EXHIBIT A



US006816457B1

a2z United States Patent (10) Patent No.:  US 6,816,457 B1

Bahattab 5) Date of Patent: Nov. 9, 2004
(59) PREDICTIVE ROUTING TABLE CACHE Primary Examiner—Alit Patel
POPULATION Assistant Examiner—William Schultz

(76) Inventor: Abdullah Ali Bahattab, 3100 S (74) Attorney, Agent, or Firm—DeMont & Breyer, LLC

Michigan Ave., Apt. #902, Chicago, IL 57 ABSTRACT
(US) 60616 ) )
A router and method for routing table cache population
(*) Notice:  Subject to any disclaimer, the term of this technique is disclosed. In particular, the illustrative embodi-
patent is extended or adjusted under 35 ment routes packets through it more quickly than compara-
U.S.C. 154(b) by 844 days. tively expensive routers in the prior art. The present inven-
tion recognizes that a fast router has small routing table
(21) Appl. No.: 09/633,754 cache that has a high hit ratio and that a high hit ratio can be

achieved with a small routing table cache by predicting
which entries will be needed in the routing table cache in the
Related U.S. Application Data futu.re and by populating the routing table gache with .those

(60) Provisional application No. 60/208,888, filed on Jun. 2, entries before Fhey are needed..The 111u.stratlve embodlmf?nt
2000. of the present invention comprises: an input port for receiv-

ing a succession of packets, wherein each of the packets

(22) Filed:  Aug. 7, 2000

7
(51) Int. CL7 e HO04L 12/56 COIIlpI"iSCS a destination address; a plurality of output pOI‘tS;
(52) U..S. Cl. ........................................ 370/232, 370/234 a SWitChiIlg fabric for interconnecting the input pOI‘t to each
(58) Field of Search ...........c.cccocooveeiiene. 370/229, 230, of the plurality of output ports; a processor or building a

370/230.1, 231, 232, 234, 235, 389, 392, temporal model of the occurrence of the destination
395.7, 428, 429, 395.2, 395.21 addresses at the input port, for populating the routing table
cache based on the temporal model and at least one entry

o
AW 4
L]
y PAckETS
QDOT\»C‘ poTesT [y ~
—> eoal VEfALT
TAGLE. |

2 Py \e2-,

1
t
i
{
t
t
|
(=]
oy e .
i
i
t
1
1
[
.
€

(56) References Cited that is stored in a routing table, and for routing at least one
g g
U.S. PATENT DOCUMENTS of the packets fron} the input port to one of the output ports
through the switching fabric based on the entry that is stored
5488608 A * 1/1996 Flammer, III ............... 370/400 iy the routing table cache.
6,118,760 A * 96/2000 Zaumen et al. ............. 370/229
* cited by examiner 2 Claims, 5 Drawing Sheets
_________________________________________________________ ~
{ !
' Rootee ‘
t i
t ¢
s .
! CeTeeT Ly Paceets
i et L7 pefant
‘ t
‘: no {02~y !
\ t o
E N poteoT i Packets
ackerg ' wPoT § SuorTenmoy foeT . Delant
AcQwE X Poat v < t
WE ABRL 102-2 !
[Y-4) b {
i
1
t
i
t
1




US 6,816,457 Bl

Sheet 1 of 5

Nov. 9, 2004

U.S. Patent

Ipwaza
SIINOY,)

Yuvaad
S12A7Y))

17V)D6
S1IA0YY

n..No.

Ve

. PR
! A2 Co 200

s o) b oy
> .
2PV
bovyooy
ANV
fon ~

Eak 2L [P
fn.:ruk.o)w < w ER Pl M
W o\l

22r00P)

e e e e e e T T ey e e ema - b

1

22MDVVY
SraoYy)



US 6,816,457 Bl

Sheet 2 of 5

Nov. 9, 2004

U.S. Patent

ot 2r9vr Loaooy
.J)?Q.uu\mul

N

Yal <M~

sull.llNll\ll\l(l.l.clll.\lnlll\lll‘l.ll(lﬂ llllllllllllllllllllllllll )

) 1
_ |
}
) '
i ¥
X \oz v !
%, 0l \ __ Z N N _,
Vi o\
NoBY 2 ) \ | ’ 0oy
1
bonvaniens &= ) m 532
[} ) )
] |
} ]
_ i _
1 - 1
H 1
._ 3wy [
1]
| 27Dy )
! Lonraay '
)
! z0 J “_
_. 2~ So? Y.coé\w,;\_ )
) ]
) )
1 i
)

I e - .
e T R e e e s s ey A e M W MR et W e = e e e -



U.S. Patent Nov. 9, 2004 Sheet 3 of 5 US 6,816,457 Bl
Fiq. 2
W7 AT
A
~ DOI2E oF
i RooTwoe, TARLE
AL &
Fig, A
AVEZASE
SEAReH TwE
A
- <\le o

d QooTwg  TAGLE
LACNE



U.S. Patent Nov. 9, 2004 Sheet 4 of 5 US 6,816,457 B1

F‘\c\‘ 1Y

—————

h,

ED\T\AL\‘Le RoeTIOq TAGLE  cAcHE P\go\

>l

REcENE Tembaal gouccessor oF
PACKETS | EAcnm oF wricr comPuses Sor
A DESTaATIow  ADDESS

RETREVE Row‘r\oﬁ wFowAATiow Flowa,

RouThiid & TABLE <ACHE IF PossQLE, . S0
o2 RosTiug TARLE, \F DECEGGART

!

TRANSMIT  PACKET ALY @ovTing

el

oy
WFRAMAToE To Switamiwsg Fagaiw
Eom?w{—. STATCTCS oL T AL
(39 © TEw Po So¢
SOLLESs o ofF  IBCGETS
b

PERIODwcqLLt ©2 SPoftavicalyT c“eo&fl'&i
TemlolAs weden BASEY o TembolAac~SOe
SoLcEsned  of (Acwers

|

PEQioticALt 0% <lonaprwaceT REPoPOLATE
RouTdq TARLE cAcue RASEDs o Argo7
TemPorac wobe. AD) RQooeTws q TARLE




U.S. Patent Nov. 9, 2004 Sheet 5 of 5 US 6,816,457 Bl

FRow gTef €05

-~ e A o e o o — -

WASDE - ﬁou_moc\

- e = e s e e e - -

r Leoreqaton Stage

L

L Deteamwaton Srage

.
N
2

ES
N

e o o e e e e

T e e

. T T i T i, f--,,.—-,...-,___—_.4_2’

SoG
To &TEFP £o01



US 6,816,457 B1

1

PREDICTIVE ROUTING TABLE CACHE
POPULATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/208,888, filed Jun. 2, 2000, which
provisional application is incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to telecommunications and
computer networks in general, and, more particularly, to the
design of a router for use in a packet network.

BACKGROUND OF THE INVENTION

In a packet network, the finite speed of light and the finite
speed at which a router can operate precludes the traversal
of a packet from one side of the network to another instan-
taneously. Therefore, there is always some delay between
when a transmitting network terminal transmits a packet and
when the receiving network terminal receives the packet.

In some cases, this delay is unimportant. For example,
some data (e.g., most e-mail messages, etc.) is not perishable
or highly time-sensitive and the sender and receiver of the
data might consider it unimportant whether the packet takes
5 milliseconds, 5 seconds or even 5 minutes to traverse the
network. In contrast, other data (e.g., voice, full-motion
video, instant messaging, etc.) is perishable or highly time-
sensitive, and, therefore, the sender and receiver of the data
might consider it very important that the packets traverse the
network quickly.

When packet networks were originally conceived and
designed and constructed, little or no consideration was
given to ensuring that a fixed number of packets could be
sent across a packet network with a maximum delay. Aver-
age delays were considered, and packet networks were
engineered to consider average delays, but little or no
consideration was given to engineering the maximum delay.
Increasingly, however, packet networks are being consid-
ered for carrying time-sensitive data for applications such as
Internet telephony and television broadcasting.

Perhaps the most significant source of delay in a packet
network is due to the speed at which the routers operate. It
is well known in the prior art how to make and use fast
routers, but their extra speed comes at a price, and, therefore,
it is not typically economical to build them. In fact, it is well
known in the prior art how to trade cost for performance
when designing and building routers.

Nevertheless, the need exists for a router that is more

powerful than comparatively expensive routers in the prior
art.

SUMMARY OF THE INVENTION

The present invention is a router and routing table cache
population technique that avoids some of the costs and
disadvantages associated with techniques in the prior art. In
particular, the illustrative embodiment routes packets
through it more quickly than comparatively expensive rout-
ers in the prior art.

The present invention recognizes that a router with a
small routing table cache can be fast if the routing table
cache has a high hit ratio, and that a high hit ratio can be
achieved by predicting which entries will be needed in the
routing table cache in the future and by populating the

10

15

20

25

30

35

40

45

50

55

60

65

2

routing table cache with those entries before they are
needed. In accordance with the illustrative embodiment of
the present invention, this is accomplished by: (i) building
one or more temporal models of the occurrence of needed
entries based on empirical data, (ii) by using the temporal
model(s) to predict which entries are most likely to be
needed at some time in the future, and (iii) by populating the
router table cache with those entries before they are needed.

The illustrative embodiment of the present invention
comprises: an input port for receiving a succession of
packets, wherein each of the packets comprises a destination
address; a plurality of output ports; a switching fabric for
interconnecting the input port to each of the plurality of
output ports; a processor or building a temporal model of the
occurrence of the destination addresses at the input port, for
populating the routing table cache based on the temporal
model and at least one entry that is stored in a routing table,
and for routing at least one of the packets from the input port
to one of the output ports through the switching fabric based
on the entry that is stored in the routing table cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of the salient components
of a router in accordance with the illustrative embodiment of
the present invention.

FIG. 2 depicts a block diagram of the salient components
of input port 101, which is a component of the router in FIG.
1.

FIG. 3 is a graph that depicts the relationship of the hit
ratio of routing table cache 203 as a function of the number
of entries in routing table cache 203.

FIG. 4 is a graph that depicts the relationship of the
average search time for routing table cache 203 as a function
of the number of entries in routing table cache 203.

FIG. § depicts a flowchart of the salient steps performed
by router 100 each time it receives and routes a packet.

FIG. 6 depicts a flowchart of the steps involved in
periodically or sporadically generating a temporal model, as
depicted in FIG. §.

DETAILED DESCRIPTION

FIG. 1 depicts a block diagram of the salient components
of a router in accordance with the illustrative embodiment of
the present invention. Because the nomenclature of packet
networking is not well standardized, a router is sometimes
called a “packet switch,” a “datagram switch,” a “cell
switch,” an “ATM switch,” a “gateway,” a “firewall,” or a
“bridge” depending on the purpose for which the router is
being used and on the educational and industrial background
of the person using the term. However, for the purposes of
this specification, a “router” is defined as a switch that is
capable of receiving one or more packets, each of which
comprises a destination address, and of routing each packet
to an output port based on that destination address.

Router 100 comprises: input port 101, a plurality of output
ports, output port 102-1 through 102-j, switching fabric 103,
and router table 104, all interconnected as shown. Some
embodiments of the present invention have more than one
input port, and in those cases each input port works in the
same manner as input port 101 and each contends with the
others for access to routing table 104.

As is clear to those skilled in the art, switching fabric 103
is a space-division switch or a time-division switch or any
combination of space-division switches and time-division
switches (e.g., a space-time-space-division switch, etc.) that



US 6,816,457 B1

3

is capable of transporting a packet from input port 101 to one
of output ports 102-1 through 102-j under the direction of
input port 101. It will be clear to those skilled in the art how
to make and use switching fabric 103.

Routing table 104 is a table that contains a plurality of
entries. For the purpose of this specification, an “entry” is
defined as a mapping of one or more network addresses to
one or more output ports of a router. When an entry maps a
network address to more than one of a router’s output ports,
the entry might implicitly or explicitly prioritize those
output ports so that, for example, if one is congested, another
might be used. Table 1 depicts an illustrative portion of
routing table 104 that contains five illustrative entries,
wherein the destination addresses are depicted in IPv4
dotted-decimal notation. The first four illustrative entries
(ie., 110.23.43.15/102-73, 110.23.43.16/102-13,
110.23.43.17/102-44, and 110.23.43.18/102-26) are illustra-
tive of individual network addresses. The fifth illustrative
entry (i.e., 112.7.111.x/102-15) is illustrative of an entry in
which more than one network address is mapped to one of
a router’s output ports. It will be clear to those skilled in the
art how to make and use embodiments of the present
invention with other network addresses in other formats
such as IPv6.

TABLE 1

Portion of Routing Table 104

Network Address Output Port

110.23.43.15 102-73
110.23.43.16 102-13
110.23.43.17 102-44
110.23.43.18 102-26

112.7.111x 102-15

Routing table 104 can comprise a large number of entries
(e.g., thousands, millions, billions, etc.), and therefore,
whether routing table 104 resides in random access memory
(e.g., semiconductor memory, etc.) or not (e.g., hard disk,
etc.), the shear number of entries in routing table 104 can
cause the process of looking up a needed entry to be slow
regardless of the data structure employed for storing the
entries. Furthermore, when an embodiment of the present
invention comprises more than one input port, the conten-
tion among the input ports can exacerbate the average
latency associated with the process of looking up a needed
entry in routing table 104. It will be clear to those skilled in
the art how to make and use routing table 104.

Output ports 102-1 through 102-j comprises the interface
circuitry for receiving packets from switching fabric 103 and
for transmitting the departing packets on the appropriate
output. It will be clear to those skilled in the art how to make
and use output ports 102-1 through 102-;.

FIG. 2 depicts a block diagram of the salient components
of input port 101, which comprises: processor 201 and
memory 202, which itself comprises routing table cache
203. Processor 201 is a special-purpose processor or a
general-purpose processor whose instructions are stored in
memory 202 or a combination of the two. Memory 202 is
advantageously a small, fast semiconductor memory that
holds the instructions and data for processor 201.

To ameliorate the latency associated with looking up
routing information in routing table 104, input port 101
advantageously comprises routing table cache 203. Routing

10

15

20

25

30

35

40

45

50

55

60

65

4

table cache 203 is a cache memory that advantageously
holds the most frequently accessed entries of routing table
104. Table 2 depicts an illustrative portion of routing table
cache 203.

TABLE 2

Portion of Routing Table Cache 203

Network Address Output Port
110.23.43.15 102-73
110.23.43.18 102-26

Typically, it is faster for processor 201 to retrieve an entry
from routing table cache 203 than it is for processor 201 to
retrieve the same entry from routing table 104 for three
reasons. First, because routing table cache 203 is smaller
than routing table 104, routing table cache 203 is typically
stored in a physically faster memory than is routing table
104 (e.g., semiconductor RAM vs. hard disk, etc.). Second,
processor 201 does not have to contend with other proces-
sors for access to routing table cache 203, whereas processor
201 would have to contend for access to routing table 104
when router 100 comprises a plurality of input ports. And
third, because the number of entries in routing table cache
203 is typically orders of magnitude smaller than the number
of entries in routing table 104, the process of searching
through routing table cache 203 for a needed entry is
typically much smaller than is the process of searching
through routing table 104 for the same entry, regardless of
the data structure employed.

It will be clear to those skilled in the art how to decide
how many entries routing table cache 203 should contain. In
deciding this number, there are two factors that are advan-
tageously considered.

First, as shown in FIG. 3, as the number of entries in
routing table cache 203 increases, the hit ratio also increases,
albeit with diminishing returns. This suggests that router 100
can be made faster by increasing the number of entries in
routing table cache 203. For the purposes of this
specification, the phrase “hit ratio” is defined as the ratio of
the number of entries that processor 201 finds in routing
table cache 203 divided by the total number of entries that
processor 201 needs.

Second, as shown in FIG. 4, as the number of entries in
routing table cache 203 increases, the time it takes processor
201 to search through routing table cache 203 to find a
needed entry also increases. This suggests that router 100
can be made faster by decreasing the number of entries in
routing table cache 203.

Although these two factors might seem to cancel each
other, in general, the speed of router 100 is improved by
having a small cache that is populated so as to have as high
a hit ratio as possible.

The illustrative embodiment of the present invention
seeks to have a high hit ratio by proactively populating
routing table cache 203. In particular, the illustrative
embodiment populates routing table cache 203 by: (i) build-
ing a temporal model of the occurrence of needed entries
based on empirical data, (ii) by using the temporal model to
predict which entries are most likely to be needed at some
time in the future, and (iii) by populating router table cache
203 with those entries before they are needed. This is in
contrast to routing table cache population techniques in the
prior art that are either: (i) random, or (ii) reactive.

A brief discussion of how router 100 would be populated
in accordance with some routing table cache population



US 6,816,457 B1

5

techniques in the prior art will facilitate an understanding of
how it is populated in accordance with the illustrative
embodiment and will also assist in understanding the dif-
ference between the prior art and the illustrative embodi-
ment.

One routing table cache population technique in the prior
art is the “random population technique.” In accordance
with the random population technique, routing table cache
203 would be populated with entries from routing table 104
that were selected at random. In other words, if routing table
104 contained n entries, the probability that routing table
cache 203 would be populated with any given entry would
be 1/n. Furthermore, in accordance with the random popu-
lation technique, once routing table cache 203 was
populated, its contents would not be changed in response to
empirical data on which entries were actually needed. The
advantage of the random population technique is that it
requires little processing overhead, but the disadvantage is
that it has a very low hit ratio—so low, in fact, that the
random population technique is not much better than, and is
possibly worse than, having no routing table cache at all.

Another routing table cache population technique in the
prior art is the “random replacement technique.” In accor-
dance with this technique, routing table cache 203 would be
initially populated with entries from routing table 104 that
were selected at random. Thereafter, when processor 201
accessed a particular entry in routing table cache 203 (i.e.,
a cache hit), processor 201 would do nothing to routing table
cache 203, but when processor 201 did not find a needed
entry in routing table cache 203 (i.c., a cache fault) and had
to resort to routing table 104 for the entry, processor 201
would randomly replace an entry in routing table cache 203
with the entry just retrieved from routing table 104. The
theory underlying this technique is based on the recognition
that an entry that has been needed once is more likely to be
needed again than is a randomly-chosen entry, and,
therefore, this technique seeks to improve the hit ratio (in
comparison to the random population technique) by seeking
to anticipate what entries will be needed in the future. The
advantages of the random replacement technique are that it
requires little processing overhead and that it usually has a
higher hit ratio than the random population technique. It is
disadvantageous, however, in that it does not take into
consideration what entries are deleted and might delete a
commonly needed entry. Furthermore, in contrast to the
illustrative embodiment of the present invention, the random
replacement technique is reactive, which means that it
would only populate routing table cache 203 with an entry
in reaction to a need for that entry. That is, it only populates
routing table cache 203 with an entry after than entry has
been needed, in contrast to the present invention which
populates routing table cache 203 with entries before they
are needed. The random replacement technique is advanta-
geous in that it requires little processing overhead, which
decreases the average delay through router 100.

A third replacement technique in the prior art is the
“least-recently-used” or “LRU” technique. In accordance
with the least-recently-used technique, routing table cache
203 would be initially populated with entries from routing
table 104 that were selected at random. Thereafter, processor
201 would keep track of how recently each entry in routing
table cache 203 was accessed. When processor 201 accesses
a particular entry in routing table cache 203 (i.e., a cache
hit), that entry would be marked as having been recently
used, but when processor 201 did not find a needed entry in
routing table cache 203 (i.e., a cache fault) and was forced
to resort to routing table 104 for the entry, processor 201

10

15

20

25

30

35

40

45

50

55

60

65

6

would replace the least-recently-used entry in routing table
cache 203 with the entry just retrieved from routing table
104. The theory underlying this technique is based on the
recognition that an entry that has been recently used is more
likely to be needed again than is the least-recently-used
entry. The least-recently-used technique is advantageous in
that it has a high hit ratio relative to all known routing table
cache replacement techniques in the prior art. The least-
recently-used technique is disadvantageous in that it requires
that processor 201 spend a great deal of time keeping track
of how recently each entry in routing table cache 203 is
accessed, which increases the average delay through router
100. But like the random population technique and the
random replacement technique, and in contrast to the illus-
trative embodiment, the least-recently-used technique is
reactive.

FIG. 5 depicts a flowchart of the operation of the illus-
trative embodiment of the present invention, which seeks to
have a high hit ratio by predictively populating routing table
cache 203.

At step 501, processor 201 initially populates routing
table cache 203 with entries from routing table 104 that are
selected at random. It will be clear to those skilled in the art
how to perform step 501.

At step 502, as input port 101 receives a temporal
succession of packets, each of which comprises a destination
address. As part of step 502, processor 201 examines each
packet to determine the network address to which the packet
is addressed. It will be clear to those skilled in the art how
to perform step 502.

At step 503, processor 201 retrieves the routing informa-
tion for each destination address from routing table cache
203, if possible, and from routing table 104, if necessary. For
example, if the network address to which the packet is
addressed is “110.23.43.18,” then processor 201 only need
look in routing table cache 203 to determine that the packet
is to be transmitted via output port 102-6 (see Table 2).
Alternatively, if the network address to which the packet is
addressed is “110.23.43.17,” then processor 201 cannot
learn from routing table cache 203 how to direct the packet
and must query routing table 104 to learn that the packet is
to be transmitted via output port 102-4 (see Table 1). It will
be clear to those skilled in the art how to perform step 503.

At step 504, processor 201 transmits each packet and the
information on how it should be routed (i.e., the output port
to which it should be routed) to switching fabric 103, which
transports it to the appropriate port. It will be clear to those
skilled in the art how to perform step 504.

At step 505, processor 201 continually compiles statistics
on the temporal succession of packets. In particular, proces-
sor 201 advantageously counts how many times each entry
is needed in a short time interval, such as 2 milliseconds,
over a longer time horizon, such as 1 second. For example,
processor 201 advantageously knows how many times each
entry was needed in each 2 millisecond interval during the
prior 1 second. Therefore, processor 201 retains a data set
(i.e., 500 data points) for each destination address. Table 3
depicts an illustrative portion of the information compiled
and retained in step 505.



US 6,816,457 B1

TABLE 3
500 Data Points for Destination Addresses
Address Address
Time 110.23.43.17 110.23.43.18
t=0 5 1
t=-2ms 0 3
t = -4 ms 5 0
t=-6 ms 0 0
t=-8 ms 5 2
t =-10 ms 0 0
t=-12 ms 5 14
t=-14 ms 0 4
t =-998 ms L 5 12
t = -1000 ms L 0 5

The purpose of step 505 is to compile data on the need for
each needed entry so as to determine if patterns can be
discerned that can be exploited. For example, an examina-
tion of Table 3 reveals a clear pattern of the need for the
entry for network address 110.23.43.17 (i.e., it is needed in
alternating 2 millisecond intervals) but no such clear pattern
is immediately apparent for the entry for network address
110.23.43.18. But merely because no such pattern is imme-
diately apparent does not mean that a real pattern does not
exist, and, therefore, the illustrative embodiment employs
mathematical tools to reveal the patterns.

As part of step 505, processor 201 periodically or spo-
radically determines the autocorrelation for each data set
because it provides useful insight into the existence of
temporal patterns within each data set. When the autocor-
relations for each destination address are computed, a strong
correlation is revealed to exist in some of the data points,
which only a weak correlation is indicated in others. The
utility of this difference will be revealed in step 601, which
is discussed below. The illustrative embodiment computes
the autocorrelation for each destination address with a lag of
k=n/4=125. The autocorrelation for a data set of n data
points, with lag k, is given by:

N—k (Eq. 1)
(X = X)Xy — X)

re =

At step 506, processor 201 periodically or sporadically
builds a temporal model for the data set associated with each
destination address. In accordance with the illustrative
embodiment, and as shown in FIG. 6, the building of the
temporal model comprises two stages:

1. the segregation stage, and

2. the determination stage.

At step 601, the segregation stage, the illustrative embodi-
ment determines which of the data sets (whose autocorre-
lation was computed in step 505) are highly correlated and
which are not. To do this, processor 201 determines a
confidence band equal to

15

where n is the number of data points (e.g., 500) in each data
set. After the autocorrelation function for all lags are
computed, then the mean of the autocorrelation functions is

10

15

20

25

30

35

40

45

50

55

60

65

8

also computed. If the mean for a data set is greater than or
equal to the confidence band, the illustrative embodiment
considers that data set to be highly correlated; otherwise it
considers it to be not highly correlated.

At step 602, the determination stage, the illustrative
embodiment selects a temporal model structure for each data
set associated with each destination address. In other words,
the illustrative embodiment seeks to select the temporal
model structure for each data set that best predicts the future
occurrence of the destination address associated with the
data set. In accordance with the illustrative embodiment of
the present invention, processor 201 builds one temporal
model based on the highly correlated data sets to predict the
occurrence of all destination addresses whose data sets are
highly correlated and builds one temporal model based on
the not-highly correlated data sets to predict the occurrence
of all destination addresses whose data sets are not-highly
correlated.

For the highly correlated data sets, the illustrative
embodiment uses the autoregressive moving-average model
(1, 2) structure

W=0,w,_-0,a, ,-O,a, ,+a, (Eq. 2)
and for the not highly correlated data sets, the illustrative
embodiment uses the autoregressive moving-average model
(1, 3) structure

W=0,w,_1-0,a, ,-0,a, ,~Oza, s+a, (Eq. 3)
where W, is the value of the data point in a series after
subtracting the mean of the series, ® is the autoregressive
parameter, which describes the effect of unit change in W,_,
on W, © is the moving average parameter, the number (2 or
3) refers to the number of moving average parameters, and
a, is the white noise error.

It will be clear to those skilled in the art, however, that in
alternative embodiments of the present invention other tem-
poral model structures can be used. For example, one
temporal model structure can be used for all of the data sets
which obviates the necessity for computing autocorrelation
of each data set and of categorizing each data set based on
its correlation value. Furthermore, it will be clear to those
skilled in the art how to categorize each data set into two or
more categories and to select different temporal model
structures for each category. And still furthermore, it will be
clear to those skilled in the art how to choose different
temporal model structures than those shown above.

Next, processor 201 builds a temporal model for each of
a randomly selected number (e.g., 10 to 20) of destination
addresses that have highly correlated data sets and for each
of a randomly selected number (e.g., 10 to 20) of destination
addresses that do not have highly correlated data sets. The
reason that only a few models are built is because can be too
computationally burdensome for processor 201 to build a
different temporal model for each data set, and at least one
of the temporal models that are built are likely to provide an
acceptable model for the other data sets. In alternative
embodiments of the present invention, processor 201 builds
a unique temporal model for each data set. It will be clear to
those skilled in the art how to determine the number of
models built given the computational resources available.

Next, processor 201 selects one temporal model from the
dozen or so that were built in step 602 to use with all of the
data sets that are highly correlated and one temporal model
from the dozen or so that were built in step 602 to use with
all of the data sets that are not highly correlated. To chose the
best model for each group of data sets, the illustrative



US 6,816,457 B1

9

embodiment advantageously uses the mean absolute error
(MAE). This is done by determining which model does the
best job of predicting the occurrence of not only its own
future addresses, but also the best job of predicting the
occurrence of the future addresses of the other addresses for
which models were built in step 602. The best model is the
one that in general has the lower values of mean absolute
error for the data of the other addresses.

At the end of step 506, one temporal model is advanta-
geously selected for predicting the occurrence of addresses
associated with highly correlated data sets and a second
temporal model is advantageously selected for predicting the
occurrence of addresses associated with not highly corre-
lated data sets.

At step 507, processor 201 periodically or sporadically
repopulates routing table cache 203 based on the temporal
models built in step 506 and on the entries in routing table
104. To accomplish this, processor 201 advantageously uses
the model for the highly correlated data sets to predict the
number of occurrences of each destination address in the
next time interval (i.e., 2 milliseconds). If the model predicts
that the destination address will be needed in the next time
interval, processor 201 retrieves the entry for that destination
address from routing table 104 and populates routing table
cache 203 with that entry. If the model does not predict the
occurrence of that destination address in the next time
interval, then processor 201 does nothing.

If, after processor 201 has predicted the occurrence of
each destination address associated with the highly corre-
lated data, there is space in routing table cache 203 processor
201 next uses the model for the not highly correlated data
sets to predict the number of occurrences of each destination
address in the next time interval (i.e., 2 milliseconds). If the
model predicts that the destination address will be needed in
the next time interval, processor 201 retrieves the entry for
that destination address from routing table 104 and popu-
lates routing table cache 203 with that entry. If the model
does not predict the occurrence of that destination address in
the next time interval, then processor 201 does nothing. The
reason processor 201 populates routing table cache 203 with
the highly correlated data first is because if there isn’t room
in routing table cache 203 for both the highly correlated data
and the not highly correlated data, the highly correlated data
sets should have priority.

To ameliorate interruptions, routing table cache 203
should comprises two portions, one of which is active and
being used for routing packets and the other which is
inactive and being populated in accordance with step 507.
This enables the predicted entries to be populated in the

10

15

20

25

30

35

40

45

10

inactive portion and to switch that portion to active at the
appropriate time.

After step 507, control returns to step 502.

It is to be understood that the above-described embodi-
ments are merely illustrative of the present invention and
that many variations of the above-described embodiments
can be devised by those skilled in the art without departing
from the scope of the invention. It is therefore intended that
such variations be included within the scope of the following
claims and their equivalents.

What is claimed is:

1. A router comprising:

an input port for receiving a succession of packets,
wherein each of said packets comprises a destination
address;

a plurality of output ports;

a switching fabric for interconnecting said input port to
each of said plurality of output ports; and

a processor for building a temporal model of the occur-
rence of said destination addresses at said input port,
for populating said routing table cache based on said
temporal model and at least one entry that is stored in
a routing table, and for routing at least one of said
packets from said input port to one of said output ports
through said switching fabric based on said entry that
is stored in said routing table cache;

wherein said temporal model is based on the autoregres-
sive moving average of the occurrence of said desti-
nation addresses.

2. A method comprising:

receiving a temporal succession of packets at an input
port, wherein each of said packets comprises a desti-
nation address;

generating a temporal model based on the occurrence of
said destination addresses;

populating a routing table cache based on said temporal
model and at least one entry that is stored in a routing
table; and

forwarding at least one of said packets from said input
port to one of a plurality of output ports based on said
entry that is stored in said routing table cache;

wherein said temporal model is based on the autoregres-
sive moving average of the occurrence of said desti-
nation addresses.



