
Interaction Testing: From Pairwise to Variable Strength Interaction

Kamal Z. Zamli

School of Electrical and Electronic Engineering

Universiti Sains Malaysia, Engineering Campus

14300 Nibong Tebal, Penang, Malaysia

e-mail:eekamal@eng.usm.my

Mohammed I.Younis

School of Electrical and Electronic Engineering

Universiti Sains Malaysia, Engineering Campus

14300 Nibong Tebal, Penang, Malaysia

Abstract—Although desirable as an important activity for

quality assurances and enhancing reliability, complete and

exhaustive software testing is prohibitively impossible due to

resources as well as timing constraints. While earlier work has

indicated that uniform pairwise testing (i.e. based on 2-way

interaction of variables) can be effective to detect most faults in

a typical software system, a counter argument suggests such

conclusion cannot be generalized to all software system faults.

In some system, faults may also be non-uniform and caused by

more than two parameters. Considering these issues, this paper

explores the issues pertaining to t-way testing from pairwise to

variable strength interaction in order to highlight the state-of-
the-art as well as the current state-of-practice.

Keywords-t-way testing; interaction testing; variable strength

interaction;

I. INTRODUCTION

In line with increasing consumer demands for new
functionalities and innovations, software applications grew
tremendously in size over the last 15 years. This sudden
increase has a profound impact as far as testing is concerned.
Here, the size of test suite for all combinations of inputs
grows significantly making exhaustive testing prohibitively
and practically impossible. To address the aforementioned
issues, much research is now focusing on interaction testing
(termed t-way strategy). As the name suggests, interaction
testing focuses on the detecting failures caused by t-way
interaction of variables (where t indicates the interaction
strength). The rationale for interaction testing stemmed from
the fact that from empirical observation, the number of input
variables involved in software failures is relatively small (i.e.
in the order of 3 to 8), in some classes of software. If t or
fewer variables are known to cause fault, test cases can be
generated on some t-way combinations (i.e. resulting into a
smaller set of test cases for consideration).

Earlier work on adopting interaction testing gives mixed
results (e.g. ACTL [1, 2], Jenny [3], ITCH [4], TConfig [5],
and TVG [6]). In some work, 2-way testing (also termed
pairwise) testing appears to be sufficiently adequate for
achieving good test coverage. For instance, Klaib et al
demonstrates that pairwise testing can be effective to detect
faults in a Graphical User Interface program with over 80%
method, block, and line coverage [7].

Although useful, pairwise testing result cannot be
generalized to all software system. In some system, faults
may also be non uniform and caused by more than two
parameters. Considering these issues, this paper explores the
issues pertaining to t-way testing from pairwise to variable

strength interaction in order to highlight the state-of-the-art
as well as the current state-of-practice.

This paper is organized as follows. Section II highlights
the t-way strategy fundamentals. Section III explores
pairwise and variable strength interaction testing. Section IV
highlights some of the related work. Finally, section V gives
our closing remark.

II. T-WAY STRATEGIES FUNDAMENTAL

Mathematically, t-way strategies can be abstracted to a
covering array. Throughout out this paper, the symbols: p, v,
and t are used to refer to number of parameters (or factor),
values (or levels) and interaction strength for the covering
array respectively. Referring to Table I, the parameters are
A,B,C, and D whilst the values are (a1, a2, b1, b2, c1, c2).
Earlier works suggested three definitions for describing the
covering array. The first definition is based on whether or
not the numbers of values for each parameter are equal. If the
number of values is equal (i.e. uniformly distributed), then
the test suite is called Coverage Array (CA). Now, if the
number of values in non-uniform, then the test suite is called
Mixed Coverage Array (MCA) [8]. Finally, Variable
Strength Covering array (VCA) refers to case when a smaller
subset of covering arrays (i.e. CA or MCA) constitutes a
larger covering array.

Normally, the CA takes parameters of N, t, p, and v
respectively. For example, CA (9, 2, 4, 3) represents a test
suite consisting of 9x4 arrays (i.e. the rows represent the size
of test cases (N), and the column represents the parameter
(p)). Here, the test suite also covers 2-way interaction for a
system with 4 3 valued parameter.

Alternatively, MCA takes parameters of N, t, and
Configuration (C). In this case, C captures the parameters
and values of each configuration in the following format:
v1

p1 v2
p2, ….. vn

pn indicating that there are p1 parameters
with v1 values, p2 parameters with v2 values, and so on. For
example, MCA (1265, 4, 102413227) indicates the test size of
1265 which covers 4-way interaction. Here, the
configuration takes 12 parameters: 2 10 valued parameter, 1
4 valued parameter, 2 3 valued parameter and 7 2 valued
parameter. Such notation can also be applicable to CA (e.g.
CA (9,2,4,3) can be rewritten as CA (9,2, 34)).

In the case of VCA, the parameter consists of N,t, C, and
Set (S). Here, S consists of a multi-set of disjoint covering
array with strength larger t. For example, VCA (12, 2, 3222,
{CA (3,3122)}) indicates the test size of 12 for pairwise
interaction (with 2 3 valued parameter and 2 2 valued

2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation

978-0-7695-4062-7/10 $26.00 © 2010 IEEE

DOI 10.1109/AMS.2010.15

6

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

parameter) and 3-way interaction (with 1 3 valued
parameter and 2 2 valued parameter).

III. RUNNING EXAMPLE

In order to aid the discussion, consider the following

software system example in Fig. 1.

Figure 1. Model of a Typical Software System

Assume that the input set X = {x0…. xn} significantly
affects the output, noted as fo (x0…. xn) to fn (x0…. xn). If X
is known to take a set of data values: D(x0), D(x1)… D(xn),
then the system must be tested against the set of all possible
combinations of D. Here, the result is an ordered n-tuples
{d0,d1…dn} where each di is an element of D(xi). The size
of the test suite would be the product size of all D(x):

 T suite = { D(x0) x D(x1) x….D(Xn)}

Obviously, the test suite T suite can grow exponentially
with the increase size of data element in the set D(x0),
D(x1)… D(xn). As far as the actual test data of T suite is
concerned, one can consider the interaction between all n
variables x0, x21, x2...xn, termed, exhaustive test.
Optionally, one can also consider the interaction of any t-
way interactions of variables. Here, the value of t can take
the minimum of 2 and the maximum of n-1. As a running
example, let us assume that the starting test case for X,
termed base test case, has been identified in Table I. Here,
symbolic values (e.g. a1, a2, b1, b2, c1, c2) are used in place
of real data values to facilitate discussion.

TABLE I. BASE DATA VALUES

Base Values

Input Variables

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

Here, at full strength of interaction (i.e. t=4), we can get

all exhaustive combination. In this case, the exhaustive
combinations would be 24 = 16 and can be generated using a
simple technique (see Table II). Here, one can view each
variable as column matrix. For column A, one must repeat
the input a1 8 times followed by a2 (also 8 times) to reach
16. This is because there are 16 combinations with 2
specified inputs (i.e. 16/2 = 8 times). Now for column B, one
must alternately repeat the input b1 4 times followed by b2
(also 4 times) to reach 16. Similarly, for column C, one must

repeat c1 2 times followed by c2 (also 2 times) to reach 16.
Finally, for column D, one can alternately repeat d1 and d2
to reach 16. Here, at full strength of interaction (i.e. t=4), we
can get all exhaustive combination. In this case, the
exhaustive combinations would be 24 = 16 and can be
generated using a simple technique (see Table II). Here, one
can view each variable as column matrix. For column A, one
must repeat the input a1 8 times followed by a2 (also 8
times) to reach 16. This is because there are 16 combinations
with 2 specified inputs (i.e. 16/2 = 8 times). Now for column
B, one must alternately repeat the input b1 4 times followed
by b2 (also 4 times) to reach 16. Similarly, for column C,
one must repeat c1 2 times followed by c2 (also 2 times) to
reach 16. Finally, for column D, one can alternately repeat
d1 and d2 to reach 16.

TABLE II. EXHAUSTIVE COMBINATION

Base Values

Input Variables

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

All Combinatorial

Values

a1 b1 c1 d1

a1 b1 c1 d2

a1 b1 c2 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c1 d2

a1 b2 c2 d1

a1 b2 c2 d2

a2 b1 c1 d1

a2 b1 c1 d2

a2 b1 c2 d1

a2 b1 c2 d2

a2 b2 c1 d1

a2 b2 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

As highlighted earlier, considering all exhaustive

interaction is infeasible for large number of parameters and
values. If we consider uniform pairwise interaction (i.e.
t=2), we can have interactions between AB, AC, AD, BC,
BD, and CD (see Table III). Here, when parameters AB are
considered, the values for parameter CD are don’t cares (i.e.
any random valid values for parameter CD suffice).
Similarly, when parameters AC are considered, values for
parameter BD are don’t cares. When parameters AD are
considered, values for parameter BC are don’t care. When
parameters BC are considered, values for parameter AD are
don’t cares. When parameters BD are considered, values for
parameter AC are don’t cares. Finally, when parameters CD
are considered, values for parameter AB are don’t cares.
Combining these results, we note that there are some
repetitions of values between some entries. If these
repetition is removed, we can get all the combinations at t=2.

7

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

Here, we note that the test suite has been reduced from

16 (for exhaustive combination) to 9 (for t=2), a saving of
nearly 43 percent. Using the notation discussed earlier, we
can write this test suite as T suite = CA (9,3, 24).

In this case, we note that by relaxing the interaction, we
can systematically reduce the test data for consideration
significantly. Ensuring that all interaction elements appear at
least once is important to ascertain the correctness of the t-
way strategy being adopted. Here, the number of interaction
elements can be predicted using the following expression.

 Interaction elements =
t

v
tpt

pt
v

t

p

)!(!

!

−

=






 (1)

It is worth noting here that unlike CA which has a static

equation to determine the number of interaction elements,
MCA and VCA requires explicit calculation based on the
number of defined parameters and values in order to
determine the number of tuples. This is performed by
considering the sum of products of each individual’s
interaction sets. For example, when MCA (N, 3, 3123) is
considered, the total number of interaction elements =
3*2*2+ 3*2*2 + 3*2*2+ 2*2*2= 44. When MCA (N, 3, 4,

TABLE III. PAIRWISE INTERACTION RESULT, CA (9,2, 2
4
).

TABLE IV. INTERACTION ELEMENT ANALYSIS

Interactions Elements Occurrences Interactions Elements Occurrences

AB

a1 b1 2

AC

a1 c1 2

a1 b2 2 a1 c2 2

a2 b1 3 a2 c1 3

a2 b2 1 a2 c2 2

AD

a1 d1 1

BC

b1 c1 3

a1 d2 3 b1 c2 2

a2 d1 4 b2 c1 2

a2 d2 1 b2 c2 1

BD

b1 d1 4

CD

c1 d1 4

b1 d2 1 c1 d2 1

b2 d1 1 c2 d1 1

b2 d2 3 c2 d2 3

8

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

3123) is considered, the total number of interaction elements
= 3*2+ 3*2+3*2+2*2 + 2*2+ 2*2= 28. Now, for MCA (N,
4, 3123), the total number of interaction elements =3*2*2*2=
24. Finally, in the case of VCA, the total number of
interaction elements is the sum of tuples from all the disjoint
set of CAs and MCAs. For instance, for VCA (12, 2, 3222,
{CA (3,3122)}), the total number of interaction elements =
3*3 + 3*2 + 3*2 + 3*2 + 3*2 + 2*2 = 37.

Going back to our running example, the complete
analysis of the final result from Table IV demonstrates that
some interaction elements appears four, three and two times
respectively, indicating that this solution is not the most
optimum. This phenomenon is expected as the choice of
values when “don’t care” happen are randomly selected. As
this combinatorial explosion problem is NP complete,
significant efforts in the literature are focusing to obtain a t-
way strategy that give optimum results, that is, most the
interaction elements appear at most once, whenever possible.
Here, the reduction tends to be maximized, hence, reducing
the test costs.

As the interaction strength increases (i.e. from t=2), the
combinations to be considered also increases significantly.
To illustrate this issue, we consider an aircraft collision
avoidance system (TCAS) module from the Federal Aviation
Administration which has been used as case study in other
related works [9-12] [2]. Here, the TCAS module has twelve
parameters: 7 parameters have 2 values, 2 parameters have 3
values, 1 parameter has 4 values, and 2 parameters have 10
values. Pairwise testing requires 100 test cases. 3-way testing
requires 400 test cases. 4-way requires 1265. 5-way requires
4196. 6-way requires 10851. 7-way requires 26061. 8-way

requires 56742. 9-way requires 120361. 10-way requires
201601. 11-way requires 230400. Finally, 12-way requires
460800.

For large system with many parameters, considering
higher order t-way test set can lead toward combinatorial
explosion problem. On one side of the coin, we can consider
pairwise testing in order to get the most minimum tests.
However, we cannot have the guarantee that we will find
faults caused by higher order interactions (e.g. t=3 or t=4).
On the other side of the coin, if we consider high order
interactions, more costs would be expected as the test size is
likely to increase accordingly.

Practically, in many real applications, interaction may not
be uniform throughout all parameters. Here, a particular
subset of variables can have a higher interaction dependency
than other variables (indicating failures due to the interaction
of that subset may have more significant impact to the
overall system). For example, consider a subset of
components that control a safety-critical hardware interface.
We want to use stronger coverage in that area (i.e. t=3).
However, the rest of our components may be sufficiently
tested using pairwise testing. In this case, we can assign
variable coverage strength to each subset of components as
well as to the whole system.

To illustrate variable strength t-way interaction, we
revisit our running example from Table I. Now, we assume
that all interaction is uniform at t=2 for all parameters (i.e.
based on our result in Table III. Then, we consider t=3, only
for parameters B,C,D. Combining both interaction yields
result shown in Table V. Here, the test suite has been
reduced from 16 (for exhaustive case) to 13, a saving of

TABLE V. VARIABLE STRENGTH INTERACTION RESULT, VCA (13,2,2
4
, {CA(3,2

3
)})

}

9

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

18.75 percent. Using the notation described earlier, we can
write this reduction as T suite = VCA (13,2,24, {CA(3,23)}).
Here, rather than generalizing to all, we have selected BCD
as the only variables with t=3.

IV. RELATED WORK

Earlier studies demonstrate that there are two approaches
for generating t-way test suite (or covering array for CA,
MCA and VCA). These approaches can be either algebraic
or computational strategies [8]. Algebraic strategies generate
the test suite directly by means of mathematical
transformations [11]. Unlike algebraic strategies,
computational strategies often rely on the generation of all
tuples and search the tuples space to generate the required
test suite until all tuples have been covered. In the case
where the number of tuples to be considered is significantly
large, adopting computational strategies can be expensive
especially in terms of the space required to store the tuples
and the time required to explicit enumeration. On a positive
note, computational approaches are more adaptable for
constraint handling [13, 14] and test prioritization [15].

Grindal et al classified combinatorial strategies into two
main categories: deterministic and non-deterministic
strategies [16]. Given the same parameter values,
deterministic strategies produce the same test suite for every
run. In contrast, the generated test suite in non-deterministic
strategies is highly non-deterministic (i.e. the same input
parameter values may lead to different test suite). More
recently, Forbes et al reported that deterministic strategies
are more preferable than non-deterministic strategies, even
though running a non-deterministic strategy multiple times
may minimize the test size in some system [1].

As far as usage is concerned, interaction testing has a
wide range of applications. Significant efforts in the
literature put focus on pairwise testing. Mandl adopts
pairwise coverage using Orthogonal Latin Square (OLS) to
testing an Ada compiler [17]. Berling and Runeson adopted
interaction testing to identify real and false targets in target
identification system [18]. Lazi´c and Velaˇsevi´c employed
interaction testing on modeling and simulation for automated
target-tracking radar system [19]. White has also applied the
technique to test Graphical User Interfaces (GUI) [20]. Other
applications of interaction testing include regression testing
through the GUI [21] and fault localization [22, 23]. Tang
and Chen, Boroday, and Chandra et al. investigated circuit
testing in hardware environment, proposing test coverage
that includes each 2t of the input settings for each subset of t
inputs [24-26]. Seroussi and Bshouti explored a
comprehensive treatment for circuit testing [27]. In addition,
Dumer examined the related questions of isolating memory
faults, and adopted binary covering arrays [28].

Concerning the general interaction testing, much work
has also been undertaken in the literature. Dunietz et al.
demonstrated the need for higher order strength. In this case,
Dunietz et al. demonstrated that significant block coverage is
obtained when testing with two-way interactions, but higher
strength is needed for good path coverage [29]. In other
work, it is found that 100% of faults detectable by a

relatively low degree of interaction, typically 4-way
combinations [30-32].

The National Institute of Standards and Technology
(NIST) investigated the application of interaction testing for
4 application domains: medical devices, a Web browser, a
HTTP server, and a NASA distributed database. Here, 95%
of the actual faults involved 4-way interaction whilst all of
the faults were detected with 6-way interaction [10, 33].
Younis and Zamli introduced a novel approach to use
interaction testing for test data generator for reverse
engineering of combinational circuit [34]. Unlike the NIST
study, Younis and Zamli highlighted the requirement for
high degree interaction test suite (i.e. t>6). All the
aforementioned related work highlighted the potential of
adopting interaction testing for both hardware and software
evaluation. Another upcoming application of interaction
testing is on gene interactions. Instead of having to run
20,000 experiments to see if two genes randomly chosen
from the genome of a 20,000-gene organism interact,
biologists might get by with only 10 to 50 experiments [35].

Considering the support for variable strength interaction,
much useful effort is also emerging. Cohen et al. proposed
the first model t-way strategy with variable strength based
capability based on simulated annealing [36]. Although
generating optimal test suites, this approach is very time
consuming because all interaction elements needs to be
analyzed exhaustively using binary search strategy. Wang et
al. has extended the model proposed by Cohen et al [36] and
proposed a more general strategy relying on two greedy
algorithms. The first algorithm is based on one-test-at-a-time
strategy while the other algorithm is based on in-parameter-
order strategy [37]. Although useful as far as addressing the
limitation of the Cohen’s model in terms of the need for the
interaction strength (t) involved to be disjoint, Wang et al
approach produces non-optimized set for mixed parameter
values. Recently, Chen et. al. have proposed a variant
algorithm based on ant colony approach in order to support
variable strength capability [38]. Similar to Cohen et al [36],
this approach is also time consuming and supports low
interaction strength 2<t<3. Apart from these approaches, new
version of TVG [6] and PICT [39] also address variable
strength capabilities, nonetheless, these tools often generate
test set which are typically larger than other approaches.

V. CLOSING REMARKS

Summing up, the research into t-way strategies opens up
many challenging issues especially involving algorithms for
variable strength interaction testing. Considering the
possibility of saving that variable strength interaction testing
brings to software development costs (whilst enhancing the
fault finding capability of t-way testing) , it is worthwhile to
strategize efforts to develop new algorithms and strategies
for future use.

ACKNOWLEDGMENT

This research is funded by the generous fundamental
grants – “Investigating Heuristic Algorithm to Address
Combinatorial Explosion Problem” from Ministry of Higher
Education (MOHE), Malaysia.

10

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn,

"Refining the In-Parameter-Order Strategy for Constructing Covering
Arrays," Jrnl. of Research of the NIST, vol. 113, pp. 287-297., Oct.

2008.

[2] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
"IPOG/IPOG-D: Efficient Test Generation for Multi-way

Combinatorial Testing," Software Testing, Verification and

Reliability, vol. 18, pp. 125-148, 2008.

[3] B. Jenkins, "Jenny Test tool”,

http://www.burtleburtle.net./bob/math/jenny.html.

[4] A. Hartman, T. Klinger, and L. Raskin, "WHITCH: IBM Intelligent

Test Configuration Handler," IBM Haifa and Watson Research
Laboratories, Apr. 2005.

[5] A. Williams, "TConfig Test Tool. ," School of Information

Technology and Eng., University of Ottawa.
http://www.site.uottawa.ca/~awilliam/.

[6] J. Arshem, "Test Vector Generator Tool (TVG)”,

http://sourceforge.net/projects/tvg.

[7] M.J. Klaib, K.Z. Zamli, N.M. Isa, M.I. Younis, and R. Abdullah,

“G2Way – A Backtracking Strategy for Pairwise Test Data
Generation”, in Proc. of the 15th Asia-Pacific Software Eng. Conf.,

2009, pp. 463-470.

[8] M. B. Cohen, "Designing Test Suites for Software Interaction Testing
(PhD Thesis)," in Comp. Science Auckland: University of Auckland,

2004.

[9] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, "Software Fault
Interactions and Implications for Software Testing," IEEE Trans. on

Software Eng., vol. 30, pp. 418-421, 2004.

[10] D. R. Kuhn and V. Okun, "Pseudo Exhaustive Testing For Software,"

in Proc. of the 30th NASA/IEEE Software Eng. Workshop, 2006, pp.
25-27.

[11] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: A

General Strategy for T-Way Software Testing," in Proc. of the 14th

Annual IEEE Intl. Conf. and Workshops on the Eng. of Computer-

Based Systems, Tucson, AZ, 2007, pp. 549-556.

[12] M. I. Younis and K. Z. Zamli, "MC-MIPOG: A Parallel t-Way Test
Generation Strategy for Multicore Systems," ETRI Journal, Vol. 32,

February 2010, pp. 73-82.

[13] M. Grindal, J. Offutt, and J. Mellin, "Conflict Management when

Using Combination Strategies for Software Testing," in Proc. of 18th

Australian Software Eng. Conf., 2007.

[14] M. B. Cohen, M. B. Dwyer, and J. Shi, "Interaction testing of highly-

configurable systems in the presence of constraints.," in Proc. of the

Intl. Symp. on Software Testing and Analysis (ISSTA 2007), New

York, NY, USA, 2007, pp. 129–139.

[15] R. C. Bryce and C. J. Colbourn, "Prioritized Interaction Testing for
Pairwise Coverage with Seeding and Avoids," Information and

Software Technology Jrnl., vol. 48, pp. 960-970, 2006.

[16] M. Grindal, J. Offutt, and S. Andler, "Combination Testing

Strategies: a Survey," Software Testing, Verification and Reliability,

vol. 15, pp. 167-199, 2005.

[17] R. Mandl, "Orthogonal Latin Squares: An Application of Experiment

Design to Compiler Testing," Comm. of the ACM, vol. 28, pp. 1054-
1058, 1985.

[18] T. Berling and P. Runeson, "Efficient Evaluation of Multifactor

Dependent System Performance Using Fractional Design," IEEE

Trans. on Software Eng., vol. 29, pp. 769–781, 2003.

[19] L. J. Lazi´c and D. Velaˇsevi´c, "Applying Simulation and Design of
Experiments to the Embedded Software Testing Process," Software

Testing, Verification and Reliability, vol. 14, pp. 257–282, 2004.

[20] L. White and H. Almezen, "Generating Test Cases for GUI
Responsibilities Using Complete Interaction Sequences," in Proc. Of

the Intl. Sym. on Software Reliability Eng., Piscataway, NJ, 2000, pp.
110–121.

[21] A. M. Memon and M. L. Soffa, "Regression Testing of GUIs," in

Proc. of the 9th European Software Eng. Conf. (ESEC) and 11th

ACM SIGSOFT Intl. Sym. on the Foundations of Software Eng. (FSE-

11), Helsinki, Finland, 2003, pp. 118–127.

[22] C. Yilmaz, M. B. Cohen, and A. Porter, "Covering Arrays for

Efficient Fault Characterization in Complex Configuration Spaces,"
IEEE Trans. on Software Eng., vol. 31, pp. 20–34, 2006.

[23] M. S. Reorda, Z. Peng, and M. Violanate, "System-Level Test and

Validation of Hardware/Software Systems," in Advanced

Microelectronics Serie, London: Springer-Verlag, 2005.

[24] D. T. Tang and C. L. Chen, "Iterative Exhaustive Pattern Generation

for Logic Testing," IBM Jrnl. Research and Development, vol. 28, pp.
212-219, 1984.

[25] S. Y. Boroday, "Determining Essential Arguments of Boolean
Functions " in Proc. of the Conf. on Industrial Mathematics,

Taganrog, 1998, pp. 59-61.

[26] A. K. Chandra, L. T. Kou, G. Markowsky, and S. Zaks, "On Sets of
Boolean n-Vectors with All k-Projections Surjective," Acta

Informatica 20, vol. 20, pp. 103-111, October 1983.

[27] G. Seroussi and N. H. Bshouty, "Vector Sets for Exhaustive Testing
of Logic Circuits," IEEE Trans. on Information Theory, vol. 34, pp.

513-522, 1988.

[28] Dumer, "Asymptotically Optimal Codes Correcting Memory Defects

of Fixed Multiplicity," Problemy Peredachi Informatskii, vol. 25, pp.
3–20, 1989.

[29] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A.

Iannino, "Applying Design of Experiments to Software Testing," in
Proc. of the Intl. Conf. on Software Eng. (ICSE ’97), Boston, MA,

1997, pp. 205–215.

[30] D. R. Wallace and D. R. Kuhn, "Failure Modes in Medical Device
Software: an Analysis of 15 Years of Recall Data," Intl. Jrnl. of

Reliability, Quality, and Safety Eng., vol. 8, 2001.

[31] D. R. Kuhn and M. J. Reilly, "An Investigation of the Applicability of

Design of Experiments to Software Testing," in Proc. of the 27th

Annual NASA Goddard Software Eng. Workshop (SEW-27'02), 2002,

pp. 91-95.

[32] M. I. Younis and K. Z. Zamli, "A Strategy for Automatic Quality
Signing and Verification Processes for Hardware and Software

Testing," Advances in Software Engineering, pp. 1-7, 2010.

[33] R. Kuhn, Y. Lei, and R. Kacker, "Practical Combinatorial Testing:
Beyond Pairwise," IEEE IT Professional, vol. 10, pp. 19-23, June

2008.

[34] M. I. Younis and K. Z. Zamli, "Assessing Combinatorial Interaction

Strategy for Reverse Eng. of Combinational Circuits," in Proc. of the

IEEE Symp. on Industrial Electronics and Applications (ISIEA 2009),

Kuala Lumpur, Malaysia, 2009.

[35] CALTECH, "Researchers Create New Matchmaking Service
Computer System To Study Gene Interactions.,"

http://media.caltech.edu/press_releases/12805.

[36] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, and J.
S. Collofello, "Variable Strength Interaction Testing of Components,"

in Proc. of the 27th Annual International Computer Software and

Applications Conf. (COMPSAC’03) Dallas,TX, USA: IEEE

Computer Society, 2003, pp. 413-418.

[37] W. Ziyuan, X. Baowen, and N. Changhai, "Greedy Heuristic

Algorithms to Generate Variable Strength Combinatorial Test Suite,"
in Proc. of the 8th International Conference on Quality Software,

2008, pp. 155-160.

[38] X. Chen, Q. Gu, A. Li, and D. Chen, "Variable Strength Interaction
Testing with an Ant Colony System Approach," in Proc. of the Asia

Pacific Software Eng. Conf. 2009 (APSEC 2009), 2009, pp. 160-167.

[39] J. Czerwonka, "Pairwise testing in real world: Practical extensions to
test case generator," in Proc. of 24th Pacific Northwest Software

Quality Conf., Portland,Oregon, USA, 2006, pp. 419-430.

11

Authorized licensed use limited to: Iraq Virtual Science Library. Downloaded on July 12,2010 at 23:07:54 UTC from IEEE Xplore. Restrictions apply.

