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Abstract.
In this paper, a new concept of generalized convexity is introduced for not necessarily differentiable vector opti-
mization problems. For an E-differentiable function, the concept of E-invexity is introduced as a generalization
of the E-differentiable E-convexity notion. In addition, some properties of E-differentiable E-invex functions
are investigated. Furthermore, the so-called E-Karush-Kuhn-Tucker necessary optimality conditions are es-
tablished for the considered E-differentiable vector optimization problems with both inequality and equality
constraints. Also, the sufficiency of the E-Karush-Kuhn-Tucker necessary optimality conditions are proved for
such E-differentiable vector optimization problems in which the involved functions are E-invex and/or gener-
alized E-invex.
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1 Introduction

Multiobjective programming, has grown remarkably in
studying the development of optimality conditions. This
is a consequence of the fact that many real world prob-
lems can be modeled as optimization problems with sev-
eral objectives conflicting with one another, that is, by vec-
tor optimization problems. Although the concept of con-
vexity plays a vital real in proving the fundamental results
in optimization theory, however, not all real life problems
can be analyzed as convex multiobjective programming
problems. Therefore, various classes of nonconvex vec-
tor optimization problems have been defined in optimiza-
tion literature. One of such important generalizations of
the convexity notion is the concept of invexity introduced
by Hanson [12]. In the case of differentiable scalar opti-
mization problems. Namely, Hanson showed that, instead
of the usual convexity assumption, if all functions are as-
sumed to be invex (with respect to the same function η),
then the sufficient optimality conditions and weak dual-
ity can be proved. Over the years, many generalizations
of this concept have been introduced in the literature (see,
for example, [2], [3], [4], [5], [6], [7], [8], [10], [11], [14],
[15], [16], [20], [21], [22], [23], and others).

Craven and Glover [9] characterized the cone-invexity
property, for differentiable functions, in terms of Lagrange
multipliers. They also established Kuhn-Tucker type opti-
mality conditions and duality theorems for cone invex pro-
grams. Jeyakumar and Mond [13] generalized Hanson’s
definition to the vectorial case. They defined V-invexity of
∗e-mail: nabbas985@gmail.com

differentiable vector-valued functions which preserve the
sufficient optimality conditions and duality results as in
the scalar case and avoid the major difficulty of verifying
that the inequality holds for the same function η for invex
functions in multiobjective programming problems.

Another generalization of convexity was derived by
Youness [24]. Namely, he introduced the definition of an
E-convex set and the definition of an E-convex function
and analyzed some properties of these nonconvex sets and
functions. Moreover, the results established by Youness
[24] were improved by Yang [25]. Further, Megahed et
al. [19] presented the concept of an E-differentiable con-
vex function which transforms a (not necessarily) differ-
entiable convex function to a differentiable function based
on the effect of an operator E : Rn → Rn.

In this paper, a new class of nonconvex E-
differentiable vector optimization problems with both in-
equality and equality constraints is considered in which
the involved functions are E-invex. Therefore, the con-
cept of a so-called E-differentiable E-invex function for E-
differentiable vector optimization problems is introduced.
Further, under the introduced E-Guignard constraint qual-
ification, the so-called E-Karush-Kuhn-Tucker necessary
optimality conditions are established for the considered
E-differentiable vector optimization problems with both
inequality and equality constraints. It is also given an
example of such a vector optimization problems with E-
differentiable E-invex functions for which the E-Guignard
constraint qualification is satisfied but the E-Abadie con-
straint qualification is not satisfied. It turns out that the E-
Karush-Kuhn-Tucker necessary optimality conditions es-
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tablished for such a nonsmooth vector optimization prob-
lem are not satisfied in such a case. Moreover, the suf-
ficient optimality conditions are derived for the consid-
ered E-differentiable vector optimization problem under
E-invexity and/or generalized E-invexity. This result is
illustrated by the example of nonconvex E-differentiable
vector optimization problem in which the involved func-
tions are E-invex (with respect to the same function η).
Thus, in the present paper, tools of differentiable optimiza-
tion problems are used in proving optimality conditions for
(weakly) efficiency of nonsmooth multiobjective program-
ming problems.

2 Preliminaries
Let Rn be the n-dimensional Euclidean space and Rn

+ be its
nonnegative orthant. The following convention for equali-
ties and inequalities will be used in the paper.

For any vectors x = (x1, x2, ..., xn)T and y =

(y1, y2, ..., yn)T in Rn, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(iv) x ≥ y if and only if x = y and x , y.
Now, we introduce the definition of an E-invex set as

a generalization of an E-convex set given by Youness [24]
and the definition of an invex set (with respect to η) given
by Mohan and Neogy [21].

Definition 1 Let E : Rn → Rn. A set M ⊆ Rn is said to be
an E-invex set (with respect to η : M×M → Rn) if and only
if there exists a vector-valued function η : M × M → Rn

such that the relation

E (u) + λη (E (x) , E (u)) ∈ M

holds for all x, u ∈ M and any λ ∈ [0, 1].

Remark 2 If η is a vector-valued function defined by
η(z, y) = z−y, then the definition of an E-invex set reduces
to the definition of an E-convex set (see Youness [24]).

Remark 3 If E(a) = a, then the definition of an E-invex
set with respect to the function η reduces to the definition
of an invex set with respect to η (see Mohan and Neogy
[21]).

Now, we present an example of such an E-invex set
which is not E-convex.

Example 4 Let M = [1, 9] ∪ [−9,−1]
and E : R→ R be an operator defined by

E(x) =


x2 if 0 5 x 5 3,
−x if − 3 5 x 5 0,
−1 if x < −3 or x > 3.

and η : M × M → R be defined by

η(E(x), E(u)) =


x − u if x = 0, u = 0,
x − u if x 5 0, u 5 0,
−9 − u if x > 0, u 5 0,
1 − u if x < 0, u = 0.

Then, by Definition 1, M is an E-invex set with respect to
the function η given above. However, it is not E-convex as
can be seen by taking x = 1, u = 4, and λ = 1

2 , we have

λE (x) + (1 − λ) E (u) = 0 < M.

Hence, by the definition of an E-convex set (see Remark
2), it follows that M is not E-convex.

Now, we present of an example of such an E-invex set
with respect to η which is not invex with respect to η.

Example 5 Let M = [1, 4] ∪ [−4,−1] and E : R → R be
an operator defined by

E(x) =

x2 if − 2 5 x 5 2,
−1 if x < −2 or x > 2.

and η : M × M → R be defined by

η(x, u) =

x − u if x 5 u,
−4 − u if x > u.

Then, by Definition 1, M is an E-invex set with respect to
the function η given above. However, it is not invex with
respect to η as can be seen by taking x = −1, u = 1, and
λ = 1

2 , we have

u + λη (x, u) = 0 < M.

Hence, by the definition of an invex set (see Remark 3), it
follows that M is not an invex set with respect to η.

Definition 6 [19] Let E : Rn → Rn and f : M → R be
a (not necessarily) differentiable function at a given point
u ∈ M. It is said that f is an E-differentiable function at u
if and only if f ◦ E is a differentiable function at u (in the
usual sense) and, moreover,

( f ◦ E) (x) = ( f ◦ E) (u) + ∇ ( f ◦ E) (u) (x − u)

+θ (u, x − u) ‖x − u‖ , (1)

where θ (u, x − u)→ 0 as x→ u.

Now, we introduce a new concept of generalized con-
vexity for E-differentiable vector-valued functions.

Definition 7 Let E : Rn → Rn and f : M → Rk be an
E-differentiable function on a nonempty open set M ⊂ Rn.
It is said that f is E-invex with respect to η at u ∈ M on M
if, there exists η : M × M → Rn such that, for all x ∈ M,

fi(E(x)) − fi(E(u)) = ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k.
(2)

If inequalities (2) hold for any u ∈ M, then f is E-invex
with respect to η on M.

Remark 8 From Definition 7, there are special cases:

a) If f is a differentiable function and E(x) ≡ x (E is
an identity map), then the definition of an E-invex
function reduces to the definition of an invex func-
tion introduced by Hanson [12] in the scalar case.

2
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b) If η : M×M → Rn is defined by η(x, u) = x−u, then
we obtain the definition of an E-differentiable E-
convex vector-valued function introduced by Mega-
hed et al. [19].

c) If f is differentiable, E(x) = x and η(x, u) = x − u,
then the definition of an E-invex function reduces
to the definition of a differentiable convex vector-
valued function.

d) If f is differentiable and η(x, u) = x− u, then we ob-
tain the definition of a differentiable E-convex func-
tion introduced by Youness [24].

Definition 9 Let E : Rn → Rn and f : M → Rk be an E-
differentiable function on a nonempty open set M ⊂ Rn. It
is said that f is strictly E-invex with respect to η at u ∈ M
on M if, there exists η : M × M → Rn such that, for all
x ∈ M with E(x) , E(u), the inequalities

fi(E(x)) − fi(E(u)) > ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k,
(3)

hold. If inequalities (3) are fulfilled for any u ∈ M (E(x) ,
E(u)), then f is strictly E-invex with respect to η on M.

Now, we present an example of such an E-invex func-
tion which is not E-convex.

Example 10 Let f : [0, π2 )→ R be defined by f (x) = cos x
and E : [0, π2 ) → [0, π2 ) be an operator defined by
E(x) = π

2 − x and η be defined by

η(E(x), E(u)) =


sin u−sin x

cos u if x > u,
0 if x = u,
2 sin x−2 sin u

cos u if x < u.

Then f is E-invex on [0, π2 ), but it is not E-convex as can
be seen by taking x = 0, u = π

4 , and λ = 1
2 , since the

inequality

f (λE (x) + (1 − λ) E (u)) = λ f (E (x)) + (1 − λ) f (E (u))

holds. Hence, by the definition of an E-convex function
[24], it follows that f is not E-convex on [0, π2 ).

Now, we give the necessary condition for E-
differentiable E-invexity.

Proposition 11 Let E : Rn → Rn and f : M → Rk be an
E-invex (strictly E-invex) function with respect to η on M
and u ∈ M. Further, assume that f is E-differentiable at
u. Then, the following inequality

∇ f (E (x)) − ∇ f (E (u)) η (E (x) , E (u)) = 0, (>) (4)

holds for all x, u ∈ M (E(x) , E(u)).

Now, we prove a sufficient condition for an E-
differentiable E-invex function with respect to η.

Theorem 12 Let E : Rn → Rn and f : M → R be an
E-differentiable function at u ∈ M on M. Further, assume
that there exists η : M × M → Rn such that

f (E (u) + λη(E (x) , E (u)) 5 λ f (E (x))+(1 − λ) f (E (u)) ,
(5)

holds for any λ ∈ [0, 1]. Then, f is an E-invex function
with respect to η.

Proof. By (5), we have that the inequality

f (E (u) + λη(E (x) , E (u)) − f (E (u)) 5

λ[ f (E (x)) − f (E (u))] (6)

holds for any λ ∈ [0, 1]. Thus, the above inequality yields
for any λ ∈ [0, 1],

f (E (u) + λη(E (x) , E (u)) − f (E (u))
λ

5

f (E (x)) − f (E (u)) . (7)

By assumption, f is E-differentiable at u. Hence, by Defi-
nition 6, it follows that f ◦ E is differentiable at u. There-
fore, letting λ→ 0, we obtain the inequality (2).

Now, we introduce various classes of generalized E-
differentiable E-invex functions as a generalization of
appropriate generalized E-convex functions and, thus,
pseudo-convex and quasi-convex functions.

Definition 13 Let E : Rn → Rn and f : M → Rk be an E-
differentiable function on a nonempty open set M ⊂ Rn. It
is said that f is pseudo E-invex with respect to η at u ∈ M
on M if, there exists η : M × M → Rn such that, for all
x ∈ M and i = 1, ..., k,

fi(E(x)) < fi(E(u)) =⇒ ∇ fi(E(u))η(E(x), E(u)) < 0. (8)

If (8) holds for any u ∈ M, then f is pseudo E-invex with
respect to η on M.

Definition 14 Let E : Rn → Rn and f : M → Rk be an
E-differentiable function on a nonempty open set M ⊂ Rn.
It is said that f is strictly pseudo E-invex with respect to η
at u ∈ M on M if, there exists η : M × M → Rn such that,
for all x ∈ M, x , u, and i = 1, ..., k,

fi(E(x)) 5 fi(E(u)) =⇒ ∇ fi(E(u))η(E(x), E(u)) < 0. (9)

Note that every strictly pseudo E-invex function is
pseudo E-invex and every E-differentiable pseudo E-
convex function is pseudo E-invex. Also, every pseudo
E-convex function is E-invex and every E-invex function
is pseudo E-invex function for the same function η, but the
converse is not true.

Now, we present an example of such an E-
differentiable pseudo E-invex function which is not E-
invex.

Example 15 Let f : (0,∞) → R be defined by f (x) =

log x
1
3 , η : (0,∞)×(0,∞)→ R be defined by η(x, u) = 3

√
x−

3
√

u and E : (0,∞) → (0,∞) be an operator defined by
E(x) = x3. Further, assume that ( f ◦ E) (x) < ( f ◦ E) (u).
Thus, we have ( f ◦ E) (x) = log x < log u = ( f ◦ E) (u) .
This implies that x < u for all x, u ∈ (0,∞). Moreover, we
have ∇ ( f ◦ E) (u) η (E (x) , E (u)) < 0. Therefore, by Defi-
nition 13, f is an E-differentiable pseudo E-invex function.
Indeed, if we set x = 10, u = 1, then we have

f (E(x)) − f (E(u)) = 1 < ∇ f (E(u))η(E(x), E(u)) = 9.

Hence, by Definition 2, it follows that f is not E-invex.

3
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Definition 16 Let E : Rn → Rn and f : M → Rk be an
E-differentiable function on a nonempty open set M ⊂ Rn.
It is said that f is quasi-E-invex with respect to η at u ∈ M
on M if, there exists η : M × M → Rn such that, for all
x ∈ M and i = 1, ..., k,

fi(E(x)) − fi(E(u)) 5 0⇒ ∇ fi(E(u))η(E(x), E(u)) 5 0.
(10)

If (10) holds for any u ∈ M, then f is quasi-E-invex with
respect to η on M.

Note that E-differentiable quasi E-convex is trivially
quasi E-invex and every pseudo E-invex function is quasi
E-invex.

Now, we present an example of such a quasi E-invex
function but not a quasi E-convex function.

Example 17 Let f : [0, π2 ] → R be defined by f (x) =

cos x, E : [0, π2 ] → [0, π2 ] be an operator defined by
E(x) = π

2 − x and η defined by η(E(x), E(u)) = x − u.
It can be shown that f is quasi E-invex on [0, π2 ]. As-
sume that ( f ◦ E) (x) 5 ( f ◦ E) (u). We have ( f ◦ E) (x) =

sin x 5 sin u = ( f ◦ E) (u). This inequality implies that
x 5 u. Hence, we have ∇ ( f ◦ E) (u) η (E (x) , E (u)) =

cos u(x−u) 5 0. Therefore, by Definition 16, f is quasi E-
invex on [0, π2 ]. Further, it can be shown that f is not quasi
E-convex on [0, π2 ]. Assume that ( f ◦ E) (x) 5 ( f ◦ E) (u).
We have ( f ◦ E) (x) = sin x 5 sin u = ( f ◦ E) (u).
This inequality implies that x 5 u. Hence, we have
∇ ( f ◦ E) (u) (E (x) − E (u)) = cos u(u − x) = 0. There-
fore, by the definition of quasi E-convexity, f is not quasi
E-convex on [0, π2 ].

3 E-optimality conditions for
E-differentiable multiobjective
programming

In some cases, the multiobjective programming problem
can be represented as the following unconstrained vector
optimization problem:

minimize f (x) =
(

f1 (x) , ..., fp (x)
)

x ∈ M,
(VP)

where M is a nonempty set of Rn, and f denotes a vector-
valued E-differentiable function on M.

Now, we give the definitions of a weak Pareto solution
and a Pareto solution of the considered vector optimization
problem (VP).

Definition 18 A feasible point x is said to be a weak
Pareto (weakly efficient) solution of (VP) if and only if
there exists no feasible point x such that

f (x) < f (x).

Definition 19 A feasible point x is said to be a Pareto (effi-
cient) solution of (VP) if and only if there exists no feasible
point x such that

f (x) ≤ f (x).

Let E : Rn → Rn be an one-to-one and onto operator.
For the considered multiobjective programming problem
(VP), we define the vector optimization problem (VPE) as
follows

minimize f (E(x)) =
(

f1(E(x)), ..., fp(E(x))
)

x ∈ E(M),
(VPE)

where E(M) is a nonempty set of Rn, and f ◦ E denotes a
vector-valued differentiable function on E(M).

Now, we give the definitions of a weak Pareto (weakly
efficient) solution and a Pareto (efficient) solution of the
vector optimization problem (VPE), which are at the same
time a weak E-Pareto solution (weakly E-efficient solu-
tion) and an E-Pareto solution (E-efficient solution) of the
considered multiobjective programming problem (VP).

Definition 20 A feasible point E(x) is said to be a weak
E-Pareto solution (weakly E-efficient solution) of (VP) if
and only if there exists no feasible point E(x) such that

f (E(x)) < f (E(x)).

Definition 21 A feasible point E(x) is said to be an E-
Pareto solution (E-efficient solution) of (VP) if and only if
there exists no feasible point E(x) such that

f (E(x)) ≤ f (E(x)).

As it is known [6], a characteristic property of a scalar
invex function with respect to η is the fact that each its
stationary point is also its global minimum. It turns out
that this property can be generalized to the class of vector
E-invex functions with respect to η. For this purpose, we
have to define adequately an E-critical point concept for
vector-valued functions.

Definition 22 Let E : Rn → Rn. A point u ∈ M is said to
be a vector E-critical point of an E-differentiable vector-
valued function f : M → Rk, (or, in other words, for the
problem (VP)) if there exists a vector λ ∈ Rk with λ ≥ 0
such that λT∇( f ◦ E)(u) = 0.

Now, we prove that every weakly efficient point is also
an E-vector critical point.

Theorem 23 Let E : Rn → Rn and f : M → Rk be an E-
differentiable vector-valued function, E(x) be a weakly E-
efficient solution of (VP). Then, there exists a vector λ ∈ Rk

with λ ≥ 0 such that λ
T
∇( f ◦ E)(x) = 0.

Proof. Suppose that λ
T
∇( f ◦ E)(x) , 0. Then, let d =

−∇( f ◦ E)(x). Hence, we obtain

∇( f ◦ E)(x)d = −‖∇( f ◦ E)(x)‖2 < 0. (11)

By assumption, the objective function f , is E-
differentiable at x. Thus, by Definition 6, we get

( f ◦ E) (x) = ( f ◦ E) (x) + ∇ ( f ◦ E) (x)T (x − x)

+θ (x, x − x) ‖x − x‖ . (12)
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Using θ (x, x − x) → 0 and x−x
‖x−x‖ → d as x → x together

with (11), we get that the following inequality

( f ◦ E) (x) < ( f ◦ E) (x)

holds, which is a contradiction to the assumption that E(x)
is a weakly E-efficient solution of the vector optimization
problem (VP). Hence, there exists a vector λ ∈ Rk with
λ ≥ 0 such that λ

T
∇( f ◦ E)(x) = 0. The proof of this

theorem is completed.
Now, we prove the converse of the above theorem us-

ing the concept of vectorial E-invexity introduced in the
paper.

Theorem 24 Let E : Rn → Rn, x be a vector E-critical
point of (VP), and let f ◦ E be a vector E-invex function at
x with respect to η. Then x is a weak E-Pareto solution of
(VP).

Proof. Let x be a vector E-critical point. Then, there
exists a vector λ ∈ Rk with λ ≥ 0 such that λ

T
∇( f ◦E)(x) =

0. We proceed by contradiction. Suppose that x is not a
weak E-Pareto solution of (VP). Then, there exists another
point z ∈ M such that

( f ◦ E)(z) < ( f ◦ E)(x). (13)

Thus, by E-invexity of f , we get that

f (E(z)) − f (E(x)) = ∇ f (E(x))η(E(z), E(x)). (14)

Combining (13) and (14), we get that the inequality

λT∇( f ◦ E)(x) < 0, for any λ ≥ 0,

holds, which is a contradiction to the assumption that x is
a weak Pareto solution for (VP). The proof of this theorem
is completed.

In general, a vector optimization problem is consid-
ered with the set of inequality and equality constraints as
follows

minimize f (x) =
(

f1 (x) , ..., fp (x)
)

subject to g j(x) 5 0, j ∈ J = {1, ...,m} ,

ht(x) = 0, t ∈ T = {1, ..., s} ,

x ∈ X,

(CVP)

where X is a nonempty convex open subset of Rn, fi : X →
R, i ∈ I = {1, ..., p} , g j : X → R, j ∈ J, ht : X → R, t ∈ T ,
are real-valued E-differentiable functions defined on X.

For the purpose of simplifying our presentation, we
will next introduce some notations which will be used
frequently throughout this paper. We will write g :=
(g1, ..., gm) : X → Rm and h := (h1, ..., hs) : X → Rs

for convenience. Let

Ω :=
{
x ∈ Rn : g j(x) 5 0, j ∈ J, ht(x) = 0, t ∈ T

}
be the set of all feasible solutions of (CVP). Further, let
us denote by J (x), the set of inequality constraint indices

that are active at a feasible solution x, that is, J (x) ={
j ∈ J : g j(x) = 0

}
Let E : Rn → Rn be an one-to-one and onto operator.

For the considered constrained multiobjective program-
ming problem (CVP), we define its associated constrained
vector optimization problem (CVPE) with both inequality
and equality constraints as follows

minimize f (E(x)) =
(
( f1(E(x)), ..., fp(E(x))

)
subject to g j(E(x)) 5 0, j ∈ J = {1, ...,m} ,

ht(E(x)) = 0, t ∈ T = {1, ..., s} ,

x ∈ X,

(CVPE)

where the set X and the functions fi, i ∈ I, g j, j ∈ J, ht,
t ∈ T , are defined in the similar way as for (CVP). We call
(CVPE) the E-vector optimization problem (associated to
the multiobjective programming problem (CVP)). Let

ΩE := {x ∈ Rn : g j(E(x)) 5 0, j ∈ J,

ht(E(x)) = 0, t ∈ T }

be the set of all feasible solutions of (CVPE).
In this section, we derive both necessary and suffi-

cient optimality conditions for a new class of noncon-
vex multicriteria optimization problems. Namely, we con-
sider a class of E-differentiable multiobjective program-
ming problems. Throughout this section, E : Rn → Rn

is assumed to be an one-to-one and onto operator. By
Definition 6, the functions constituting the E-vector op-
timization problem (CVPE) are differentiable at any its
feasible solution (in the usual sense). Further, we de-
note by JE (x), the set of inequality constraint indices that
are active at a feasible solution E(x), that is, JE (x) ={
j ∈ J :

(
g j ◦ E

)
(x) = 0

}
. Moreover, it can be proved [1]

(see Lemma 25 below) that if x is a (weak) Pareto solution
of the E-vector optimization problem (CVPE), then E (x)
is a (weak) Pareto solution of the original multiobjective
programming problem (CVP). We call E (x) a (weak) E-
Pareto solution of the problem (CVP).

Lemma 25 [1] Let E : Rn → Rn be a one-to-one and
onto and z ∈ ΩE be a weak Pareto (Pareto) solution of
the constrained E-vector optimization problem (CVPE).
Then E (z) is a weak E-Pareto solution (E-Pareto solution)
of the considered constrained multiobjective programming
problem (CVP).

Before we establish the Karush-Kuhn-Tucker neces-
sary optimality conditions for problem (CVP), we re-call
the Motzkin’s theorem of the alternative.

Theorem 26 [18] (Motzkin’s theorem of the alternative).
Let A, C, D be given matrices, with A being nonvacuous.
Then either the system of inequalities

Ax < 0, Cx 5 0, Dx = 0

has a solution x, or the system

ATy1 + CTy2 + DTy3 = 0, y1 ≥ 0, y2 = 0 (15)

has solution y1, y2 and y3, but never both.

5

ITM Web of Conferences 24, 01002 (2019) https://doi.org/10.1051/itmconf/20192401002
AMCSE 2018



Now, we give the definition of the minimal element of
a given set (with respect to an order relation).

Definition 27 [17] Let Y be a given set in Rk ordered by
5 or by <. Specifically, we call the minimal element of
Y defined by ≤ a minimal vector, and that defined by < a
weak minimal vector. Formally speaking, a vector y ∈ Y
is called a minimal vector in Y if there exists no vector y
in Y such that y ≤ y; it is called a weak minimal vector if
there exists no vector y in Y such that y < y.

Definition 28 Let Y ⊆ Rk. The Bouligand contingent cone
of Y at y ∈ Y is the set TY (y) of all vectors q ∈ Rk such
that there exist a sequence {yn} ∈ Y and a sequence βn of
strictly positive real number such that

lim
n→∞

yn = y, lim
n→∞

βn = 0, lim
n→∞

yn − y

βn
= q.

In other words, the Bouligand contingent cone of Y at y is
defined by

TY (y) = {d ∈ Rn : ∃{βn}⊂Rβn → ∞, ∃{xn}⊂Yyn → y

s.t. βn (yn − y)→ d}

A vector d ∈ Rn belonging to TY (y) is called a tangent
direction to Y from y ∈ cl Y.

Remark 29 Note that Lin [17] named any Bouligand
contingent vector, that is, any vector q ∈ TY (y), a con-
vergence vector for the set Y at y.

Now, we extend the result established by Lin [17] for
the E-vector optimization problem (CVPE).

Theorem 30 If x ∈ ΩE is locally (weak) minimal for f ◦E
on ΩE then no Bouligand contingent vector for f (E(ΩE))
at y = f (E(x)) is strictly negative.

Definition 31 The tangent cone (also called contingent
cone or Bouligand cone) of ΩE at x ∈ cl ΩE is defined
by

TΩE (x) = {d ∈ Rn : ∃{dn}⊂Rn dn → d,

∃{tn}⊂Rtn ↓ 0 s.t. x + tndn ∈ ΩE}.

Before we prove the Karush-Kuhn-Tucker necessary
optimality conditions for the differentiable constrained E-
vector optimization problem with inequality and equality
constraint (CVPE), we introduce the so-called E-Guignard
constraint qualification. In order to do this, for the con-
strained E-vector optimization problem (CVPE), we intro-
duce the E-linearized cone LE (x).

Definition 32 For the constrained E-vector optimization
problem (CVPE), the E-linearized cone at x ∈ ΩE , denoted
by LE (x), is defined by

LE (x) = {d ∈ Rn : ∇g j (E (x)) d 5 0, j ∈ JE (x) ,

∇ht (E (x)) d = 0, t ∈ T }.

It is easy to see that LE (x) is a nonempty closed convex
cone.

The following lemma shows the relationship be-
tween the Bouligand contingent cone TΩE (x) and the E-
linearizing LE (x) cone.

Lemma 33 If x ∈ ΩE is a Pareto solution of the con-
strained E-vector optimization problem (CVPE), then

cl conv TΩE (x) ⊆ LE (x) .

Proof. Let x ∈ ΩE be given and d ∈ TΩE (x). Then,
by Definition 31, there exists a sequence {xn} ∈ ΩE such
that limn→∞ xn = x, limn→∞ βn = 0, limn→∞

xn−x
βn

= d. By
assumption, all constraint functions g j, j ∈ J and ht, t ∈ T ,
are E-differentiable at x. Hence, by Definition 6, it follows
that

g j(E(xn)) = g j(E (x)) + ∇g j(E(x))T (xn − x)

+θg j (x, xn − x) ‖xn − x‖ , j ∈ J, (16)

ht(E(xn)) = ht(E (x)) + ∇ht(E (x))T (xn − x)

+θht (x, xn − x) ‖xn − x‖ , t ∈ T, (17)

where θg j (x, xn − x)→ 0, j ∈ J, θht (x, xn − x)→ 0, t ∈ T ,
as xn → x. Assume that dn := xn−x

βn
. Then xn = x + βndn

and we obtain that

g j(E (xn)) = g j(E (x + βndn)) 5 0 = g j(E (x)), j ∈ JE (x) ,
(18)

ht(E (xn)) = ht(E (x + βndn)) = 0 = ht(E (x)), t ∈ T.
(19)

From (18), (19), and Definition 31, it follows that

∇g j (E (x)) d 5 0, j ∈ JE (x) , (20)

∇ht (E (x)) d = 0, t ∈ T . (21)

By (20), (21) and Definition 32, we have

TΩE (x) ⊆ LE (x) .

Since LE (x) is closed and convex, we get

cl conv TΩE (x) ⊆ LE (x) .

Now, we give the so-called E-Abadie constraint qual-
ification for the E-differentiable vector optimization prob-
lem (CVP) with both inequality and equality constraints
which was introduced in [1].

Definition 34 It is said that the so-called E-Abadie con-
straint qualification (ACQE) holds at x ∈ ΩE for the differ-
entiable E-vector optimization problem (CVPE) with both
inequality and equality constraints if

TΩE (x) = LE (x) . (22)

Now, we introduce the so-called E-Guignard con-
straint qualification for the E-differentiable constrained
vector optimization problem (CVP) with both inequality
and equality constraints.

6

ITM Web of Conferences 24, 01002 (2019) https://doi.org/10.1051/itmconf/20192401002
AMCSE 2018



Definition 35 It is said that the so-called E-Guignard
constraint qualification (GCQE) holds at x ∈ ΩE for the
differentiable constrained E-vector optimization problem
(CVPE) with both inequality and equality constraints if

cl conv TΩE (x) = LE (x) . (23)

Now, we present an example of such a nondiffer-
entiable vector optimization problem for which the E-
Guignard constraint qualification is satisfied but E-Abadie
constraint qualification introduced in [1] does not hold.

Example 36 Consider the following nonconvex nondiffer-
entiable vector optimization problem

minimize f (x) = (2x2 − 2 3
√

x1 , − 3
√

x1x2)

s.t. g(x) = x2 −
3
√

x1 5 0.
(CVP1)

Note that Ω =
{
(x1, x2) ∈ R2 : x2 −

3
√

x1 5 0
}
. Let E :

R2 → R2 be an one-to-one and onto mapping defined as
follows E (x1, x2) =

(
x3

1, x2

)
. For the considered vector

optimization problem (CVP1), we define its associated E-
vector optimization problem (CVPE1) as follows

minimize f (E(x)) = (2x2 − 2x1 , − x1x2)

g(E(x)) = x2 − x1 5 0.
(CVPE1)

Note that ΩE =
{
(x1, x2) ∈ R2 : x2 − x1 5 0

}
and x =

(0, 0) is a feasible solution. Then, by the defini-
tion of the E-linearized cone, we have that LE (x) ={
(d1, d2) ∈ R2 : d2 5 d1

}
. Further, by the definition of

the Bouligand contingent cone, we have that TΩE (x) ={
(d1, d2) ∈ R2 : −d1d2 5 0 ∧ d1 = d2

}
. Therefore, LE (x) =

cl conv TΩE (x) , but LE (x) * TΩE (x) . Hence, the E-
Guignard constraint qualification is satisfied at x but E-
Abadie constraint qualification is not satisfied.

Now, we prove the Karush-Kuhn-Tucker necessary op-
timality conditions for the differentiable constrained E-
vector optimization problem (CVPE) and, thus, the so-
called E-Karush-Kuhn-Tucker necessary optimality con-
ditions for not necessarily differentiable constrained mul-
tiobjective programming problem (CVP) in which the in-
volved functions are E-differentiable and for which the E-
Guignard constraint qualification holds.

Theorem 37 (E-Karush-Kuhn-Tucker necessary optimal-
ity conditions). Let x ∈ ΩE be a weak Pareto solution
of the constrained E-vector optimization problem (CVPE)
(and, thus, E (x) be a weak E-Pareto solution of the con-
sidered constrained multiobjective programming problem
(CVP)). Further, let f , g, h be E-differentiable at x and the
E-Guignard constraint qualification be satisfied at x. Then
there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm, ξ ∈ Rs

such that
p∑

i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇
(
g j ◦ E

)
(x)

+

s∑
t=1

ξt∇ (ht ◦ E) (x) = 0, (24)

µ j

(
g j ◦ E

)
(x) = 0, j ∈ J (E (x)) , (25)

λ ≥ 0, µ = 0. (26)

Proof. By assumption, x ∈ ΩE is a weak Pareto so-
lution in the E-vector optimization problem (VPE) (and,
thus, E (x) is a weak E-Pareto solution of the consid-
ered multiobjective programming problem (VP)). Let d ∈
TΩE (x) and xn be the corresponding sequence of feasible
solutions in E-vector optimization problem (VPE) con-
verging to x and {βn} be the corresponding sequence of
scalars such that βn > 0 for each integer n converging to
0 (see Definition 31). We denote by f (E(ΩE)) ⊂ Rk and
y = f (E(x)). Since x ∈ ΩE is a weak Pareto point in the
E-vector optimization problems (VPE), y = f (E(x)) is a
weak minimal vector in f (E(ΩE)) (see Theorem 30). Fur-
ther, we consider the sequence of vectors {yn} ∈ f (E(ΩE)),
where yn = f (E(xn)). By assumption, the objective func-
tions fi, i ∈ I, are E-differentiable at x, Thus, by Definition
6, we have

( fi ◦ E) (xn) − ( fi ◦ E) (x) = ∇ ( fi ◦ E) (x)T (xn − x)

+θi (x, xn − x) ‖xn − x‖ , (27)

where θi (x, xn − x) → 0, i ∈ I, as xn → x. By the above
equality, we obtain, for any i ∈ I,

yn − y

βn
=

1
βn

(( fi ◦ E) (xn) − ( fi ◦ E) (x))

= ∇ ( fi ◦ E) (x)T (xn − x)
βn

+ θi (x, xn − x)
‖xn − x‖
βn

.

(28)

By assumption, {xn} is a sequence of feasible solutions in
the constrained E-vector optimization problems (CVPE)
converging to x. In view of E-differentiability of the func-
tions fi, i ∈ I, at x, it follows that ( f ◦E) is differentiable at
x and, hence, it is also a continuous function at x. There-
fore, the sequence {yn} converges to y = f (E(x)). Hence,
by (28), it follows that

q = lim
n→∞

yn − y

βn
= ∇ ( fi ◦ E) (x)T d. (29)

Then, by Definition 31, q is a Bouligand contingent vector
for f (E(ΩE)) at y. From the E-Guignard constraint quali-
fication, it follows that d is a Bouligand contingent vector
(convergence vector) for ΩE at x if and only if d is a solu-
tion to the system

∇
(
g j ◦ E

)
(x)T d 5 0, j ∈ J, (30)

∇ (ht ◦ E) (x)T d = 0, t ∈ T . (31)

Since y is a weak Pareto of f (E(ΩE)), there is no Bouli-
gand contingent (convergence vector) for f (E(ΩE)) at y
strictly negative (see Theorem 30). Therefore, the system

∇ ( fi ◦ E) (x)T d < 0, i ∈ I, (32)

∇
(
g j ◦ E

)
(x)T d 5 0, j ∈ J, (33)

∇ (ht ◦ E) (x)T d = 0, t ∈ T . (34)
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is inconsistent. From Motzkin’s theorem of the alternative
(see Theorem 26), it follows that the system

p∑
i=1

λi∇ ( fi ◦ E) (x) +
∑

j∈J(E(x))

µ j∇
(
g j ◦ E

)
(x)

+

s∑
t=1

ξt∇ (ht ◦ E) (x) = 0,

λ ∈ Rp, λ ≥ 0, µ ∈ RJ(E(x)), µ = 0, ξ ∈ Rs

is consistent. Let (λ, µ, ξ) be a solution to the above sys-
tem. Then, we define ζ ∈ Rq

+ as follows

ζ j = µ j, j ∈ J (E (x)) ,

ζ j = 0, j < J (E (x)) .

Thus, we conclude that (λ, µ, ξ) satisfies the E-Karush-
Kuhn-Tucker necessary optimality conditions (24)-(26).
Hence, the proof of this theorem is completed.

In order to show that the E-Karush-Kuhn-Tucker nec-
essary optimality conditions cannot be fulfilled without the
E-Guignard constraint qualification, we present the exam-
ple of such an E-differentiable vector optimization prob-
lem.

Example 38 Consider the following nondifferentiable
vector optimization problem

f (x) = ( f1(x), f2(x)) =(
sin 3
√

x1, cos x2 +
3
√

x2
1

)
→ V- min

g(x) = sin 3
√

x1 − cos x2 5 0,

h(x) = 3
√

x1( π2 − x2) = 0.

(CVP2)

Note that the set of all feasible solutions of the consid-
ered constrained vector optimization problem (CVP2) is
Ω = {(x1, x2) ∈ R2 : sin 3

√
x1 − cos x2 5 0, 3

√
x1( π2 − x2) =

0}. Further, note that the functions constituting problem
(CVP2) are nondifferentiable at (0, 0). It can be shown
by Definition 19 that the feasible solution x = (0, 0) is an
E-Pareto solution of the considered nondifferentiable con-
strained multiobjective programming problem (CVP2).
Let E : R2 → R2 be defined as follows: E (x1, x2) =(
x3

1,
π
2 − x2

)
. For the considered constrained vector opti-

mization problem (CVP2), we define its associated con-
strained E-vector optimization problem (CVPE2) as fol-
lows

f (E(x)) = ( f1(E(x)), f2(E(x))) =(
sin x1, sin x2 + x2

1

)
→ V- min

g(E(x)) = sin x1 − sin x2 5 0,

h(E(x)) = x1x2 = 0.

(CVPE2)

Note that the set of all feasible solutions of the constructed
constrained E-vector optimization problem (CVPE2) is
ΩE = {(x1, x2) ∈ R2 : sin x1 − sin x2 5 0 ∧ x1x2 = 0}
and η(E(x), E(u)) = (2 sin x1, 2 sin x2). Then, by the def-
inition of the E-linearized cone, we have that LE (x) =

{
(d1, d2) ∈ R2 : d2 = d1

}
. Further, by the definition of

the Bouligand contingent cone, we have that TΩE (x) ={
(d1, d2) ∈ R2 : d2 = 0 ∧ d1 5 0 ∧ d1d2 = 0

}
. Therefore,

LE (x) , cl conv TΩE (x) . Hence, the E-Guignard con-
straint qualification is not fulfilled at x. Now, we show that
E-Karush-Kuhn-Tucker necessary optimality conditions
are not satisfied at x. Indeed, we have ∇ ( f1 ◦ E) (x) =

[1, 0]T , ∇ ( f2 ◦ E) (x) = [0, 1]T , ∇ (g ◦ E) (x) = [1,−1]T ,
∇ (h ◦ E) (x) = [0, 0]T . However, note that the E-Karush-
Kuhn-Tucker necessary optimality conditions are not sat-
isfied at x = (0, 0). Namely, by (24), it follows that
λ1 + λ2 = 0, are fulfilled only in the case when λ1 = 0
and λ2 = 0, what is impossible.

Definition 39
(
E(x), λ, µ, ξ

)
∈ Ω × Rp × Rm × Rs is said

to be an E-Karush-Kuhn-Tucker point for the consid-
ered constrained vector optimization problem (CVP) if
the E-Karush-Kuhn-Tucker necessary optimality condi-
tions (24)-(26) are satisfied at E(x) with Lagrange mul-
tiplier λ, µ, ξ.

Definition 40
(
x, λ, µ, ξ

)
∈ ΩE×Rp×Rm×Rs is said to be a

Karush-Kuhn-Tucker point for the considered constrained
E-vector optimization problem (CVPE) if the Karush-
Kuhn-Tucker necessary optimality conditions (24)-(26)
are satisfied at x with Lagrange multiplier λ, µ, ξ.

Now, we prove the sufficiency of the E-Karush-Kuhn-
Tucker necessary optimality conditions for constrained
vector optimization problem (CVP) under E-invexity hy-
potheses.

Theorem 41 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs

be a Karush-Kuhn-Tucker point of the constrained E-
vector optimization problem (CVPE). Let T +

E (E (x)) ={
t ∈ T : ξt > 0

}
and T−E (E (x)) =

{
t ∈ T : ξt < 0

}
. Further-

more, assume the following hypotheses are fulfilled:

a) each objective function f is an E-invex with respect
to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (E (x)), is an
E-invex function with respect to η at x on ΩE ,

c) each equality constraint ht, t ∈ T + (E (x)), is an E-
invex function with respect to η at x on ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an E-invex func-
tion with respect to η at x on ΩE .

Then x is a weak Pareto solution of the problem
(CVPE) and, thus, E(x) is a weak E-Pareto solution of the
problem (CVP).

Proof. By assumption,
(
x, λ, µ, ξ

)
∈ ΩE×Rp×Rm×Rs is

a Karush-Kuhn-Tucker point of the constrained E-vector
optimization problem (CVPE). Then, by Definition 40,
the Karush-Kuhn-Tucker necessary optimality conditions
(24)-(26) are satisfied at x with Lagrange multipliers λ ∈
Rp, µ ∈ Rm and ξ ∈ Rs. We proceed by contradiction.
Suppose, contrary to the result, that x is not a weak Pareto
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solution of the problem (CVPE). Hence, by Definition 18,
there exists another x̃ ∈ ΩE such that

f (E(x̃)) < f (E (x)) . (35)

Using hypotheses a)-d), by Definition 7 and Theorem 12,
the following inequalities

fi (E (x̃)) − fi (E (x)) = ∇ fi (E (x)) η (E (x̃) , E (x)) , i ∈ I,
(36)

g j(E (x̃)) − g j(E (x)) =

∇g j (E (x)) η (E (x̃) , E (x)) , j ∈ J (E (x)) , (37)

ht(E (x̃)) − ht(E (x)) =

∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T + (E (x)) , (38)

−ht(E (x̃)) + ht(E (x)) =

−∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) (39)

hold, respectively. Combining (35)-(36) and then multi-
plying the resulting inequalities by the corresponding La-
grange multipliers and adding both their sides, we get p∑

i=1

λi∇ ( fi ◦ E) (x)

 η((E (x̃) , E (x))) < 0. (40)

Multiplying inequalities (37)-(39) by the corresponding
Lagrange multipliers, respectively, we obtain

µ jg j(E (x̃)) − µ jg j(E (x)) =

µ j∇g j (E (x)) η (E (x̃) , E (x)) , j ∈ J (E (x)) , (41)

ξtht(E (x̃)) − ξtht(E (x)) =

ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T + (E (x)) , (42)

ξtht(E (x̃)) − ξtht(E (x)) =

ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) . (43)

Using the E-Karush-Kuhn-Tucker necessary optimality
condition (25) together with x̃ ∈ ΩE and x ∈ ΩE , we get,
respectively,

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0, j ∈ J (E (x)) , (44)

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T + (E (x)) , (45)

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T− (E (x)) . (46)

Adding both sides of the above inequalities, by (40), we
obtain that the following inequality[ p∑

i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇g j (E (x))

+

s∑
t=1

µt∇ht (E (x))
]
η (E (x̃) , E (x)) < 0

holds, which is a contradiction to the the E-Karush-Kuhn-
Tucker necessary optimality condition (24). By assump-
tion, E : Rn → Rn is an one-to-one and onto operator.
Since x is a weak Pareto solution of the problem (CVPE),
by Lemma 25, E (x) is a weak E-Pareto solution of the
problem (CVP). Thus, the proof of this theorem is com-
pleted.

Remark 42 As it follows from the proof of Theorem 41,
the sufficient conditions are also satisfied if all or some
of the functions g j, j ∈ J (E (x)), ht, t ∈ T + (E (x)), −ht,
t ∈ T− (E (x)) are E-differentiable quasi E-invex function
at x on Ω with respect to η.

Theorem 43 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs be a

Karush-Kuhn-Tucker point of the constrained E-vector op-
timization problem (CVPE). Furthermore, assume that the
following hypotheses are fulfilled:

a) each objective function f is strictly E-invex with re-
spect to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (x), is an E-
invex function with respect to η at x on ΩE ,

c) each equality constraint ht, t ∈ T + (E (x)), is an E-
invex function with respect to η at x on ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an E-invex func-
tion with respect to η at x on ΩE .

Then x is a Pareto solution of the problem (CVPE) and,
thus, E (x) is an E-Pareto solution of the problem (CVP).

Now, under the concepts of generalized E-invexity, we
prove the sufficient optimality conditions for a feasible so-
lution to be a weak E-Pareto solution of problem (CVP).

Theorem 44 Let
(
x, λ, µ, ξ

)
∈ ΩE × Rp × Rm × Rs be a

Karush-Kuhn-Tucker point of the constrained E-vector op-
timization problem (CVPE). Furthermore, assume that the
following hypotheses are fulfilled:

a) each objective function f is an pseudo E-invex func-
tion with respect to η at x on ΩE ,

b) each inequality constraint g j, j ∈ J (E (x)), is an
quasi E-invex function with respect to η at x on ΩE ,

c) each equality constraint ht, t ∈ T + (E (x)), is an
quasi E-invex function with respect to η at x on ΩE ,

d) each function −ht, t ∈ T− (E (x)), is an quasi E-
invex function with respect to η at x on ΩE .

Then x is a weak Pareto solution of the problem
(CVPE) and, thus, E (x) is a weak E-Pareto solution of
the problem (CVP).

Proof. By assumption,
(
x, λ, µ, ξ

)
∈ ΩE×Rp×Rm×Rs is

a Karush-Kuhn-Tucker point in the considered constrained
E-vector optimization problem (CVPE). Then, by Defi-
nition 40, the Karush-Kuhn-Tucker necessary optimality
conditions (24)-(26) are satisfied at x with Lagrange mul-
tipliers λ ∈ Rp, µ ∈ Rm and ξ ∈ Rs. We proceed by con-
tradiction. Suppose, contrary to the result, that x is not a
weak Pareto solution in problem (CVPE). Hence, by Def-
inition 19, there exists another x̃ ∈ ΩE such that

fi(E(x̃)) ≤ fi (E (x)) , i ∈ I. (47)
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By hypothesis (a), the objective function f is E-

differentiable pseudo E-invex at x on ΩE . Then, (47) gives

∇ ( fi ◦ E) (x) η (E (x̃) , E (x)) < 0, i ∈ I, (48)

By the E-Karush-Kuhn-Tucker necessary optimality con-
dition (26), inequality (48) yields p∑

i=1

λi∇ ( fi ◦ E) (x)

 η (E (x̃) , E (x)) < 0. (49)

Since E(x̃) ∈ Ω, E(x̃) ∈ Ω , therefore, the E-Karush-Kuhn-
Tucker necessary optimality conditions (25) and (26) im-
ply

g j(E (x̃)) − g j(E (x)) 5 0, j ∈ J (E (x)) .

From the assumption, each g j, j ∈ J, is an E-differentiable
quasi E-invex function at x on ΩE . Then, by Definition 16,
we get

∇g j (E (x)) η (E (x̃) , E (x)) 5 0, j ∈ J (E (x)) . (50)

Thus, by the E-Karush-Kuhn-Tucker necessary optimality
condition (26), and by Definition 16, (50) gives∑

j∈J(E(x))

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0.

Hence, taking into account µ j = 0, j < J (E (x)), we have

m∑
j=1

µ j∇g j (E (x)) η (E (x̃) , E (x)) 5 0. (51)

From x̃ ∈ Ω, x ∈ Ω, x̃ = E(x̃) and x = E (x), we get

ht(E (x̃)) − h j(E (x)) = 0, t ∈ T + (E (x)) , (52)

−ht(E (x̃)) −
(
−h j(E (x))

)
= 0, t ∈ T− (E (x)) . (53)

Since each equality constraint ht, t ∈ T + (E (x)), and each
function −ht, t ∈ T− (E (x)), is an E-differentiable quasi
E-invex function at x on ΩE , then by Definition 16, (52)
and (53) give, respectively,

∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T + (E (x)) , (54)

−∇ht (E (x)) η (E (x̃) , E (x)) 5 0, t ∈ T− (E (x)) . (55)

Thus, (54) and (55) yield[ ∑
t∈T +(E(x))

ξt∇ht (E (x))

+
∑

t∈T−(E(x))

ξt∇ht (E (x))
]
η (E (x̃) , E (x)) 5 0.

Hence, taking into account ξt = 0, t < T + (E (x)) ∪
T− (E (x)), we have

s∑
t=1

ξt∇ht (E (x)) η (E (x̃) , E (x)) 5 0. (56)

Combining (49), (51) and (56), we get that the following
inequality

[ p∑
i=1

λi∇ ( fi ◦ E) (x) +

m∑
j=1

µ j∇g j (E (x))

+

s∑
t=1

ξt∇ht (E (x))
]
η (E (x̃) , E (x)) < 0,

which is a contradiction to the E-Karush-Kuhn-Tucker
necessary optimality condition (24). The result that E(x)
is a weak E-Pareto solution follows directly from Lemma
25. Thus, the proof of this theorem is completed.

In order to illustrate the sufficient optimality condi-
tions established in the paper, we now present an exam-
ple of an E-differentiable vector optimization problem in
which the involved functions are (generalized) E-invex.

Example 45 Consider the following nondifferentiable
vector optimization problem

f (x) = ( f1(x), f2(x)) =(
3
√

x1 − cos x2 + 4, 3
√

x1 − cos x2 + 2
)
→ V- min

g1(x) = sin 3
√

x1 − 4 cos x2 + 24
7 5 0,

g2(x) = 2 sin 3
√

x1 + 7 cos x2 + 3
√

x1 − 6 5 0,

g3(x) = 4 3
√

x2
1 + 4( π2 − x2)2 − 9 5 0,

g4(x) = 2 3
√

x1 + 2( π2 − x2) − 3 5 0,

g5(x) = − sin 3
√

x1 5 0,

g6(x) = − cos x2 5 0.

(CVP3)

Note that the set of all feasible solutions of the considered
vector optimization problem (VP3) is

Ω = {(x1, x2) ∈ R2 : sin 3
√

x1 − 4 cos x2 +
24
7
5 0,

2 sin 3
√

x1+7 cos x2+ 3
√

x1−6 5 0, 4 3
√

x2
1+4(

π

2
−x2)2−9 5 0,

2 3
√

x1 + 2(
π

2
− x2) − 3 5 0, sin 3

√
x1 = 0, cos x2 = 0}.

Further, note that the functions constituting problem
(VP3) are nondifferentiable at

(
0, cos−1 6

7

)
. Let η(x, u) =

( sin 3√x1−cos u1

sin u1
,

sin 3√x2−cos u2

sin u2
), u , 0 and E : R2 → R2

be an one-to-one and onto mapping defined as follows
E (x1, x2) =

(
x3

1,
π
2 − x2

)
. Now, for the considered E-

invex nondifferentiable constrained multiobjective pro-
gramming problem (CVP3), we define its associated con-
strained E-vector optimization problem (CVPE3) as fol-
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lows

f (E(x)) = ( f1(E(x)), f2(E(x))) =

(x1 − sin x2 + 4, x1 − sin x2 + 2)→ V- min

g1(E(x)) = sin x1 − 4 sin x2 + 24
7 5 0,

g2(E(x)) = 2 sin x1 + 7 sin x2 + x1 − 6 5 0,

g3(E(x)) = 4x2
1 + 4x2

2 − 9 5 0,

g4(E(x)) = 2x1 + 2x2 − 3 5 0,

g5(E(x)) = − sin x1 5 0,

g6(E(x)) = − sin x2 5 0.

(CVPE3)

Note that the set of all feasible solutions of the considered
E-vector optimization problem (VPE3) is

ΩE = {(x1, x2) ∈ R2 : sin x1 − 4 sin x2 +
24
7
5 0,

2 sin x1 + 7 sin x2 + x1 − 6 5 0, 4x2
1 + 4x2

2 − 9 5 0,

2x1 + 2x2 − 3 5 0, sin x1 = 0, sin x2 = 0}.

and
(
0, sin−1 6

7

)
is a feasible solution of the problem

(CVPE3). Further, note that all functions constituting the
considered vector optimization problem (CVP3) are E-
differentiable E-invex at

(
0, sin−1 6

7

)
. Then, it can also

be shown that the E-Karush-Kuhn-Tucker necessary op-
timality conditions (24)-(26) are fulfilled at

(
0, sin−1 6

7

)
with Lagrange multipliers λ1 + λ2 = 1, µ2 = 1

7 , and
µ5 = 10

7 . Further, it can be proved that f , g3, and g4
are an E-invex function at x on ΩE , the constraint func-
tion g1, g2 are quasi E-invex at at x on ΩE , the function
g5, g6 are (strictly) pseudo E-invex at at x on ΩE . Hence,
x =

(
0, sin−1 6

7

)
is a Pareto solution of the E-vector opti-

mization problem (CVPE3) and, thus, it is a E-Pareto so-
lution of the considered multiobjective programming prob-
lem (CVP3).

4 Concluding remarks
In this paper, a new class of nonconvex nondifferentiable
vector optimization problems has been defined. Namely,
an E-differentiable multiobjective programming problem
with both inequality and equality constraint has been con-
sidered. Further, the so-called E-Karush-Kuhn-Tucker
necessary optimality conditions with both inequality and
equality constraints under the introduced E-Guignard con-
straint qualification have been established for the consid-
ered E-differentiable vector optimization problem. More-
over, the sufficient optimality conditions have been de-
rived for such nonconvex nonsmooth vector optimization
problems under the introduced concepts of E-invexity and
generalized E-invexity. In order to illustrate the optimal-
ity results established in the paper, the examples of E-
differentiable multiobjective programming problems have
been given.

However, some interesting topics for further research
remain. It would be of interest to investigate whether it
is possible to prove similar results for other classes of E-
differentiable vector optimization problems. We shall in-
vestigate these questions in subsequent papers.
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