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Abstract—Although desirable as an important activity for 

quality assurances and enhancing reliability, complete and 

exhaustive software testing is prohibitively impossible due to 

resources as well as timing constraints. While earlier work has 

indicated that uniform pairwise testing (i.e. based on 2-way 

interaction of variables) can be effective to detect most faults in 

a typical software system, a counter argument suggests such 

conclusion cannot be generalized to all software system faults. 

In some system, faults may also be non-uniform and caused by 

more than two parameters. Considering these issues, this paper 

explores the issues pertaining to t-way testing from pairwise to 

variable strength interaction in order to highlight the state-of-
the-art as well as the current state-of-practice. 

Keywords-t-way testing; interaction testing; variable strength 

interaction; 

I.  INTRODUCTION 

In line with increasing consumer demands for new 
functionalities and innovations, software applications grew 
tremendously in size over the last 15 years. This sudden 
increase has a profound impact as far as testing is concerned. 
Here, the size of test suite for all combinations of inputs 
grows significantly making exhaustive testing prohibitively 
and practically impossible. To address the aforementioned 
issues, much research is now focusing on interaction testing 
(termed t-way strategy).  As the name suggests, interaction 
testing focuses on the detecting failures caused by t-way 
interaction of variables (where t indicates the interaction 
strength). The rationale for interaction testing stemmed from 
the fact that from empirical observation, the number of input 
variables involved in software failures is relatively small (i.e. 
in the order of 3 to 8), in some classes of software.  If t or 
fewer variables are known to cause fault, test cases can be 
generated on some t-way combinations (i.e. resulting into a 
smaller set of test cases for consideration). 

Earlier work on adopting interaction testing gives mixed 
results (e.g. ACTL [1, 2], Jenny [3], ITCH [4], TConfig [5], 
and TVG [6]). In some work, 2-way testing (also termed 
pairwise) testing appears to be sufficiently adequate for 
achieving good test coverage. For instance, Klaib et al 
demonstrates that pairwise testing can be effective to detect 
faults in a Graphical User Interface program with over 80% 
method, block, and line coverage [7].  

Although useful, pairwise testing result cannot be 
generalized to all software system. In some system, faults 
may also be non uniform and caused by more than two 
parameters. Considering these issues, this paper explores the 
issues pertaining to t-way testing from pairwise to variable 

strength interaction in order to highlight the state-of-the-art 
as well as the current state-of-practice. 

This paper is organized as follows. Section II highlights 
the t-way strategy fundamentals. Section III explores 
pairwise and variable strength interaction testing. Section IV 
highlights some of the related work. Finally, section V gives 
our closing remark. 

II. T-WAY STRATEGIES FUNDAMENTAL 

Mathematically, t-way strategies can be abstracted to a 
covering array.  Throughout out this paper, the symbols: p, v, 
and t are used to refer to number of parameters (or factor), 
values (or levels) and interaction strength for the covering 
array respectively. Referring to Table I, the parameters are 
A,B,C, and D whilst the values are (a1, a2, b1, b2, c1, c2). 
Earlier works suggested three definitions for describing the 
covering array. The first definition is based on whether or 
not the numbers of values for each parameter are equal. If the 
number of values is equal (i.e. uniformly distributed), then 
the test suite is called Coverage Array (CA). Now, if the 
number of values in non-uniform, then the test suite is called 
Mixed Coverage Array (MCA) [8].  Finally, Variable 
Strength Covering array (VCA) refers to case when a smaller 
subset of covering arrays (i.e. CA or MCA) constitutes a 
larger covering array. 

Normally, the CA takes parameters of N, t, p, and v 
respectively. For example, CA (9, 2, 4, 3) represents a test 
suite consisting of 9x4 arrays (i.e. the rows represent the size 
of test cases (N), and the column represents the parameter 
(p)). Here, the test suite also covers 2-way interaction for a 
system with 4 3 valued parameter.  

Alternatively, MCA takes parameters of N, t, and 
Configuration (C). In this case, C captures the parameters 
and values of each configuration in the following format:    
v1 

p1 v2 
p2, ….. vn 

pn indicating that there are p1 parameters 
with v1 values, p2 parameters with v2  values, and so on. For 
example, MCA (1265, 4, 102413227) indicates the test size of 
1265 which covers 4-way interaction. Here, the 
configuration takes 12 parameters: 2 10 valued parameter, 1 
4 valued parameter, 2 3 valued parameter and 7 2 valued 
parameter.  Such notation can also be applicable to CA (e.g. 
CA (9,2,4,3) can be rewritten as CA (9,2, 34)). 

In the case of VCA, the parameter consists of N,t, C, and 
Set (S). Here, S consists of a multi-set of disjoint covering 
array with strength larger t. For example, VCA (12, 2, 3222, 
{CA (3,3122)}) indicates the test size of 12 for pairwise 
interaction (with 2 3 valued parameter and 2 2 valued 
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parameter) and 3-way interaction  (with 1 3 valued  
parameter and 2 2 valued parameter). 

 

III. RUNNING EXAMPLE 

 
In order to aid the discussion, consider the following 

software system example in Fig. 1.   

 

Figure 1.  Model of a Typical Software System 

Assume that the input set X = {x0…. xn} significantly 
affects the output, noted as fo (x0…. xn) to fn (x0…. xn). If X 
is known to take a set of data values: D(x0), D(x1)… D(xn), 
then  the system must  be tested against the set of all possible 
combinations of  D. Here, the result is an ordered n-tuples 
{d0,d1…dn} where each di is an element of D(xi). The size 
of the test suite would be the product size of all D(x): 

             T suite  = { D(x0) x D(x1) x….D(Xn)} 

Obviously, the test suite T suite can grow exponentially 
with the increase size of data element in the set D(x0), 
D(x1)… D(xn).  As far as the actual test data of T suite is 
concerned, one can consider the interaction between all n 
variables x0, x21, x2...xn, termed, exhaustive test. 
Optionally, one can also consider the interaction of any t-
way interactions of variables. Here, the value of t can take 
the minimum of 2 and the maximum of n-1. As a running 
example, let us assume that the starting test case for X, 
termed base test case, has been identified in Table I. Here, 
symbolic values (e.g. a1, a2, b1, b2, c1, c2) are used in place 
of real data values to facilitate discussion. 

TABLE I.  BASE DATA VALUES 

 

 

Base Values 

Input Variables 

A B C D 

a1 b1 c1 d1 

a2 b2 c2 d2 

 
Here, at full strength of interaction (i.e. t=4), we can get 

all exhaustive combination. In this case, the exhaustive 
combinations would be 24 = 16 and can be generated using a 
simple technique (see Table II). Here, one can view each 
variable as column matrix. For column A, one must repeat 
the input a1 8 times followed by a2 (also 8 times) to reach 
16. This is because there are 16 combinations with 2 
specified inputs (i.e. 16/2 = 8 times). Now for column B, one 
must alternately repeat the input b1 4 times followed by b2 
(also 4 times) to reach 16.  Similarly, for column C, one must 

repeat c1 2 times followed by c2 (also 2 times) to reach 16. 
Finally, for column D, one can alternately repeat d1 and d2 
to reach 16. Here, at full strength of interaction (i.e. t=4), we 
can get all exhaustive combination. In this case, the 
exhaustive combinations would be 24 = 16 and can be 
generated using a simple technique (see Table II). Here, one 
can view each variable as column matrix. For column A, one 
must repeat the input a1 8 times followed by a2 (also 8 
times) to reach 16. This is because there are 16 combinations 
with 2 specified inputs (i.e. 16/2 = 8 times). Now for column 
B, one must alternately repeat the input b1 4 times followed 
by b2 (also 4 times) to reach 16.  Similarly, for column C, 
one must repeat c1 2 times followed by c2 (also 2 times) to 
reach 16. Finally, for column D, one can alternately repeat 
d1 and d2 to reach 16. 

TABLE II.  EXHAUSTIVE COMBINATION 

 

 

Base Values 

Input Variables 

A B C D 

a1 b1 c1 d1 

a2 b2 c2 d2 

All Combinatorial 

Values 

a1 b1 c1 d1 

a1 b1 c1 d2 

a1 b1 c2 d1 

a1 b1 c2 d2 

a1 b2 c1 d1 

a1 b2 c1 d2 

a1 b2 c2 d1 

a1 b2 c2 d2 

a2 b1 c1 d1 

a2 b1 c1 d2 

a2 b1 c2 d1 

a2 b1 c2 d2 

a2 b2 c1 d1 

a2 b2 c1 d2 

a2 b2 c2 d1 

a2 b2 c2 d2 

 
As highlighted earlier, considering all exhaustive 

interaction is infeasible for large number of parameters and 
values.  If we consider uniform pairwise interaction (i.e. 
t=2), we can have interactions between AB, AC, AD, BC, 
BD, and CD (see Table III). Here, when parameters AB are 
considered, the values for parameter CD are don’t cares (i.e. 
any random valid values for parameter CD suffice). 
Similarly, when parameters AC are considered, values for 
parameter BD are don’t cares.  When parameters AD are 
considered, values for parameter BC are don’t care. When 
parameters BC are considered, values for parameter AD are 
don’t cares. When parameters BD are considered, values for 
parameter AC are don’t cares. Finally, when parameters CD 
are considered, values for parameter AB are don’t cares. 
Combining these results, we note that there are some 
repetitions of values between some entries.  If these 
repetition is removed, we can get all the combinations at t=2.  
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Here, we note that the test suite has been reduced from 

16 (for exhaustive combination) to 9 (for t=2), a saving of 
nearly 43 percent. Using the notation discussed earlier, we 
can write this test suite as T suite = CA (9,3, 24). 

In this case, we note that by relaxing the interaction, we 
can systematically reduce the test data for consideration 
significantly. Ensuring that all interaction elements appear at 
least once is important to ascertain the correctness of the t-
way strategy being adopted. Here, the number of interaction 
elements can be predicted using the following expression. 

 
 
 

 

     Interaction elements = 
t

v
tpt

pt
v

t

p

)!(!

!

−

=






                (1) 

 
It is worth noting here that unlike CA which has a static 

equation to determine the number of interaction elements, 
MCA and VCA requires explicit calculation based on the 
number of defined parameters and values in order to 
determine the number of tuples. This is performed by 
considering the sum of products of each individual’s 
interaction sets. For example, when MCA (N, 3, 3123) is 
considered, the total number of interaction elements = 
3*2*2+ 3*2*2 + 3*2*2+ 2*2*2= 44. When MCA (N, 3, 4, 

TABLE III.  PAIRWISE INTERACTION RESULT, CA (9,2, 2
4
). 

 

TABLE IV.  INTERACTION ELEMENT ANALYSIS 

Interactions Elements Occurrences  Interactions Elements Occurrences 

 

AB 

a1 b1 2  

AC 

a1 c1 2 

a1 b2 2 a1 c2 2 

a2 b1 3 a2 c1 3 

a2 b2 1 a2 c2 2 

 

AD 

a1 d1 1  

BC 

b1 c1 3 

a1 d2 3 b1 c2 2 

a2 d1 4 b2 c1 2 

a2 d2 1 b2 c2 1 

 

BD 

b1 d1 4  

CD 

c1 d1 4 

b1 d2 1 c1 d2 1 

b2 d1 1 c2 d1 1 

b2 d2 3 c2 d2 3 
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3123) is considered, the total number of interaction elements 
= 3*2+ 3*2+3*2+2*2 + 2*2+ 2*2= 28. Now, for MCA (N, 
4, 3123), the total number of interaction elements =3*2*2*2= 
24. Finally, in the case of VCA, the total number of 
interaction elements is the sum of tuples from all the disjoint 
set of CAs and MCAs. For instance, for VCA (12, 2, 3222, 
{CA (3,3122)}), the total number of interaction elements = 
3*3 + 3*2 + 3*2 + 3*2 + 3*2 + 2*2 = 37.  

Going back to our running example, the complete 
analysis of the final result from Table IV demonstrates that 
some interaction elements appears four, three and two times 
respectively, indicating that this solution is not the most 
optimum. This phenomenon is expected as the choice of 
values when “don’t care” happen are randomly selected. As 
this combinatorial explosion problem is NP complete, 
significant efforts in the literature are focusing to obtain a t-
way strategy that give optimum results, that is, most the 
interaction elements appear at most once, whenever possible. 
Here, the reduction tends to be maximized, hence, reducing 
the test costs. 

As the interaction strength increases (i.e. from t=2), the 
combinations to be considered also increases significantly. 
To illustrate this issue, we consider an aircraft collision 
avoidance system (TCAS) module from the Federal Aviation 
Administration which has been used as case study in other 
related works [9-12] [2].  Here, the TCAS module has twelve 
parameters: 7 parameters have 2 values, 2 parameters have 3 
values, 1 parameter has 4 values, and 2 parameters have 10 
values. Pairwise testing requires 100 test cases. 3-way testing 
requires 400 test cases. 4-way requires 1265. 5-way requires 
4196. 6-way requires 10851. 7-way requires 26061. 8-way 

requires 56742. 9-way requires 120361. 10-way requires 
201601. 11-way requires 230400. Finally, 12-way requires 
460800. 

For large system with many parameters, considering 
higher order t-way test set can lead toward combinatorial 
explosion problem. On one side of the coin, we can consider 
pairwise testing in order to get the most minimum tests. 
However, we cannot have the guarantee that we will find 
faults caused by higher order interactions (e.g. t=3 or t=4). 
On the other side of the coin, if we consider high order 
interactions, more costs would be expected as the test size is 
likely to increase accordingly.  

Practically, in many real applications, interaction may not 
be uniform throughout all parameters. Here, a particular 
subset of variables can have a higher interaction dependency 
than other variables (indicating failures due to the interaction 
of that subset may have more significant impact to the 
overall system).  For example, consider a subset of 
components that control a safety-critical hardware interface. 
We want to use stronger coverage in that area (i.e. t=3). 
However, the rest of our components may be sufficiently 
tested using pairwise testing. In this case, we can assign 
variable coverage strength to each subset of components as 
well as to the whole system.  

To illustrate variable strength t-way interaction, we 
revisit our running example from Table I. Now, we assume 
that all interaction is uniform at t=2 for all parameters (i.e. 
based on our result in Table III. Then, we consider t=3, only 
for parameters B,C,D. Combining both interaction yields 
result shown in Table V. Here, the test suite has been 
reduced from 16 (for exhaustive case) to 13, a saving of 

TABLE V.  VARIABLE STRENGTH INTERACTION RESULT, VCA (13,2,2
4
, {CA(3,2

3
)}) 

}
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18.75 percent. Using the notation described earlier, we can 
write this reduction as T suite = VCA (13,2,24, {CA(3,23)}). 
Here, rather than generalizing to all, we have selected BCD 
as the only variables with t=3. 

IV. RELATED WORK 

Earlier studies demonstrate that there are two approaches 
for generating t-way test suite (or covering array for CA, 
MCA and VCA). These approaches can be either algebraic 
or computational strategies [8]. Algebraic strategies generate 
the test suite directly by means of mathematical 
transformations [11]. Unlike algebraic strategies, 
computational strategies often rely on the generation of all 
tuples and search the tuples space to generate the required 
test suite until all tuples have been covered. In the case 
where the number of tuples to be considered is significantly 
large, adopting computational strategies can be expensive 
especially in terms of the space required to store the tuples 
and the time required to explicit enumeration. On a positive 
note, computational approaches are more adaptable for 
constraint handling [13, 14] and test prioritization [15].  

Grindal et al classified combinatorial strategies into two 
main categories: deterministic and non-deterministic 
strategies [16]. Given the same parameter values, 
deterministic strategies produce the same test suite for every 
run. In contrast, the generated test suite in non-deterministic 
strategies is highly non-deterministic (i.e. the same input 
parameter values may lead to different test suite). More 
recently, Forbes et al reported that deterministic strategies 
are more preferable than non-deterministic strategies, even 
though running a non-deterministic strategy multiple times 
may minimize the test size in some system [1]. 

As far as usage is concerned, interaction testing has a 
wide range of applications. Significant efforts in the 
literature put focus on pairwise testing. Mandl adopts 
pairwise coverage using Orthogonal Latin Square (OLS) to 
testing an Ada compiler [17]. Berling and Runeson adopted 
interaction testing to identify real and false targets in target 
identification system [18]. Lazi´c and Velaˇsevi´c employed 
interaction testing on modeling and simulation for automated 
target-tracking radar system [19]. White has also applied the 
technique to test Graphical User Interfaces (GUI) [20]. Other 
applications of interaction testing include regression testing 
through the GUI [21] and fault localization [22, 23]. Tang 
and Chen, Boroday, and Chandra et al. investigated circuit 
testing in hardware environment, proposing test coverage 
that includes each 2t of the input settings for each subset of t 
inputs [24-26]. Seroussi and Bshouti explored a 
comprehensive treatment for circuit testing [27]. In addition, 
Dumer examined the related questions of isolating memory 
faults, and adopted binary covering arrays [28]. 

Concerning the general interaction testing, much work 
has also been undertaken in the literature. Dunietz et al. 
demonstrated the need for higher order strength. In this case, 
Dunietz et al. demonstrated that significant block coverage is 
obtained when testing with two-way interactions, but higher 
strength is needed for good path coverage [29]. In other 
work, it is found that 100% of faults detectable by a 

relatively low degree of interaction, typically 4-way 
combinations [30-32].  

The National Institute of Standards and Technology 
(NIST) investigated the application of interaction testing for 
4 application domains: medical devices, a Web browser, a 
HTTP server, and a NASA distributed database. Here, 95% 
of the actual faults involved 4-way interaction whilst all of 
the faults were detected with 6-way interaction [10, 33]. 
Younis and Zamli introduced a novel approach to use 
interaction testing for test data generator for reverse 
engineering of combinational circuit [34]. Unlike the NIST 
study, Younis and Zamli highlighted the requirement for 
high degree interaction test suite (i.e. t>6). All the 
aforementioned related work highlighted the potential of 
adopting interaction testing for both hardware and software 
evaluation. Another upcoming application of interaction 
testing is on gene interactions. Instead of having to run 
20,000 experiments to see if two genes randomly chosen 
from the genome of a 20,000-gene organism interact, 
biologists might get by with only 10 to 50 experiments [35]. 

Considering the support for variable strength interaction, 
much useful effort is also emerging. Cohen et al. proposed 
the first model t-way strategy with variable strength based 
capability based on simulated annealing [36]. Although 
generating optimal test suites, this approach is very time 
consuming because all interaction elements needs to be 
analyzed exhaustively using binary search strategy. Wang et 
al. has extended the model proposed by Cohen et al [36] and 
proposed a more general strategy relying on two greedy 
algorithms. The first algorithm is based on one-test-at-a-time 
strategy while the other algorithm is based on in-parameter-
order strategy [37]. Although useful as far as addressing the 
limitation of the Cohen’s model in terms of the need for the 
interaction strength (t) involved to be disjoint, Wang et al 
approach produces non-optimized set for mixed parameter 
values. Recently, Chen et. al. have proposed a variant 
algorithm based on ant colony approach in order to support 
variable strength capability [38].  Similar to Cohen et al [36], 
this approach is also time consuming and supports low 
interaction strength 2<t<3. Apart from these approaches, new 
version of TVG [6] and PICT [39] also address variable 
strength capabilities, nonetheless, these tools often generate 
test set which are typically larger than other approaches. 

V. CLOSING REMARKS 

Summing up, the research into t-way strategies opens up 
many challenging issues especially involving algorithms for 
variable strength interaction testing. Considering the 
possibility of saving that variable strength interaction testing 
brings to software development costs (whilst enhancing the 
fault finding capability of t-way testing) , it is worthwhile to 
strategize efforts to develop new algorithms and strategies 
for future use. 
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