(l+b~.)~] =~[n.,(l+az~.)~.(l+deb.)l. f (17) 

To reduce to a dimensionless form put 

z = z H, u, = u uo, a = au,, /I = b uo, 6 = d 2t, 

where H is the length of the vertical drainage path. u0 is the initial t = 0 value of the pore- 
pressure excess, but which in an unsaturated soil is not equal to the increment of total stress, 
since B#l. cc, /l and 6 are characteristics which establish the degree of variation of n, k and 
y respectively 

no < = (1 +c(), 2 = (1+/3), ; = (l+S). 

Equation (17) on expansion and rearranging gives 

(B+s+2spu) %+2 (l-6@2) $ = 2 (I+;.,,,)$ . . 

where the time factor 

T _ k, uo t -- 
nfaH2 ’ 

. . . . . . . (19) 

Since (a n,) is equivalent to the conventional coefficient of volume decrease m,, equation (19) 
can be written 
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T=--$ . . . . . . . . . (19a) 
” 

which is identical in form to the Terzaghi expression. 
For an incompressible fluid 6 = 0 and for a constant value of permeability /? = 0 and equation 

a%i 
(18) reduces to B = fi as required. aT 

Equation (18) for the rate of dissipation of zt in terms of T is non-linear and cannot be 
solved analytically. In a subsequent section it is solved for the usual boundary conditions of 
one-dimensional vertical consolidation, using finite difference approximations. 

Since the compression in this case is related very simply to the pore-pressure excess u, 
by equation (16) the rate of settlement can easily be obtained, and so the complete consoli- 
dation process is defined. 

It can be seen that in the above simple treatment the main source of error is likely to appear 
in equation (14) which is clearly an oversimplification of the complex function ja (12, h, s). 

TREATMENT OF PROCESS 2 

Again water does not flow from the clay in any appreciable amount (Yoshimi and Oster- 
berg, 1963), possibly for the two following reasons. Provided the air phase remains con- 
tinuous, k, is considerably greater than k, ; and unless u, is very high the capillary difference 
(ua - u,) ensures that u, is rarely greater than zero. Neglecting the effect of Henry’s law as in 
process 1 mass continuity again gives equation (12). The process 1 expressions for v, and ya 
can also be assumed in this case. However, for the variation of n, the effective stress must be 
obtained using equation (10) in full, and the term corresponding to equation (16) will be much 
more complex. 

On considering equations (17) or (18) it can be seen that if the compressibility of the fluid 
(air in this case) is much greater than the compressibility of the skeleton (6 > CC), then the solu- 
tion of (18) for the rate of dissipation of u, is not going to be greatly affected by a variation in 
the form of the parameter CC, caused by the use of equation (10) in full. Thus in the present 
case of air flow only, the rate of dissipation of u, with T will again be given by the numerical 
solution of equation (18), to an accuracy sufficient for many engineering purposes. 

Unless the values of x and (.u, - ZL,) are known at each value of u, the details of the rate of 
volume change or rate of increase of shear strength remain unknown and hence the above 
solution is far from complete, and merely serves as an estimate of the overall length of the 
dissipation process. 

TREATMENT OF PROCESS 3 

At higher values of s, in the region of the optimum, it is possible that, just before the air 
voids become occluded, the value of k, will drop and the value of k, will rise until they are of 
similar magnitude. Also at such high values of s the capillary difference (a, - ‘u,) will be less. 
It is therefore possible that a short range of s values exists during which both air and water 
can flow from the clay as separate fluids, but as the air flows out and s increases there is likely 
to be a gradual transition to process 4 conditions. TO treat process 3 fully would require the 
solution of the general equations (6) to (11) which was abandoned earlier. However, in the 
present case certain simplifications may be made to these general equations. 

In the mass continuity equations (6) and (7) the secondary effect of Henry’s law could be 
neglected. Since the parameter x approaches unity u’=~-uW and hence n=n, (1 +a zd,). 

The variation of k, and k, during the consolidation process is not understood, apart from 
the fact that both decrease as pore pressures dissipate. The simplest expressions are linear: 
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k, = k,, (1 +ba 4 
k, = k,, (l+b,zt,). 

The simplified forms of equations (6) and (7) can be written 

; [(1+&J k,, (l+b,u,) $1 = ;[(l+h,) (l-s) ‘% (l+a%)l . (20) 

~[k,,(l+b,u,)~]=~[n,(l+au,)sl. . - - . 

The main problem is the variation throughout the process of the capillary difference 
(u*-u~). It might be argued that at such high values of s near the optimum the value of 
(ue - u,) is small and as a first approximation U, = uu,. However, this observed effect may be 
more apparent than real, since at occlusion uu, cannot be measured by the usual direct means. 
Instead u, will probably be registered on the air pressure measuring device with the apparent 
result that uu, -uu, approaches zero ; whereas in fact the pressure in the occluded air will 
depend on the size of the individual bubble and could be much higher than u, before all air 
finally goes into solution. 

The solution of equations (20), (21) and some form of equation (8) for the three variables 
ug, U, and s is not easily accomplished and will not be attempted until more reliable experi- 
mental information is obtained, particularly on the true behaviour of the capillary difference 
(%-%A 

TREATMENT OF PROCESS 4 

In this state the air is present as occluded bubbles. It is probable that near the optimum 
certain of these bubbles are interconnected locally, but not sufficiently to allow the air to flow 
as an independent fluid as in process 3. For the present simple treatment the bubbles will be 
classified as ‘ free ’ or ‘ trapped’ although it is recognized that some free bubbles may become 
trapped in their progress through the clay. 

(a) Free bubbles are entirely surrounded by free pore water and will be transported by this 
water as it drains from the clay. The pressures of the air in the individual bubbles, being an 
internally balanced pressure caused by the curvature of the menisci, is not effective in pro- 
viding the potential gradients causing flow. The free air bubbles exert an influence on the 
process mainly by their effect on the compressibility of the fluid, flow being brought about by 
the pressure gradients au,/az in the continuous water phase. 

(b) Trapped bubbles occupy ‘dead’ pores, which are no longer in the general flow channels 
through the clay, or are held by capillary forces or the viscous forces of the adsorbed double- 
layer. These bubbles are effectively bound to the clay skeleton and can be treated as a com- 
ponent of the skeleton rather than of the mobile fluid. The important effect of the trapped 
bubbles is on the permeability of the skeleton to the compressible fluid. Since they tend to 
occupy the larger voids and since free bubbles may become trapped when they expand as 
pressures dissipate it is suggested that the effect on overall permeability is disproportionately 
great. 

To treat the above system in a simple manner it is necessary to assume that the mobile 
fluid is homogeneous to the extent that its compressibility characteristics do not vary through- 
out the mass of the clay and do not change during a consolidation process as a possible con- 
sequence of Henry’s law. 

It is also assumed that since the mass of air is negligible compared with the mass of water 
in the homogeneous compressible fluid then the effects of Henry’s law can be omitted from the 
following equation for continuity of mass of the homogeneous fluid. 
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where the suffix ‘e’ refers to the effective mobile fluid (homogeneous, compressible) as in the 
similar notation employed by Orlob and Radhakrishna (1958). As stated above flow is 
caused by gradients in u, alone 

It is convenient to work in terms of U, as the main dependent variable and to obtain a solution 
to equation (22) the other dependent variables ye, n, and k, will be expressed as simple functions 
of u,. 

Equation (10) can be applied with little error as 

(5’=u-UW. . . . . . . . . . (24) 
Remembering that n, is defined in terms of volume of voids occupied by mobile fluid rather than 
total void volume, n, will be expressed as 

n, = n,, (1 +C, u,+C, u,). . . . . . * (25) 
C, is a parameter (which may be pressure dependent) which accounts for the compressibility 
with respect to U, of the air bubbles bound to the skeleton. C, is a parameter (which may be 
pressure dependent) which accounts for the compressibility of the skeleton with respect to 
effective stress and hence by equation (24) with respect to u,. 

Accurate expressions accounting for the pressure dependency of C, and C, would lead to 
very complex equations and to avoid this the following approximation is suggested. C, 
increases and C, decreases as uu, decreases during a consolidation process ; and consideration of 
the general order of the pore-pressure parameter B suggests that C, and C, are of similar 
order of magnitude. Hence it is suggested that (C,+C,) is sensibly constant during a con- 
solidation process and equation (25) can be applied in the form : 

72, = n,, (1+ a 24,). . . . . . . . (26) 
It should be noted that the parameter a is now larger than the corresponding parameter a in 
process 1 (equation (16)) which applied only to the compressibility of the skeleton. 

For the clay under consideration the volume of air present in the mobile fluid is certainly 
less than 10% depending on the proportion of air bound to the skeleton. Thus the increase 
in the density ye of the fluid from u,=O to full saturation under a high value of u, must be 
less than 10% and will usually be nearer 5%. It might be possible to calculate a relation 
between ye and u, based on Boyle’s and Henry’s laws and the capillary difference (u,--tizd,), 
but such a relation would be rather cumbersome. In view of the small variation of some 5 to 
10% in ye it appears justifiable to adopt a simple linear relation 

ye = Yo(l+dU,). . . . . . . . (27) 
The value of d in the above is much smaller than when the compressible fluid is entirely air as 
in process 1, equation (15). 

The relation between k, and U, is much more complex and it is not such a simple matter to 
postulate a realistic approximation based on the form of equation (3). 

The permeability of compacted clay is extremely sensitive to changes in structure (Lambe, 
1954). The presence of air in the voids of compacted clay must necessarily decrease the 
permeability (Christiansen, 1944). If the air tends to occur in the larger voids, which provide 
the most important flow channels through the clay, the effect of even small changes in s can 
be expected to be important; this is generally confirmed by the experimental results of 
Bjerrum and Huder (1957) and of Sibley and Miller (1962). It is very difficult in such experi- 
mental work to separate clearly the effects of the various parameters n, h and s, but fortunately 
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what is required at this stage is simply their combined effect on permeability. Since the 
permeability decrease due to changes in both structure and saturation are governed by U, 
it is proposed that for the present simple treatment it is sufficient to postulate 

k, = K,f (1+bu,). . . . . . . . (28) 

It is interesting to note that a simple relation of this form is compatible with the permeability 
variation found by S&mid (1957) for saturated clays. From the discussion above it is apparent 
that the value of b will be greater for an unsaturated than for a saturated clay. 

In a later section the results of introducing expressions more general than equation (26) 
will be investigated. 

Substitution of the approximate relations for v,, ye and n, in terms of the pore-water 
pressure excess u, into the mass continuity equation (22) yields an equation identical to 
equation (17) which is expressed in dimensionless form as equation (18). As stated previously, 
equation (18) is subsequently solved for the usual boundary conditions of one-dimensional 
consolidation, using finite difference approximations, to yield the rate of dissipation of 26, in 
terms of the dimensionless time factor T. The difference between the predicted behaviour 
computed for process 1 and process 4 is therefore due to the differences in the magnitude of 
the parameters a, /I and 8. 

Since the compression in the present case is very simply related to U, by means of equation 
(26). the rate of settlement is easily obtained. Thus the complete consolidation process is 
defined by the above treatment and it can be applied to both settlement and stability calcu- 
lations. 

TREATMENT OF PROCESS 5 

It is assumed that most of the small amount of air present in the clay is bound to the 
skeleton and very little flows with the water. The treatment is therefore as in process 4 with 
d negligibly small. The main difference between the consolidation of this type of clay and a 
fully saturated one is in the disproportionately large effect of the small amount of air on the 
variation of permeability throughout the process. 

As the parameter d is being removed from the analysis it is an opportune place to introduce 
a more general expression in place of the linear variation of R with u, (equation (26)). 

k 

k, 

k.= kc (1 +f) I 

U 

Fig. l(a). 

k f 

Fig. l(b). 

The following variations of K with uw, illustrated in Figs l(a) and l(b), have been treated. 
For the variation illustrated in Fig. 1 (a) the general equation is 
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k = K,(l+bu$) . . . . . . . . (29) 

where n is positive, but can be greater or less than unity. For n= 1 the above reduces to the 
linear form of equation (23). The equation to be solved in this case is 

i[fir(l+bu$)2] =JJj.[ni(l+az4,)] . . . . . 

Putting into dimensionless form and expanding, 

(l+Eun).~+nsun-l(~)Z=~ . . . . . 

(30) 

(31) 

k, t where T = - m, Ha, u, = $1 u, and E = b (u,)“. 

Equation (31) has been solved for various values of ti and E using finite difference approxi- 
mations as outlined in the next section. 

For the variations of k with zt, illustrated in Fig. l(b) the treatment is as follows: 

k = k, for O<u<x 

k = kf [l+c (E)] for X<ZJ-C_Y 

k = (e+l) k, for y<u<l. 

This is easily incorporated into a finite difference treatment, the equations being solved for 
various values of the parameters E, x andy. 

SOLUTION OF THE NON-LINEAR EQUATIONS 

In general non-linear partial differential equations cannot be solved by analytical methods 
and so use must be made of finite difference approximations. There are a number of estab- 
lished methods of solving such equations using finite differences, the two best known being 
based on the explicit Schmidt and the implicit Crank-Nicholson types of solution. 

The size of the finite step intervals in the space-time grid necessary to ensure both stability 
and accuracy of solution are not readily obtainable for non-linear equations such as (18) and 
(31) (Keller, 1960). For mildly non-linear equations of the type considered the procedure 
can be one of repeated trials using smaller and smaller values of the ratio R=AT/(Az)~ until 
first stability is obtained ; and then using finer and finer space intervals (AZ) with the estab- 
lished value of R until the solution is sensibly unaltered by subsequent refinement of the grid. 
The resulting solution is then a close approximation of the solution of the partial differential 
equation. 

Since the explicit Schmidt method is the more direct and is simpler to programme for a 
computer it has been adopted for the following, despite the fact that it is probably less econo- 
mic in the use of computer time. 

Using the commonly accepted finite difference approximations for @zL/&~, &/LXX and h/aT 
the finite difference expressions of the various equations are : 

equation (18), 

% = U”+(;;22(a+S;2Sau )X 
x:(fi+~+2sgu,) (u~+zt~-22~)+2(1-6~ztg) (u,+~,-24~ (32) 

equation (31), 

% = uo+g5[ (l+EU$(U2+Uq-2%J+ 4 5.232 (zc2-u4)q . . (33) 
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A similar approach to the problem of the transient flow of gas has been made by Aronofsky 
and Jenkins (1964), and consolidation of saturated clay with a variable coefficient of consoli- 
dation by Scott (1961). 

As anticipated the larger the values of the parameters CI, 8, 8, E and rt the smaller the value 
of the ratio R=dT/(d )” z re q uired to ensure stability, i.e. a smoothly decaying pore pressure u 
with no sign of any superimposed oscillation at any stage. 

For the simple Terzaghi solution a value of R < 0.5 is sufficient for stability. In the present 
solutions a value of R=O.l ensured stability for the smaller values of the parameters 
a, /I$ etc., and a value of R=O.Ol was usually adequate for the larger practical values. 

From the point of view of accuracy of solution a grid with 10 space steps (dz=O*l) was in 
general found to give point values which differed by less than 0.5 from the corresponding 
values on a grid with 20 space steps (dz=O.O5), the agreement increasing as dissipation 
increased. 

Thus the most commonly used grid was one with AZ = 0.1 and R = 0.1. This grid required 
lo3 time steps (A T) to reach even a value of T = 1, and hence the calculation of 10 x lo3 
individual grid-point values, which requires the use of a digital computer. 

The results of the computations are presented and discussed in the next section. 

EXAMPLES OF COMPUTED SOLUTIONS 

A representative range of the computed numerical solutions have been plotted in Figs 2-7. 
Since secondary or creep effects are not included in this treatment, and the porosity has in 

all cases a simple linear relation with pore-pressure excess zc, the settlement of a confined sample 
at any value of T is given by 0 the average degree of consolidation, which is the mean of the 
point values of u. In most oedometer tests the rate of settlement is measured and to allow 

comparison 0 has been plotted against T. In dissipation tests the mid-plane pore pressure 
excess u, is measured, and the point value of u,,, has also been plotted against T. 

Figs 2(a) and 2(b) present results for constant permeability (/3=0) and various values of 
the compressibility of the pore fluid. 

6 <O-l approximates to the compressibility of the pore fluid in a process 4 soil with s > 0.9. 
As anticipated the compressibility of the pore fluid slows down the dissipation process, in this 
case by a factor of 2. In Figs 5(a) and 5(b) the curves have been replotted after fitting them 
to the standard Terzaghi solutions (fl=O, 6 =0) at the 50% dissipation point and it can be 
seen that their shu$es are almost identical. This indicates that for such small values of 8 the 
usual curve fitting methods would indicate that the Terzaghi solution gives an exact descrip- 
tion of the process, whereas in fact the deduced permeability value would be approximately 
one-half of the true one. 

6 =2 represents the compressibility of the pore fluid in a soil from which only air is flowing 
(processes 1 and 2). For such a process the shape of the plot apparently depends on the value 

of the initial pore pressure u,. In the treatment of processes 1 and 2, 6 =d u, =F and thus 
0 

6=2 applies for a consolidation process in which the initial pore air pressure excess is twice 
atmospheric pressure. Due to this high fluid compressibility the dissipation process is greatly 
retarded. Despite this effect, the very high values of k, (compared with k,) will in general 
ensure that the transient is of much shorter duration than when the fluid is water. 

In Figs 5(a) and 5(b) it can be seen that, after fitting at the 50% point, there is a small but 
perceptible difference in the shape of the above solution (p = 0, 6 = 2) and the Terzaghi solution 
@=O, S=O). 

Figs 3(a) and 3(b) present results for an incompressible pore fluid (6 =0) for various values 
of the ratio initial/final permeability k,/k,= (1+/3). The reason why the curves in Fig. 3 for 
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0.8 

T 

Fig. 2(a). 

/3> 0 lie below the Terzaghi jl=O curve is that T the time factor is defined in terms of thejnal 
value of the permeability (see equation (19a)). fl=2 represents the order of variation in per- 
meability commonly found in the consolidation of satwated clay. 

In Figs 5(a) and 5(b) it can be seen that after fitting at the 50% point there is a small but 
perceptible difference in the shape of the (,!3=2, 6 =O) solution and the (/3=0, 6 =O) Terzaghi 
solution, the difference being more pronounced for the mid-plane dissipation. Such conven- 
tional attempts at curve fitting must result in different values of the coefficient of consoli- 
dation from D/T and urn/T plots. 

0.1 1.0 10 100 

T 

Fig. 2(b). 
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0.6 

I \ y. \\ 

0.01 

T 
Fig. 3(a). 

For large values of j3, Figs 5(a) and 5(b) show that there is a considerable difference in the 
shape of the computed plots and the Terzaghi plot. As could be anticipated, the decreasing 
value of k causes the process to be accelerated in the early stages and retarded in the later 
stages. This effect is most marked in the case of rate of dissipation of the mid-plane pore 
pressure 24, as shown in Fig. 5(b). This departure from the standard Terzaghi shape is also 
illustrated in Fig. 6, where-the conventional Taylor 2/T plot has been used, Not unexpec- 

1.0 

08 

06 

04 

0.2 

0 
0.1 

T 

Fig. 3(b). 
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0.4 \p, 

0.01 01 1.0 10 

T 
Fig. 4. 

tedly, the effect of large values of p is to introduce a curvature into the initial linear portion of 
the z/T plot. 

Both of these calculated departures from Terzaghi theory are characteristic of the observed 
behaviour in laboratory consolidation tests on unsaturated clay. For example, typical results 
from a lo-in.-dia. oedometer test on field compacted clay fill sampled from the Derwent Dam 
during construction are plotted in Fig. 8. 

” 

Fig. 5(a). 
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“rn 

0.1 1.0 

T 

Fig. 5(b). 

Fig. 4 presents the results obtained for the more general cases of both /3 > 0 and 6 > 0, and 
for the type of non-linear variation of permeability illustrated in Fig. 1 (a). 

Fig. 7 shows the shape of the isochrones for chosen values of /3 and 6, at an average degree 
of consolidation of 0=064. 

DISCUSSION 

For clays dry of optimum with continuous air voids (processes 1 and 2) the value of K, 
is very high compared with the usual range of k, values and the dissipation process will be 
relatively short despite the effect of the compressibility of the fluid. In fact at the laboratory 
scale the dissipation of air pressure was so rapid in the tests of Yoshimi and Osterberg (1963) 
that compression was controlled by the rate of creep of the skeleton. Because of this fact, it is 

04 

1.0 
0 0.5 1.0 1.5 

JT 
Fig. 6. 
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Fig. 7. 

unlikely that such compacted clay fills will be capable of building up and maintaining high 
pore air pressures with consequent stability problems, even at the field scale. 

It would appear that stability problems in compacted clay tills will be more common in 
material close to or wet of the optimum, when the air is occluded. For such clays 6 -C O-1 
and the effect of fluid compressibility is small (see Figs S(a) and S(b)). One of the main 
reasons for departures from Terzaghi’s theory is apparently the large value of j3 caused in part 
by the expansion of air bubbles causing blockages in the larger flow channels and by the marked 
effects of even small changes of structure. The solutions for ,9 > 5 all exhibit two factors : 

(1) A continuously curved 0/1/T plot (Fig. 6). 
(2) A zc,/T plot which is flatter than the corresponding Terzaghi plot (Fig. 5(b)). 

Ji- mins. 

Fig. 

10 100 1000 

t mins. 

a. 
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Both of these factors are well known characteristics of the consolidation behaviour of 
unsaturated and compacted clays (see Fig. 8). It is tentatively concluded that variation of 
permeability is a major factor in governing the consolidation process in clays compacted wet of 
optimum whereas compressibility of the pore fluid is a secondary factor. 

Certain compacted clays show a greater curvature on a O/l/T plot than illustrated in Fig. 
6. Solutions have been computed using variations in K of the type illustrated in Figs l(a) 
and l(b) but they have not yet provided the very marked curvature sometimes found in 
experimental results. It is therefore possible that some important factor has been completely 
omitted from the present preliminary treatment. 

For saturated clays 6 = 0 and for small pressure increments /3 < 3. Under such conditions 
pronounced experimental departures from Terzaghi theory are (according to Figs 5(a) and 
5(b)) unlikely to be caused by variation of permeability; but are more likely to be a result of 
structural viscosity or creep effects (Barden, 1964). Nevertheless, even the small departures 
from Terzaghi theory apparent in Figs 5(a) and 5(b) for such small values of p and 6 are enough 
to cause discrepancies in values of the coefficient of consolidation obtained by fitting either 
the o/d/T or o/log T plots on the one hand and the urn/T plot on the other, with the corres- 
ponding Terzaghi solution. 

Because of the larger number of parameters necessary to describe the more complex 
behaviour of unsaturated clays there are greater difficulties involved in applying the theoretical 
curves presented above, by means of curve fitting techniques, to the interpretation of labora- 
tory test results. Hence at present the most practical approach is to simulate the field 
problem as closely as possible in a laboratory test (Rowe, 1962). This requires a representative 
sample of clay, controlled drainage conditions, a suitably scaled loading and dissipation pro- 
gramme and finally the direct measurement of the property under investigation, whether pore 
pressure, shear strength or deformation. The considerable experimental difficulties involved 
in this approach suggest that any alternative, possibly curve fitting based on simple theoretical 
solutions of the type presented, should be investigated. 

NOTATION 

; coefficient controlling change of porosity 
,, ,, ,I ,> permeability 

2 :: 
I, ,I ,> density of ideal gas 
I, >> I, density of pore fluid 

f final value 
k permeability 

m mass of air in unit volume of water 
% coefficient of volume decrease 

n porosity 
p absolute pressure 

PO atmospheric pressure 
s degree of saturation 
t time 

u pore-pressure excess 
% initial value of u 

%n mid-plane value of u 
u macroscopic velocity 
x coefficient controlling variation of k with u 
Y 3. .> 89 >I ,, I, ,, 
z vertical space co-ordinate 

B pore-pressure parameter 
C compressibility coefficient 
H length of drainage path 
R dT/(d~)~ 
T time factor 
0 average degree of consolidation 

i$ 

Q b&)” 

3+ 

y density 
p viscosity 
4 potential 
A parameter representing clay structure 

coefficient in effective stress equation x 

Downloaded by [ UC San Diego Libraries] on [17/09/16]. Copyright © ICE Publishing, all rights reserved.



286 LAING BARDEN 

REFERENCES 

ABELEV, M. Y. and N. A. TSYTOVICH, 1964. ’ Problems in applying the theory of seepage consolidation to 
highly compressible saturated clays.’ Osnov. Fundam. Mekh. Grunt., 6:3:11-14. 

AITCHESON, G. D., 1956. ‘Some preliminary studies of unsaturated soils.’ Proc. 2nd Aust.-N. Zealand 
Conf. Soil Mech. 

ARONOFSKY, J. S. and 0. D. FERRIS, 1954. ‘Transient flow of non-ideal gases in porous solids-one dimen- 
sional case.’ J. Appl. Phys., 25: 10: 1289. 

BARDEN, L., 1964. ‘Consolidation of clay with non-linear viscosity.’ GLotechnique. To be published. 
BISHOP, A. W., 1960. ‘The measurement of pore pressure in the triaxial test’ in ‘Pore pressure and suc- 

tion in soils.’ Butterworths, London. 
BISHOP, A. W. and G. E. BLIGHT, 1963. ‘Some aspects of effective stress in saturated and partly saturated 

soils.’ Giotechnique, 13:3: 177-197. 
BISHOP, A. W., M. F. KENNARD and P. R. VAUGHAN, 1964. ‘Developments in the measurements and inter- 

pretation of pore pressure in earth dams.’ Proc. 6th Int. Congr. large Dams, Edinburgh, vol. 1. 
BJERRUM, L. and J. HUDER, 1957. ‘Measurement of the permeability of compacted clay.’ Proc. 4th Int. 

Conf. Soil Mech., London, 1~6. 
CARMAN, P. C., 1953. ‘Properties of capillary held liquids.’ J. Phys. Chem., 57: 56-64. 
CHILD& E. C., 1956. ‘Recent advances in the study of water movement in unsaturated soil.’ Proc. 6th 

Int. Congv. Soil Sci., Paris, Vol. B, p. 265. 
CHRISTIANSEN, J. E., 1944. ’ Effect of entrapped air upon the permeability of soils.’ Soil Sci., 58: 355. 
COLLIS-GEORGE, N., 1953. ‘Relationship between air and water permeabilities in porous media.’ Soil 

Sci., 76: 239. 
GILBERT, 0. H., 1959. ‘The influence of negative pore water pressures on the strength of compacted clays.’ 

Master of Science Thesis, Massachusetts Institute of Technology. 
HANSBO, S., 1960. ‘Consolidation of clay with special reference to influence of vertical sand drains.’ 

Roy. Swedish Geotech. Inst. Proc. No. 18, Stockholm. 
HILF, J. W., 1956. ’ An investigation of pore water pressure in compacted cohesive soils.’ Tech. Memoran- 

dum 654. U.S. Bureau of Reclamation. 
KELLER, H., 1960. ‘The numerical solution of parabolic partial differential equations.’ Mathematical 

methods for digital computer, p. 135. (Ed. A. Ralston and H. S. Wiel.) Wiley, New York. 
LAMBE, T. W., 1954. ‘The permeability of fine grained soils.’ Symposium on Permeability of Soils. 

AS. T.M. Spec. Tech. Publication No. 163. 
MARSHALL, T. J., 1959. ‘Relations between water and soil.’ Tech. Communication No. 50. Common- 

wealth Bureau of Soils, Harpenden. 
MUSKAT. M., 1946. ‘The flow of homogeneous fluids through porous media.’ Ann Arbor, Michigan. 
MUSKAT, M. and H. G. BOTSET, 1931. ‘Flow of gas through porous materials.’ Physics, 1: 27. 
ORLOB, G. T. and G. N. RADHAKRISHNA, 1958. ‘The effects of entrapped gases on the hydraulic charac- 

teristics of porous media.’ Trans. Am. geophys. Un., 39:4:645. 
REMSON, I. and J. R. RANDOLPH, 1962. ‘ Review of some elements of soil-moisture theory.’ Geol. Survey 

Prof. Paper 411-D. 
RICHARDSON, J. G., J. K. KERVER, J. A. HOFFARD and J. S. OSABA, 1952. ‘Laboratory determination of 

relative permeability.’ Trans. Am. Inst. Min. Metall. Engrs, Petrol. Branch, 195:187. 
ROSE, W., 1959. ‘Problem of relative permeability.’ Petrol. Eng., Sect. B., 26:4, B58. 
ROWE, P. W., 1962. Discussion of paper by A. W. Bishop and P. R. Vaughan, 1962. ‘Selset reservoir; 

design and performance of the embankment.’ Proc. Instn. civ. Engrs, 23: 735. 
SCHIEDEGGER, A. E., 1957. ‘The physics of flow through porous media.’ University of Toronto Press. 
SCHMID, W. E., 1957. ‘The permeability of soils and the concept of a stationary boundary layer.’ PVOC. 

Am. Sot. Test. Mater., 57: 1195. 
SCOTT, R. F., 1961. ‘New method of consolidationdoefficient evaluation.’ Author’s closure. P?oc. 

Am. Sot. civ. Engrs, vol. 88. 
SIBLEY, E. and J. MILLER, 1962. ‘A pressurised-head permeameter for fine grained soils.’ Washington 

State Inst. of Tech. Bull. 261. 
SLEPICKA, F., 1960. ‘Contribution to the solution of the filtration law.’ Int. Union of Geodesy & Geo- 

physics. Commission o_f Subterranean Waters. Helsinki. p. 245. 
SWARTZENDRUBER, D., 1962. ‘Modification of Darcy’s law for the flow of water in soils.’ Soil Sci., 93: 22. 
WYCKOFF, R. D. and H. G. BOTSET, 1936. ‘ The flow of gas-liquid mixtures through unconsolidated sands.’ 

Physics, 7 : 325. 
YOSHIMI, Y. and J. 0. OSTERBERG, 1963. ‘Compression of partially saturated cohesive soils.’ Proc. Am. 

Sot. civ. Engrs, 89:,SM4: I. 

Downloaded by [ UC San Diego Libraries] on [17/09/16]. Copyright © ICE Publishing, all rights reserved.


