

تصميم حاسوبي لمنظومة العدسات المغناطيسية المكثفة المزدوجة في المجهر الالكتروني الماسح

نضال سعدي عبد حجازي *¹ ، محمد عبدالله حسين² أشعبة العلوم الأساسية، كلية الزراعة والغابات، جامعة الموصل قسم الفيزياء، كلية العلوم، جامعة كركوك

الخلاصة

نتاول البحث دراسة مكثقة عن الأداء البصري لمنظومة العدسات المغناطيسية المكثقة المزدوجة من اجل الحصول على أفضل تصميم للعدسات المكثفة في منظومة الإضاءة للمجهر الأليكتروني الماسح. إذ تم اقتراح أربعة نماذج من العدسات المغناطيسية المزدوجة المتساوية في أبعادها الهندسية جميعا ومختلفة فقط في الشكل الهندسي للقطب ووجد بان الشكل الهندسي له تأثير واضح على الخواص البؤرية من حيث (البعد البؤري، مقدار التصغير في حجم المصدر الألكتروني وحسابات قطر الحزمة الألكترونية) والذي يعتمد بصورة رئيسية على كثافة التيار المار في منظومة العدسات المكثفة المزدوجة ولغرض زيادة مقدار التصغير يتم تشغيل المنظومة بالنمط القوي، وأخيرا تم وضع مخططات معايرة لجهاز للمجهر الأليكتروني الماسح التي يمكن من خلالها معرفة كافة المعلومات المطاوبة عن الحزمة الألكترونية.

الكلمات الدالة: العدسات المكثفة، منظومة الإضاءة، التصغير في حجم المصدر، قطر المجس الالكتروني.

Design Software of the Double Condenser Magnetic Lens System in a Scanning Electron Microscope

Nedhal Sadie Abid Hujazi^{*1}, Mohammed Abdullah Hussain²

¹ Division of Basic Sciences, Faculty of Agriculture and Forestry, University of Mosul ²Department of Physics, College of Science, Kirkuk University

Abstract

The present work is dealing with an intensive study for the optical performance of the double magnetic condenser lens system in order to obtain an optimum design for the condenser lenses in the illumination system for scaning electron microscope SEM. Four models of double magnetic lenses have been designed of equal geometrical dimensions and of different geometrical shape of the pole. It is found that the geometrical shapes of the pole has a great effect on the focal properties such as (focal length, demagnification of source size and the electron beam diameter calculation), which depended on the current density passing through the double magnetic condenser lens system. In order to get more demagnification in spot size, we must use the strong mode. Finally, a calibration curve of the scanning electron microscope SEM has been drawn and it can get all the information about the electron beam. **Keywords:** Condenser lens, Illumination system, demagnification of source size, electron probe diameter.

المقدمة

في المجاهر الالكترونية ذوات القاذف الحراري من نوع التنكستن W قطر المصدر الالكتروني فيها يتراوح من 10- μm100، ومن اجل الحصول على صور بتحليل عالي يتطلب أن يكون قطر المجس الالكتروني الساقط على النموذج بحدود (5- 10 nm) فهذا يعني أننا نحتاج بحدود 5000 مرة من عمليات التصغير للحصول على القطر المطلوب ونحن نعلم بان القيم المثالية للتصغير من كل عدسة الكترونية يمتد من (10-40) مرة أي نحتاج على الأقل ثلاثة مراحل للتصغير لكي يكون التصغير الكلي في حجم المصدر (1000-64000) مرة وعليه ستكون منظومة الإضاءة المقترحة في هذه الدراسة مكونة من عدستين مكثفة يرمز لهما (C1)

الجانب النظري

بصورة عامة، نتكون العدسة المغناطيسية بصورتها البسيطة من ملف دائري مصنوع من سلك نحاسي معزول كهربائيا فعند مرور تيار كهربائي (I) مستمر في ملفها الذي يحتوي على (N) من اللفات فانه يولد مجال مغناطيسي منتاظر محوريا (Bz) على امتداد محوره (Z) يعمل على حرف الالكترونات المارة خلاله نحو محور الملف حسب قانون امبير [2].

. كثافة الفيض المغناطيسي المحوري على طول محور ${f Z}$ و NI هي قوة تهيج العدسة. $B_{_{T}}$

ولغرض الحصول على مجال شديد محصور في منطقة صغيرة تدعى بالفجوة الهوائية يحاط الملف بغلاف من الحديد المطاوع او حديد (Permendure) حيث يتم تجميع الفيض المغناطيسي عند المنطقة الضيقة المحصورة بين القطبين المغناطيسيين. و يمكن حساب البعد البؤري (f) للعدسة المغناطيسية بدون حل المعادلة المحورية وبصورة تقريبية من معادلة العدسة الرقيقة والذي يعطى بالعلاقة التالية [3].

$$f = \frac{8mVr}{el(NI)^2} \qquad \dots \dots \dots (2)$$

حيث e ه هما شحنة وكتلة الإلكترون على الترتيب وانVr هو الجهد المعجل للحزمة الالكترونية المعدل نسبيا . أما I فيمثل الطول المؤثر للعدسة.

فلو فرضنا أن قطر نقطة التقاطع او نقطة عبور الحزمة الالكترونية (Cross-Over) داخل القاذف الالكتروني هو (d_o) والتي تعتبر بمثابة الجسم والمسافة بين الجسم والعدسة المكثفة الأولى هي S₀ والمسافة بين العدستين (L) وهذه القيم تعد دائما من ثوابت الجهاز ولو فرضنا ان d₁ و d₂ هي قطر الحزمة الالكترونية المتكونة بعد العدسة C1 وC2 على التوالي كما مبين من الشكل (1) فان مقدار التصغير الكلي في المنظومة البصرية للعدسات المكثفة هو:

حيث $dM_1 \, e \, dM_2 \, e \, dM_1$ هما مقدار التصغير في العدسة الأولى C1 والثانية C2 على التوالي.

وان $\frac{50}{s_1} = \frac{d_0}{d_1} = \frac{50}{s_1}$ $\frac{d_1}{d_2} = \frac{5}{s_3} = \frac{d_1}{d_2} = \frac{5}{s_3}$ $\frac{5}{s_1}$ $\frac{50}{s_1}$ $\frac{50}{s_1}$

ويمكننا مقارنة هذه النتائج مع نتائج برامج التحليل العددي التي تعتمد على طريقة العناصر المنتاهية (FEM) والتي أعدها Munro*عام 1975*[4] ومقارنتها أيضا بالحسابات التي تستند على البصريات الهندسية وفقا للعلاقة التالية.

ومن العلاقات (3، 4 و 5) أعلاه يمكننا حساب قطر الحزمة الالكترونية d₁ وd₂ المتكونة بعد العدسة الأولى والثانية على التوالي. **التصميم والتحليل النظري للعدسات المكثفة المغناطيسية المزدوجة**

لغرض معرفة الأداء البصري لمنظومة العدسات المكثفة المزدوجة في قابليتها على تكوين صورة مصغرة لأول صورة حقيقة متكونة داخل القاذف الالكتروني ذو الانبعاث الحراري والتي تعمل كمصدر حقيقي للإلكترونات والذي يتراوح قطرها d₀ من (10 – 100) m ، تم اختيار أربع نماذج من العدسات المكثفة المزدوجة المتشابهة بجميع الأبعاد الهندسية من حيث طول العدسة وقطرها الداخلي والخارجي والفجوة بين القطبين ومساحة الملفات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار أوبع نما يعدسات المكثفة المزدوجة المتشابهة بجميع الأبعاد الهندسية من حيث طول العدسة وقطرها الداخلي والخارجي والفجوة بين القطبين ومساحة الملفات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية المنوعي المنات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية العدسات المزوجة المنقات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية المنوعي والفجوة بين القطبين ومساحة الملفات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية المنوي والتي والخارجي والفجوة بين القطبين ومساحة الملفات ولكنها مختلفة فقط من حيث الشكل الهندسي للأقطاب، وقد تم اختيار الأبعاد الهندسية للعدسات المزدوجة بالاعتماد على بحوث ودراسات حديثة بحيث يتلاءم مع إمكانية تصنيعها محليا[6,5]. وسميت الأبعاد الهندسية العدسات المزدوجة بالاعتماد على التوالي وقد أطلقت التسمية 11 و 22 على العدستين المكثفتين الأولى والثانية على الترتيب للجميع التصاميم أعلاه والشكل 2 يوضح نماذج العدسات الأربعة قيد الدراسة.

الشكل 1- مخطط لمنظومة العدسات المكثفة المزدوجة

الشكل 2- الأبعاد الهندسية للعدسات المغناطيسية المكثفة المزدوجة للنماذج (CL3, CL2, CL1 و CL4)

لغرض معرفة الخواص البؤرية المتمثلة (بالبعد البؤري (f) وموقع الصورة (z₁) ومقدار التصغير (dM)) للعدسات المكثفة المزدوجة ذات الأشكال الهندسية المقترحة والمبينة بالشكل (2) أعلاه، تم احتساب وبطريقة التحليل العددي توزيع كثافة الفيض المغناطيسي المحوري (B₂) لهذه العدسات ولمدى من التهيجات A-t (1500 - 500) وباستخدام برنامج AMAG[7] الذي يعتمد على طريقة العناصر المتناهية (FEM). الشكل (3) يبين توزيع كثافة الفيض المغناطيسي المحوري كدالة للمحور البصري (Z) للنماذج الأربعة قيد الدراسة ويلاحظ من الشكل إن الفيض المغناطيسي يمتلك قيمة عظمى (B_{max}) عند المنطقة المحصورة بين القطبين والجدول 1 يوضح النتائج بصورة مفصلة عن القيم العظمى لكثافة الفيض المغناطيسي ومواقع انكسار الحزمة (Z_p) وتقاطعها مع المحور البصري (Z₁) ومقدار البعد البؤري (f) لجميع النماذج قيد البحث وعند التهيج (NI=1000 A-t).

الشكل 3- توزيع كثافة الغيض المغناطيسي على طول المحور البصري Z للنماذج CL3، CL2، CL1 و CL4

الجدول 1- يوضح النتائج بالتقصيل عن مواقع انكسار الحزمة وتقاطع الحزمة والبعد البؤري عندما يكون التهيج (NI=1000 A-t) والجهد المعجل للحزمة الالكترونية (V_r=10 KV) وكثافة التيار المار في العدسة C1 و C2 (V_r=10 KV) = 1).

النموذج	نوع العدسة	موقع انكسار الحزمة	موقع تقاطع الحزمة	البعد البؤري	القيمة العظمى لكثافة الفيض
	المكثفة	^Z p(mm)	<mark>7</mark> i(mm)	f(mm)	المغناطيسي (T)
CL1	C1	89.36	94.212	4.60	0.162
	C2	194.37	199.206	4.62	0.162
CL2	C1	89.31	93.787	4.26	0.174
	C2	194.30	198.708	4.23	0.173
CL3	C1	89.33	93.975	4.42	0.168
	C2	194.33	198.937	4.41	0.168
CL4	C1	89.05	95.243	5.80	0.133
	C2	194.01	200.835	6.39	0.121

تم احتساب مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة المزدوجة وذلك من خلال حل معادلة الشعاع المحوري باستخدام طريقة (Rang-Kutta) من المرتبة الرابعة وبمساعدة البرنامج (M21) الذي أعده Munro عام 1975 وتشغيله بالتكبير CL4 ,CL3) من المرتبة الالكترونية داخل منظومة العدسات المكثفة المزدوجة للتصاميم الأربعة (CL4, CL3) والشكل (4) يوضح مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة المزدوجة للتصاميم الأربعة (CL4, CL3) وعند مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة المزدوجة للتصاميم الأربعة (CL4, CL3) الواطئ. والشكل (4) يوضح مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة المزدوجة للتصاميم الأربعة (CL4, CL3, والشكل (20) وعند مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة المزدوجة للتصاميم الأربعة (CL2, CL3, CL3, والطئ. والطئ. والشكل (20) والمعجلة بفولتية (NI=1000 A-t) وعند التهيج (NI=1000 A-t) لكلا العدستين CL2, CL1 و و20 حيث يتبين من الشكل مواقع انكسار الحزمة (20 معواقع تقاطعها مع المحور البصري (z_1). حيث تم افتراض قطر الصورة الحقيقية لنقطة التقاطع تقريبا الكسار الحزمة (20 معواقع مع المحور البصري (z_1). حيث تم افتراض قطر الصورة الحقيقية لنقطة التقاطع تقريبا الكسار الحرمة (20) وبعده عن مركز العدسة C1 هو (mm) و 20) والمسافة بين مركزي العدستين (Rang-Kuta).

الشكل 4- مسار الحزمة الالكترونية داخل منظومة العدسات المكثفة للتصاميم CL3 ، CL2 ، CL1 و CL4

تم احتساب مقدار التصغير الكلي الحاصل من قبل منظومة العدسات المكثفة المزدوجة *dMt)c* في حجم المصدر للحزمة الالكترونية المنبعثة من القاذف الالكتروني بقطر (d₀=50 μm) وصولا إلى نهاية منظومة العدسات المكثفة تحليليا وهندسيا وباستخدام البرنامج (M21) وعند التشغيل بالتكبير الواطئ وفقا للعلاقات (3)، (4) و (5) .

وكذلك تم احتساب قطر الحزمة الخارجة من منظومة العدسات المكثفة وللتصاميم الأربعة قيد الدراسة ولنمطي التشغيل الضعيف والقوي. وتم ترتيب النتائج في جداول مفصلة لغرض المقارنة بين النماذج الأربع.

الجدول 2- يوضح النتائج لقيم الأبعاد البؤرية (**f**₁، **f**₂) ومعامل الزيغ الكروي (**c**₅₁، **c**₅₂) للعدستين 1 C و 2 C على الترتيب ومقدار التصغير الكلي للمنظومة (**dMt) ت**حليليا وهندسيا وحساب قطر الحزمة الخارجة من المنظومة عند التشغيل بالنمط الضعيف اي عندما يكون (1 = 2=0.3 A/mm²) للتصاميم الأربعة قيد الدراسة.

النموذج	f 1 (mm)	f2 (mm)	C _{s1} (mm)	C s2 (mm)	<mark>(dMt)c</mark> معادلة (3)	(dMt)c معادلة(4)	<mark>(<i>dMt)c</i>)</mark> معادلة (5)	d=50/ (dMt)c (μm)
CL1	14.24	14.23	220.18	223.35	27.99	27.5	27.6	1.8145
CL2	12.8	12.68	151.2	147.4	37.4	36.7	36.7	1.3610
CL3	13.47	13.45	180.69	182.57	31.9	31.9	31.9	1.5664
CL4	17.39	19.29	259.18	360.44	14.08	13.8	13.9	3.6101

الجدول 3– يوضح النتائج لقيم الأبعاد البؤرية ($f_1 \circ f_1 \circ f_2 \circ f_1$) ومعامل الزيغ الكروي ($C_{51} \circ C_{52} \circ C_{51}$) للعدستين 1 C و 2 C على الترتيب ومقدار التصغير الكلي للمنظومة (dMt) تحليليا وهندسيا وحساب قطر الحزمة الخارجة من المنظومة عند التشغيل بالنمط القوي اي عندما يكون = 2-0.88 A/mm²) التصاميم الأربعة قيد الدراسة.

النموذج	f 1 (mm)	f2 (mm)	C _{s1} (mm)	C _{s2} (mm)	(<i>dMt)c</i> معادلة (3)	(dMt)c معادلة (4)	<mark>(<i>dMt)c</i>)</mark> معادلة (5)	d=50/ (dMt) c (µm)
CL1	3.07	3.27	2.13	2.52	865.8	842.8	845.3	0.0591
CL2	2.87	2.84	1.81	1.8	1082.2	1044.6	1047.5	0.0477
CL3	2.93	2.92	1.92	1.93	1014.2	993.5	994.5	0.0503
CL4	3.89	4.26	2.82	3.13	8.516	491.3	492.8	0.1017

يتضح من الجدولين 2 و 3 بان التصميم (CL2) أعطى نتائج أفضل من بقية التصاميم الأخرى من حيث مقدار التصغير الكلي في قطر الحزمة الالكترونية وكذلك الزيوغ الكروية ولنمطي التشغيل الضعيف والقوي، وهو مناسب للتطبيق العملي . **النتائج و المناقشة**

> بعد اختيار النموذج (CL2) الذي حقق أفضل النتائج من بين التصاميم المقترحة، تم دراسة ما يأتي: أولا: تأثير تغير كثافة التيار المستمر المار في ملف العدسة المكثفة الأولى C1 على كل من الخواص التالية: ا- البعد البؤري (f₁) .

ج- قطر الحزمة الالكترونية (d₁).

د- مقدار التصغير في الحزمة الالكترونية من قبل العدسة الأولى (dM1)

تم إيجاد البعد البؤري للعدسة Cl باستخدام البرنامج (M21) وعند التشغيل بالتكبير الصفري كدالة لكثافة النيار المار في ملفها. وجدنا البعد البؤري للعدسة المغناطيسية يتناقصا مع زيادة التيار المار في ملفها وفقا للعلاقة (2). وكما تم حساب بعد الصورة المتكونة (S1) بواسطة العدسة Cl باستخدام البرنامج M21 ولكن بالتكبير الواطئ. وجدنا بان موقع الصورة المتكونة يقترب من مركز العدسة لأنه بزياد كثافة التيار يقل f₁ وبالتالي يقل S1 عند ثبوت بعد الجسم S0 حسب معادلة العدسة الرقيقة.

$$\frac{1}{f_1} = \frac{1}{S_1} + \frac{1}{S_0}$$

وتمت دراسة العلاقة بين قطر الحزمة الالكترونية d_1 الخارجة من العدسة C1 كدالة لكثافة التيار المار في ملفها فوجد عند زيادة كثافة التيار يقل قطر الحزمة d_1 بسبب نقصان f_1 وزيادة زاوية انفراج الحزمة ₁ وبالتالي فان عدد الالكترونات التي تمر من خلال فتحة قطرها ثابت سيكون قليل مما يجعل تيار الحزمة الالكترونية i_b قليلاً. وأخيرا تم حساب مقدار التصغير في حجم المصدر من قبل C1 وهو (1 Mb) كدالة لكثافة التيار فوجد بأنه كلما زاد التيار زاد مقدار التصغير في قطر الحزمة بعد خروجها من C1 وكان مقدار التصغير يتراوح (5 – 30) مرة لكل قيم التيار المناظرة له من A/mm² (5) والشكل (5) يوضح العلاقات السابقة. وكما يمكننا اعتبار الشكل (5) مخططات معايرة لجهاز المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال عندما نختار قيمة معينة لتيار الملف مثلا 2 مخططات معايرة لجهاز المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال مركز العدسة C1 وم معينة لتيار الملف مثلا 2 مخططات معايرة الحهاز المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال مركز العدسة C1 وم معينة لتيار الملف مثلا 2 مخططات معايرة الحهاز المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال مركز العدسة C1 وم معينة لتيار الملف مثلا 2 منه الحرمة الحيارة المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال مركز العدسة C1 ويم معينة لتيار الملف مثلا مثلا 2 منه 2000 معايرة الحمار على بعد بقري من قبل C1 في هذه الحادة تقريبا 6 مركز العدسة C1 ويمة معينة لتيار الملف مثلا 2 منه 2000 من معايرة المجهر الاليكتروني الماسح (SEM) فعلى سبيل المثال

الشكل 5- تغير كل من ${}_{1}f_{1}$, ${}_{1}f_{1}$ و d_{1} كدالة لكثافة التيار ${}_{1}$

ثانيا : دراسة تأثير تغير كثافة التيار على العدسة المكثفة الثانية تم دراسة تأثير تغير كثافة التيار 2 المستمر المار بالعدسة المكثفة الثانية C2 على كل من الخواص التالية: ا- البعد البؤري (f2). ب- موقع الصورة الثانية المتكونة عن مركز العدسة الثانية (S₃) . ج- مقدار التصغير الكلي لمنظومة العدسات المكثفة المزدوجة 2(dMt) . ج- مقدار التصغير الكلي لمنظومة العدسات المكثفة المزدوجة (f_2) . ج- مقدار التصغير الكلي لمنظومة العدسات المكثفة المزدوجة 2(dMt) . د- قطر الحزمة الالكترونية الخارجة من منظومة العدسات المكثفة المزدوجة (f_2) . كما مر معنا سابقا وكما هو الحال في العدسة الأولى فان f_2 و g_2 ينتاقص مع زيادة 2 كما مبين بالشكل (6). أما بالنسبة للتصغير الكلي 2(dMt) الحاصل من منظومة العدسات المكثفة المزدوجة فهو يتوقف على عاملين الأول: مقدار التصغير المصافي من قبل العدسة المكثفة الأولى ((M_1) والذي يعطى بالعلاقة (1) والثاني: التيار المار في 22 والذي يحدد بدوره قيمة g_2 وفقا للعلاقة (1). نلاحظ من المعادلة (1) عند زيادة كثافة التيار ، في العدسة 12 فان f_2 يزداد لان المسافة بين العدستين مقدار ثابت كما هو واضح من الشكل (1) وكذلك عند زيادة كثافة التيار 2 في العدسة 23 فان g_2 يزداد لان ي يتتاقص وهكذا إلى أن نصل إلى أعلى قيمة لكل من ، و و وبالتالي نحصل على أعلى قيمة المزدوجة يعتمو المكترونية أي سيكون التشغيل بالنمط القوي. وهذا يعني أن التصغير الكلي 26 لمان عنه را و و وبالتالي نحصل على أعلى قيمة المزدوجة يعتمد على مقدار التصغير ((M_1)) الحاصل في العدسة 12 ومن من الشكل (1) وكذلك عند زيادة كثافة التيار و في العدسة 22 فان g_2 يزداد لان المسافة بين العدستين مقدار ثابت كما هو واضح من الشكل (1) وكذلك عند زيادة كثافة التيار و في العدسة 22 فان وراح الي سيكون التشغيل بالنمط القوي. وهذا يعني أن التصغير الكلي 26(dMt) في منظومة العدسات المكثفة المزدوجة يعتمد على مقدار التصغير (الملل) المر في العدسة 22 كما مبين بالشكى 7.

الشكل 6-العلاقة بين البعد البؤري و موقع الصورة كدالة لكثافة التيار في العدسة C2

الشكل 7-العلاقة بين مقدار التصغير الكلى للمنظومة وكثافة التيار في العدسة C2

وتم دراسة العلاقة بين قطر الحزمة الالكترونية d_2 الخارجة من العدسة C2 كدالة لكثافة للتيار المار في ملفها عند وضعية وحالة معينة للعدسة الأولى C1 فوجد عند زيادة التيار يقل قطر الحزمة d_2 بسبب نقصان f_2 وزيادة زاوية انفراج الحزمة $_2$ كما مبين بالشكل 8.

الشكل 8-العلاقة بين قطر الحزمة الخارجة من المنظومة المكثفة والتيار في العدسة C2

ويمكننا الاستفادة من المخططات كما هو الحال في المخططات السابقة كمخططات معايرة لأجهزة المجهر الاليكتروني الماسح (SEM) كما مبين بالشكل (9). فعلى سبيل المثال إذا كان كثافة التيار في العدسة C2 (2–0.45 A/mm²) يعطينا بعد بؤري (f ₂ =7 mm) ويكون بعد الصورة المتكونة بواسطة C2 هو (S₃ =7.4 mm) ومقدار التصغير الكلي للمنظومة (87) مرة عندما يكون التصغير في العدسة C1 (6) مرات و يكون (190) مرة عندما يكون مقدار التصغير في العدسة C1 (13) مرة ويكون (439) مرة عندما يكون مقدار التصغير في العدسة C1 (6) مرة مندا.

الشكل 9: تغير S₃ ،f₂ ،d₂ و **dMt)c (dMt)** كدالة لكثافة التيار ₂ المار في العدسة C2

وهنالك حالة خاصة عندما يتساوى قيم كثافة التيار 1 و2 لكل من العدستين فان مقدار التصغير الكلي للمنظومة يتراوح (37 - 1082) مرة والتي نقابل كثافة تيار A/mm² (0.8-0.3).

الجدول (4) يبين الحدود الدنيا والعليا للتيار المار في المنظومة ومقدار التصغير الكلي وقطر الحزمة المناظرة له عند التشغيل بالنمطين الضعيف والقوي.

(A/mm ²)	dMt c	d ₂ (nm)		
0.3 نمط ضعيف	37	1351		
0.88 نمط قوي	1082	47		

الجدول 4: يوضح مقدار التصغير الكلي لمنظومة العدسات المكثفة عند التشغيل بالنمطين الضعيف والقوي

الاستنتاجات

المصادر

نبين من خلال التحليلات السابقة بان مقدار التصغير الكلي في منظومة العدسات المغناطيسية المزدوجة يعتمد بصورة رئيسية على مقدار التصغير في كل عدسة والذي يعتمد بدوره على كثافة التيار المار فيهما. ووجدنا بان أعلى مقدار للتصغير في قطر الحزمة الالكترونية يساوي 1082 مرة عندما يكون كثافة التيار ²0.88 A/mm² = 1 أي عند تشغيل منظومة العدسات المكثفة بالنمط القوي. ووجدنا إن قطر الحزمة الالكترونية الخارجة من المنظومة تتناقص مع زيادة كثافة التيار وكانت اقل قيمة لها m 47 عند ²0.88 A/mm وحدنا إن قطر الحزمة الالكترونية الخارجة من المنظومة تتناقص مع زيادة كثافة التيار وكانت اقل قيمة لها mn عند ²0.88 A/mm وحدنا إن قطر الحزمة الالكترونية الخارجة من المنظومة تتناقص مع زيادة كثافة التيار وكانت اقل قيمة لها m عند ²0.88 A/mm الحرمة الالكترونية الحدمات المعايرة لجهاز الحال وذلك للحصول على كافة المعلومات عن الحزمة الالكترونية الخارجة من منظومة العدسات المكثفة بمجرد معرفتنا لمقدار كثافة التيار المار في العدستان الم

- 1. Khursheed, A. 2010. Scanning Electron Microscope Optics and Spectrometer. World Scientific Publishing. Co. Pte. Ltd, ch.1, p. 9
- 2. Hawkes, P.W.; Kasper E. 1989. *Principles of Electron Optics*. Vol.1, Academic Press: London.
- **3.** Egerton, R.F. **2005**. *Physical Principles of Electron Microscopy an Introduction to TEM, SEM, and AEM*. Springer Science, Business Media, Inc. ch.2, p. 42
- 4. Munro, E. 1975. A Set of Computer Programs for Calculating the Properties of Electron Lenses. Cambridge University, Eng., Dept., Report CUED/B-ELECT/TR, p. 45
- 5. Kim, D.H.; Park, K.; Park, M.J.; Jung, H.W.; Jang, D.Y. 2010. "Numerical analysis for verifying the performance of lens system in a scanning electron microscope". *Optik*, 121, 330-338.
- 6. Park, M.J.; Kim, D.H.; Park, K.; Jang, D.Y.; Han, D.C. 2008. Design and fabrication of a scanning electron microscope using a finite element analysis for electron optical system. *J. Mechanical Sci. and Technology*, 22, 1734-1746.
- 7. Lencovà, B. 1986. Program AMAG for computation of vector potential in rotationally symmetric magnetic electron lenses by FEM. *Inst. Sci. Instrument Czech. Acad. Sci. Brno, Czechoslovakia*, 1,58.