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Abstract: Water contamination caused by the presence of synthetic dye is one of the world's major 

environmental concerns. This work aims to explore the potential application of non-carbonized 

phosphoric acid-treated Balanites aegyptiaca "heglig" seed husks powder (BASHP) as a bio-sorbent 

for methylene blue (MB) removal from water bodies. BASHP was characterized using Fourier 

transform infrared spectroscopy (FTIR). The characteristics of BASHP, such as the iodine number, 

point of zero charges, solubility, and specific surface area (SMB) were also estimated. The biosorption 

of MB onto the BASHP surface was studied in batch mode under various conditions (contact time, 

shaking speed, solution temperature, initial solution pH, ionic strength, initial dye concentration, and 

biosorbent dosage). The adsorption kinetics and isotherm were better described by pseudo-second-order 

and Langmuir models, respectively. More than 97% of MB was removed, and the maximum biosorbed 

amount of MB (qmax) was 72.99 mg/g. Thermodynamics findings revealed that the proposed biosorption 

is an endothermic and spontaneous process. These findings showed that BASHP is a potentially eco-

friendly, easily available, and low-cost material for removing hazardous dyes (e.g., methylene blue) 

from an aquatic environment, as well as a promising method for reducing agricultural solid waste (e.g., 

seed husks). 
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1. Introduction 

Wastewater from the textile industry, which contains large amounts of residual dyes, is 

regarded as the primary source of water pollution [1,2]. Due to their toxic, mutagenic, and 

carcinogenic nature, the presence of dyes in water bodies, even at low concentrations, is 

extremely hazardous to human health and aquatic life [3,4]. Methylene blue (MB), a basic 

textile dye (Figure 1), is commonly used to color silk, wool, and cotton. Exposure to MB can 

cause difficulty breathing, mental confusion, eye burns, methemoglobinemia, sweating, 

nausea, vomiting, and profuse sweating [3]. Thus, removing synthetic dyes such as MB before 

they are released into bodies of water is critical for the environment. 

Currently, various technologies such as flotation [5], nanofiltration [6], 

coagulation/flocculation [7], electrochemical oxidation [8], photocatalytic degradation [9] and 

adsorption [10,11] are used to treat dye-contaminated water. Adsorption is the preferred 
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method among these because of its simplicity, low cost, adsorbent versatility, and high 

efficiency [12]. Because of its high efficiency, activated carbon is the most commonly used 

adsorbent in many industries. However, its high production costs, as well as disposal, 

regeneration, and loss issues, limit its use [12,13]. This emphasizes the need for alternatives 

that are affordable, cost-effective, and environmentally friendly. 

Biosorption has been extensively studied in recent years for removing water pollutants 

(e.g., heavy metals and dyes) using agricultural solid wastes (e.g., fruits peels, seeds, leaves 

barks) as adsorbent materials [4,14]. Biosorbents are advantageous because they are cost-

effective, environmentally friendly, renewable, and require less processing time [3,4]. Various 

materials, such as cauliflower leave [15], Terminalia catappa shell [11], Jojoba seeds [16], 

macadamia seed husks [12], and Haloxylon Recurvum plant stem [17], are being investigated 

as potential biosorbents for removing dyes from aquatic media. 

Balanites aegyptiaca (L) Del., Desert date (Figure 2a), also known as "Heglig" in 

Arabic, is a tree native to Africa and South Asia. It is commonly used in traditional herbal 

medicine to treat wounds, intestinal worm infection, and jaundice, among other things [18]. 

Balanites aegyptiaca has recently been studied for its potential use in the removal of water 

pollutants. Activated carbon derived from the shells of Balanites aegyptiaca has been used 

successfully for the adsorptive removal of safranin dye [19] and heavy metal ions (Ni2+ and 

Cu2+) [20] from aqueous solutions. However, compared to biosorbents, activated carbon 

requires a longer and more expensive production process, resulting in a high cost of dye 

removal [11]. To the best of the authors' knowledge, there is no report in the literature on using 

non-carbonized phosphoric acid-treated Balanites aegyptiaca seed husks powder (BASHP) for 

the adsorptive removal of MB from an aqueous medium. Phosphoric acid was used to treat 

BASHP biosorbent due to its low toxicity compared to other activation agents (e.g., ZnCl2) and 

its ability to provide high surface area and porosity materials, which are important for high 

adsorption performance [21]. Therefore, the current study aims to investigate the potential 

application of BASHP as a low-cost and environmentally friendly adsorbent for the removal 

of methylene blue, MB, a basic textile dye (Figure 1). 

 
Figure 1. The molecular structure of methylene blue (MB). 

2. Materials and Methods 

2.1. Materials.  

Seed husks of Balanites aegyptiaca "heglig" were collected from the local trees (grow 

in Sebha, Libya). Sodium thiosulfate and methylene blue dye, MB, (C16H18ClN3S·xH2O, x = 

2-3) were purchased from ScP (Surechem products). Phosphoric acid (H3PO4) was purchased 

from ASIA chemicals. Sodium chloride (NaCl), hydrochloric acid (HCl), and iodine solution 

were purchased from BDH Chemicals. Sodium hydroxide (NaOH) was obtained from Fluka. 
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2.2. Biosorbent preparation.  

The collected Balanites aegyptiaca "heglig" seed husks (Figure 2b) were washed 

several times with tap water, then with deionized water to remove dust, and finally dried 

overnight in an oven at 105 ºC. A fine Balanites aegyptiaca seed husks powder (BASHP) with 

a particle size of 0.0125 mm was obtained after grinding dried seed husks using a pestle and 

mortar and sieving them. The BASHP (50g) was then immersed in a 3:10 phosphoric acid 

solution for 12 hours before being filtered, washed, dried in an oven at 105 oC, ground, and 

sieved to obtain acid-treated BASHP with a particle size of 0.0125 mm (Figure 2c). Finally, 

the prepared biosorbent material (acid-treated BASHP) was sealed in an airtight plastic 

container for the batch adsorption experiments. 

 

Figure 2. Photographic images. (a) Balanites aegyptiaca "heglig" date; (b) Balanites aegyptiaca seed husks; (c) 

acid-treated Balanites aegyptiaca seed husks powder (BASHP). 

2.3. Biosorbent characterization.  

Fourier transform infrared (FTIR) spectroscopy was used to investigate the biosorbent 

(acid-treated BASHP) functional groups using Nicolet 380 spectrometer. The FTIR spectrum 

of BASHP was recorded using the KBr disc method at room temperature in the wavenumber 

range 400-4000 cm-1. A salt addition method was used to estimate the pH at the point of zero 

charge (pHPZC) of acid-treated BASHP, as described elsewhere [22]. The biosorbent's pH and 

conductivity were also determined according to ASTM D3838-80 [23]. The iodine number (mg 

of iodine/g of biosorbent) [24], moisture content (%) and bulk density (g/cm3) of BASHP were 

determined [25]. The simple methylene blue method was used to estimate the specific surface 

area (SMB) of acid-treated BASHP [13]. The solubilities of BASHP samples were determined 

as previously described [26]. 

2.4. Adsorption studies.  

2.4.1. Batch adsorption experiments. 

In this study, a batch mode was used to investigate the biosorption of MB dye onto an 

acid-treated BASHP biosorbent. The experiments were carried out in Erlenmeyer flasks (100 

mL) containing 20 mL of the desired concentration of MB dye and the required amount of the 

biosorbent. The flasks were shaken for pre-determined time and speed using Stuart orbital 

shaker, at room temperature, otherwise indicated. The factors affecting the biosorption process 

such as shaking speed (150 to 300 rpm), contact time (0-120 min), initial MB concentration 

(100-300 mg/L), adsorbent dosage (0.02-0.12 g/20 mL), solution temperature (25-45 ºC) and 

initial solution pH (4-13) were investigated. The MB dye solution's initial pH was adjusted to 

the desired value using a solution of either NaOH or HCl (0.1 mol/L). The experiments were 
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conducted in triplicate. After each adsorption experiment, the biosorbent was separated by 

centrifugation at 2500 rpm for 5 minutes. A single beam UV-Vis spectrophotometer 

(GENESYS 10 UV, Thermo Electron Corporation), at a maximum wavelength (λmax) of 662 

nm, was used to estimate the initial and residual MB concentrations. The following equation 

was used to estimate the percentage removal of MB (%R) [27]: 

%R =
Co − Ct

Co

×100 
(1) 

where, Co and Ct are the initial concentration and the final concentrations at any time t of MB 

dye solution (mg/L), respectively.  

Equations (2) and (3) were used to calculate the adsorbed amounts of MB dye onto the 

biosorbent surface at any time t (q
t
, mg/g) and the equilibrium (q

e
, mg/g) as follows [12]: 

q
t

=
V(C

o
− Ct)

m
 

(2) 

q
e

=
V(C

o
− Ce)

m
 

(3) 

where V (L),  Ce (mg/L) and m (g) represent the volume of MB dye solution, MB dye 

concertation at the equilibrium, and biosorbent dosage, respectively. 

2.4.2. Adsorption kinetic models. 

The biosorption kinetics were investigated using two well-known models: pseudo-first-

order (PFO) and pseudo-second-order (PSO) [17,28]. The PFO kinetic model's linear form is 

as follows [17]:   

ln(q
e

− q
t
) = lnq

e
− k1t (4) 

where,  k1 (min-1) and q
e
 (mg/g) represent the PFO kinetic model rate constant and the 

calculated adsorbent capacity, respectively. The intercept and slope of the plot of ln(q
e

− q
t
) 

versus t, respectively, were used to estimate the values of q
e
 and  k1. 

The linearized form of the PSO kinetic model is as follows [29]:  

t

q
t

=
1

k2qe
2

+
t

q
e

 
(5) 

where, k2 (g/mg min) denotes the PSO kinetic model rate constant. The intercept and slope of 

the t/qe versus t plot were used to calculate the k2 and q
e
 values, respectively. 

2.4.3. Adsorption isotherms. 

In this study, the biosorption isotherms were described using two well-known models, 

Langmuir and Freundlich [30]. The linearized Langmuir isotherm form is written as [13]: 

Ce

q
e

=
1

q
max

 KL

+
Ce

q
max

 
(6) 

where, q
max

 (mg/g) and KL (L/mg) represent the maximum adsorbed amount of MB and, 

respectively, the Langmuir isotherm model constant. The intercept and slope of Ce versus plot 

of Ce/qe plot were used to estimate the KL and q
max

 values. The separation factor (RL) expresses 

the essential feature of the Langmuir model, as shown below [22]: 

RL =
1

1 + KLCo

 
 (7) 
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The isotherm type is determined by the RL value, which can be linear (RL =1), favorable 

(0 < RL < 1),  unfavorable, (RL > 1), or irreversible (RL = 0).  

Freundlich isotherm is represented mathematically by the linearized form shown below 

[31]: 

lnq
e

=  lnKF + 
1

n
lnCe 

(8) 

where, KF (mg/g(L/mg)1/n) represents the Freundlich constant. The Freundlich intensity 

parameter, n (dimensionless), represents the magnitude of surface heterogeneity. If the value 

of n is greater than unity (n > 1), the adsorption conditions are favorable [31]. The slope and 

intercept of the lnqe against lnCe plot are used to estimate the KF and n values, respectively. 

2.4.4. Adsorption thermodynamics. 

In this study, the adsorption thermodynamics was interpreted by Gibb's free energy 

change (∆G
o, kJ/mol) and enthalpy change (∆Ho, kJ/mol) entropy change (∆S

o, J/mol.K). The 

following equations were used to calculate the values of thermodynamic parameters [13,32]:  

∆G𝑜 = ∆H𝑜 − T∆S𝑜
 (9) 

lnKc =
−∆H𝑜

R

1

T
+

∆S𝑜

R
 

(10) 

Kc =
Cs

Ce

 
(11) 

where, Cs is the MB concentration (mg/L) onto the biosorbent surface,  T is the absolute 

temperature (K),  R is the universal gas constant  (8.314 J/mol/K), and Kc is the distribution 

coefficient (dimensionless constant). The Kc value was calculated using equation (11). The 

slope was used to calculate the value of ∆H𝑜 , while the intercept of ∆H𝑜 against (1/T) plot was 

used to estimate the value of ∆S𝑜
. 

2.4.5. Desorption.  

Desorption experiments were carried out as follows: 20 mL of MB dye solution 

(concentration 100 mg/L) was stirred with 0.12 g of biosorbent for 30 min at 45 °C in a 

magnetic stirrer (150 rpm). The MB-loaded biosorbent (acid-treated BASHP) was then 

separated from the mixture by filtering. A mixed solution of ethanol and acetic acid (96: 4 

V/V%) was used as an eluent. The MB-loaded acid-treated BASHP was placed in a 20 mL 

solution of the eluent (ethanol and acetic acid) and stirred for 30 min at a speed of 150 rpm. 

The sample (acid-treated BASHP) was dried and reused after regeneration, and the removal 

percentage (%R) of MB was calculated after each cycle. 

3. Results and Discussion  

3.1. Biosorbent characteristics. 

The surface functional groups of untreated and acid-treated biosorbent (BASHP) were 

identified using FTIR, and the results are presented in Figure 3. As shown, the FTIR spectra of 

both samples were nearly identical, indicating the presence of the same functional groups. For 

instance, the band at 3452 cm-1 in an untreated BASHP sample (red curve) is attributed to the 

stretching vibration of O-H groups (carboxylic acids, phenols, and alcohols) [32]. The 

absorption band located at 2925 cm-1 is due to stretching vibrations of C-H [32,33]. The band 
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located at 2355 cm-1 is due to the presence of CO2 group [34]. The bands located at 1444 and 

1645 cm-1 are attributed C-C bonding and N-H groups, respectively [33]. The absorption band 

located at 1022 cm-1 is assigned to stretching vibrations C-O in carboxylic acids, alcohols, 

esters, and ethers [15,35]. The bands at 478, 561, and 874 cm-1 correspond to C-H bonding, 

while the band at 673 cm-1 corresponds to alkali halides (C-Cl) [36]. 

 
Figure 3. FTIR spectra of BASHP before and after acid treatment. 

In this study, the iodine number of treated and acid-treated BASPH samples was also 

determined. The iodine number of the untreated sample was 174.42 mg/g, which is lower than 

that of acid-treated BASPH (803.27 mg/g), indicating the high porosity and surface area of 

acid-treated BASPH. Also, the simple and inexpensive methylene blue method was used to 

determine the specific surface area (SMB) of acid-treated BASHP [13,29], which is estimated 

to be 271.04 m2/g. This value is lower than that of Casuarina equisetifolia needle (351 m2/g) 

[29], which was determined using the same method. The solubility of the untreated sample was 

7.2%, while that of the acid-treated BASHP was 0.4%. Besides, both BASHP samples had 

moisture content (%) values of 0.98% (untreated) and 0.96% (acid-treated). The bulk densities 

of untreated and acid-treated BASHP samples, respectively, were 0.3984 and 0.3404 g/cm3. 

These values are slightly higher than the recommended lower limit for granular activated 

carbon (0.25 g/cm3) [37].  

The pH values of untreated and acid-treated BASHP suspensions were estimated to be 

10.14 and 10.93, respectively. Furthermore, the electrical conductivities (EC) of untreated and 

acid-treated BASHP suspensions were found to be 2155 and 2918 μS/cm, respectively. These 

values are lower than that reported for Miswak-3 (5040 μS/cm), indicating that Miswak-3 

solution has a high content of dissolved ions [38]. The pH at the point of zero charges (pHPZC) 

of acid-treated BASHP was estimated to be 10.73, as shown in Figure 2b. This means that the 

surface of BASHP will be positively charged below the pHPZC (pH > 10.73) and negatively 

charged above the pHPZC (pH < 10.73), promoting, respectively, anionic and cationic dye 

adsorption. 
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Figure 4. The pH at the point of zero charges (pHPZC) of acid-treated BASHP.  

3.2. Factors affecting MB adsorption 

For the sake of comparison, the adsorption of methylene blue (MB) was investigated 

using untreated and acid-treated BASHP at two different biosorbent dosages (0.01 and 0.04 

g/20 mL), as shown in Figure 5. In this experiment, the MB dye concentration was 100 mg/L, 

contact time of 1 h, shaking speed of 150 rpm, and room temperature. As shown, in both cases, 

the removal percentage (%R) of MB using phosphoric acid-treated BASHP was higher than 

that for untreated BASHP. This could be because the treatment of the BASHP sample with 

phosphoric acid increased its surface area and porosity, as indicated by its higher iodine number 

value (803.27 mg/g) compared to the untreated sample (174.42 mg/g). Thus, MB removal will 

be investigated using acid-treated BASHP as bisorbent materials, and the factors affecting the 

biosorption process are discussed in detail below.    

 

Figure 5. The percentage removal of MB as a function of untreated and acid-treated BASHP. 

3.2.1. Effect of shaking speed. 

The effect of shaking speed on the %R of MB is shown in Figure 6. In this experiment, 

the shaking speed was increased from 150 to 300 rpm while the other experimental parameters 

remained constant  (contact time for 1 h, initial concentration at 100 mg/L, biosorbent dosage 

at 0.04 g/20 mL). As shown, increasing the shaking speed from 150 to 300 rpm reduced the 
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%R of MB. This decrease in the %R values could be attributed to the desorption of some dye 

molecules from the acid-treated BASHP surface at high shaking speeds [39]. As a result, 150 

rpm was chosen as the optimum shaking speed in this study. 

 
Figure 6. Effect of shaking speed on the removal percentage of MB.  

3.2.2. Effect of contact time. 

Figure 7 depicts the effect of the contact time on the %R of MB. This effect was 

investigated over a range of contact times (0-90 min), biosorbent dosage of 0.04 g/20 mL, 

shaking speed of 150 rpm, and initial MB concentration of 100 mg/L. As shown, within the 

first 10 minutes of contact, the %R of MB reached approximately 87%. This rapid increase in 

the %R can be attributed to an abundance of vacant active sites on the biosorbent surface (acid-

treated BASHP). However, no significant increase in the %R value was observed, which could 

be attributed to MB dye molecules saturating the available active sites on the acid-treated 

BASHP surface [12]. Furthermore, after 30 min of contact, the maximum %R value of 90.90% 

was obtained. Therefore, 30 min appears to be the optimum contact time in this study. 

 
Figure 7. Effect of contact time on the removal percentage of MB. 
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3.2.3. Effect of initial dye concentration. 

Figure 8 depicts the effect of initial dye concentration on the %R of MB. The effect was 

studied by increasing the initial MB concentration from 100 to 300 mg/L while keeping the 

other conditions constant (shaking speed of 150 rpm, contact time of 30 minutes, and 

biosorbent dosage of 0.04 g/20 mL). As shown, the %R of MB decreased gradually as the initial 

dye concentration was increased. This could be due to the saturation of available active binding 

sites on the acid-treated BASHP surface at high initial dye concentrations [36]. Thus, in this 

study, 100 mg/L was chosen as the optimal initial MB dye concentration.  

 
Figure 8. Effect of initial dye concentration on the removal percentage of MB. 

3.2.4. Effect of adsorbent dosage. 

The effect of biosorbent dosage on the %R and adsorbed amount MB dye (qe, mg/g) 

was investigated by varying the acid-treated BASHP amount from 0.02 to 0.12 g/20 mL while 

keeping the other conditions constant (contact time at 30 min, shaking speed at 150 rpm, and 

initial dye concertation at 100 mg/L), as shown in Figure 9.  

 
Figure 9. Effect of adsorbent dosage on the removal percentage and adsorbed amount of MB.   

As can be seen, increasing the dosage of the adsorbent (acid-treated BASHP) from 0.01 

to 0.08 g/20 mL increased the %R from 83.64 to 94.70%, respectively. In contrast, increasing 

the acid-treated BASHP amount from 0.02 to 0.12 g/20 mL resulted in a significant decrease 
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in the adsorbed amount of MB from 88.67 to 16.70 mg/g, respectively. This could be due to a 

decrease in surface area of the biosorbent as a result of particle aggregation as the biosorbent 

dosage is increased [17,36]. 

3.2.5. Effect of solution pH. 

The effect of solution pH on the %R of MB was studied at different pH values (~ 4 to 

13), shaking speed of 150 rpm, contact time of 30 min, and biosorbent dosage of 0.12 g/20 mL, 

as illustrated in Figure 10. As shown, the %R of MB increased with increasing the solution pH, 

reaching a maximum of about 95.38% at a pH of 8.38 (lower than pHPZC), after which the %R 

of MB decreased slightly. As previously stated, the pHPZC of the biosorbent (acid-treated 

BASHP) is 10.73. This means that the acid-treated BASHP surface will be positively charged 

when the pH is less than 10.73 and negatively charged when the pH is greater than 10.73, 

favoring anionic and cationic dye adsorption, respectively. As a result, at high pH values (> 

10.73), a high %R of MB (positively charged ions) was expected. As a result, the slight decrease 

in MB %R at pH values greater than 10.73 (pHPZC) can be attributed to the fact that MB contains 

Cl− and NaOH used for pH adjustment will undergo a replacement reaction resulting in the 

formation of NaCl. As a result, the formed NaCl increases the ionic strength of MB dye 

solution, resulting in a decrease in MB's %R [16].    

 

Figure 10. Effect of initial solution pH on the removal percentage of MB. 

3.2.7. Effect of solution temperature. 

Figure 11 shows the effect of dye solution temperature on the %R of MB. This effect 

was investigated by changing the dye solution temperature from 25 to 45 °C while maintaining 

the other experimental condition at the previously mentioned optimized conditions. As can be 

seen, there is a slight increase in the %R of MB from 95.54 to 97.44% with an increase in the 

solution temperature from 25 to 45 °C, respectively. This increase in %R of MB with increasing 

solution temperature implies that the biosorption of MB molecules onto the acid-treated 

BASHP surface is an endothermic process [40].   
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Figure 11. Effect of solution temperature on the removal percentage of MB. 

3.2.8. Effect of ionic strength.  

Figure 12 depicts the effect of solution ionic strength on MB %R. In this experiment, 

the NaCl solution concentration was changed from 0 to 0.8 mol/L while the other experimental 

conditions remained at the previously mentioned optimal values. As shown, the %R of MB 

decreased gradually with increasing NaCl concentration, reaching its lowest value (27.7%) 

when NaCl was 0.8 mol/L. This decrease in MB %R is due to an increase in solution ionic 

strength, which resulted in high competition between positively charged MB molecules and 

Na+ ions for available active bidding sites on the surface of acid-treated BASHP (negatively 

charged) [36]. This phenomenon was also observed during the study of the initial solution pH 

effect, as mentioned above. 

 
Figure 12. Effect ionic strength on the removal percentage of MB. 

3.3. Adsorption kinetics. 

Table 1 lists the estimated parameters for pseudo-first-order, PFO (Figure 13a) and 

pseudo-second-order, PSO (Figure 13b) kinetic models. According to the correlation 

coefficient (R2) value, the PSO with the highest R2 value (0.9985) best describes the 

biosorption kinetics. Furthermore, when compared to the PFO kinetic model, the calculated 

adsorbed amount (qe, cal, mg/g) of MB derived from PSO is much closer to the experimental 
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one (qe, exp, mg/g),  indicating that the PSO kinetic model for MB dye biosorption onto acid-

treated BABP. The fact that the experimental adsorption data fit the pseudo-second-order 

model well implies that the adsorption mechanism is dependent on both adsorbate and 

adsorbent material properties [41].  

  

Figure 13.  Kinetic models. (a) pseudo-first-order; (b) pseudo-second-order. 

Table 1. Kinetic models parameters for MB biosorption on acid-treated BASHP. 
)e, expq( 

(mg/g) 

Pseudo-first-order 

(mg/g) )e, calq( )1-(min 1k 2R 

43.71 4.05 3-6.2 × 10 0.0095 

Pseudo-second-order 

(mg/g) )e, calq( (g/mg.min) 2k 2R 

41.67 1-5.76 × 10 0.9985 

3.4. Adsorption isotherm. 

The estimated parameters for the Langmuir and Freundlich isotherms are listed in Table 

2. According to the table, the Langmuir isotherm model (Figure 14a) fits the experimental data 

points better (R2 = 0.9626) than the Freundlich (Figure 14b) isotherm (R2 = 0.6991). This 

demonstrates that the Langmuir isotherm model is more applicable to describe the proposed 

biosorption process. Besides, the monolayer biosorption capacity (qmax) of MB molecules onto 

the prepared biosorbent material (acid-treated BASHP) was approximately 72.99 mg/g. The 

Langmuir model's suitability was further assessed by calculating the values separation factor 

(RL), the results of which are plotted in Figure 14c. Furthermore, within the dye concentration 

range (100-300 mg/L), the estimated RL values were found to be less than unity (0.58-0.33), 

indicating the suitability of the proposed biosorption process [13]. Table 4 compares the 

maximum absorbed amount of MB dye (qmax, mg/g) or adsorption capacities of various 

adsorbents to acid-treated BASHP. As shown in the table, the maximum absorbed amount of 

MB onto the proposed biosorbent (acid-treated BASHP) was lower, higher or comparable to 

those reported for the listed biosorbents. Adsorption capacities can differ due to adsorbent 

properties (such as surface area, porosity, and functional groups) or experimental adsorption 

conditions (e.g., initial pH and solution temperature). According to the findings, the proposed 

material (acid-treated BASHP) is a promising low-cost, readily available, and environmentally 

friendly biosorbent. Furthermore, the adsorption efficiency of acid-treated BASHP could be 

increased further by converting it to low-cost derived activated carbon. 
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Figure 14. (a) Langmuir isotherm; (b) Frendulich isotherm; (c) separation factor. 

Table 2. Isotherm models parameters for MB biosorption onto acid-treated BASHP. 

Langmuir isotherm 

2R (L/mg) LK (mg/g) maxq 

0.9626 2-6.70 × 10 72.99 

Freundlich isotherm 

2R n 1/n )1/n(mg/g(L/mg)F K 

0.6991 7.67 0.1304 33.31 

Table 3. The maximum adsorbent amount (qmax, mg/g) of MB using various biosorbents.  

Reference (mg/g)max q Adsorbent 

[42 ] 6.89 Ficcus palmata leaves (FPL) 

[43 ] 19.67 NaOH-activated banana peels (BP) 

[36 ] 32.25 Carica papaya wood (CPW) 

[44 ] 41.35 Casuarina equisetifolia pines (CeP) 

[45 ] 42.19 H2SO4 functionalized  Casuarina equisetifolia pine 

[10 ] 42.74 Salix babylonica (SB) 

[46 ] 52.6 Potato leaves powder (PLP) 

This study 72.99 -seed husks powder (acid Balanites aegyptiacatreated -4PO3H

treated BASHP) 

[47 ] 76.34 Cyanthilium cinereum (L.) H. Rob (CCLHR) 

[11 ] 88.62 Terminalia catappa (TC) shell 

[48 ] 90.9 peel (DP) Durianactivated -2O2H 

[49 ] 140  Fava bean peel (FBP) 

[50 ] 147.06 P)-Stalks (OS Oreganumtreated -4PO3H 

[16 ] 283 Jojoba seeds (JS) 
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3.5. Thermodynamic analysis. 

 Equations 9 to 11 were used to estimate the values of thermodynamic parameters (∆G
o
, 

∆Ho, ∆Ho) for MB biosorption onto acid-treated BASHP, and the results are listed in Table 4. 

The negative ∆G
o
 values indicate the spontaneous nature and energy feasibility of the proposed 

process. The positive value of ∆Ho implies that biosortpion of MB onto the surface of acid-

treated BASHP is an endothermic process. Furthermore, the low value of ∆Ho (25.76 kJ/mol) 

was less than 40 kJ/mol indicates that MB adsorption occurs via physical adsorption 

mechanism [51]. The positive ∆S
o
 value (112.27 J/mol.K) implies an increase in disorder at 

the interfacial region between two phases (solid and liquid) [52].  

Table 4. Thermodynamic parameters for MB biosorption onto acid-treated BASHP. 

T  

(K) 

∆Gº  

(kJ/mol) 

TΔSº  

(kJ/mol) 

∆Hº 

(kJ/mol) 

ΔSº  

(J/mol.K) 

298 -8.46 33.46 25.76 112.27 

308 -8.82 34.58 

318 -9.94 35.70 

3.6. Desorption study.  

This study investigated acid-treated BASHP reusability for MB removal from the 

aquatic environment for three cycles using an eluent composed of ethanol and acetic acid 

solution (96:4 V/V%), as shown in Figure 15. As can be seen, the %R of MB decreases 

gradually from 95.56% at the initial adsorptive removal experiment to 24.66% after the third 

cycle. The %R decrease of MB could be because active binding sites on the biosorbent surface 

(acid-treated BASHP) have been lost or obstructed [53].  

 
Figure 15. Desorption efficiency of BASHP biosorbent for MB. 

4. Conclusions 

In summary, the adsorption properties of non-carbonized phosphoric acid-treated 

Balanites aegyptiaca "heglig" seed husks powder (acid-treated BASHP) for removing 

methylene blue dye (MB) from aqueous solutions were investigated successfully. The 

biosorbent's pH at the point of zero charges (pHPZC), iodine number, and specific surface area 

(SMB) were determined to be 10.73, 803.27 mg/g, and 271.04 m2/g, respectively. The batch 

mode was chosen to investigate the biosorption of MB onto the acid-treated BASHP surface, 

and under optimal conditions, more than 97% of the MB was removed. The results showed that 
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pseudo-second-order better described the adsorption kinetics, whereas the Langmuir model 

described the biosorption isotherm better. The maximum amount of MB biosorbed onto the 

acid-treated BASHP surface was approximately 72.99 mg/g. According to the thermodynamic 

parameters (∆G𝐨
, ∆H𝐨, ∆S𝐨

), the biosorption of MB dye molecules onto the acid-treated 

BASHP surface is a spontaneous and endothermic process. According to the findings, acid-

treated BASHP can be regarded as a promising, low-cost, eco-friendly, and widely available 

biosorbent material for removing water pollutants such as highly toxic dyes (e.g., methylene 

blue). The current study also suggests a promising method for reducing agricultural solid waste. 
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