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Abstract

The time evolution of the expanding Colorless Partonic
Matter, created in Ultra-Relativistic Heavy Ion Collisions
and undergoing the confining phase transition towards
a Hadronic Gas, is discussed in the context of a unified
model combining our Colorless QCD-MIT Bag Model
with the boost invariant Bjorken expansion. The Bjorken
Equation in the case of a longitudinal expansion sce-
nario of a non-ideal relativistic medium in finite volume
is solved using certain initial conditions (τi, T (τi)) and
their effect is studied in detail. The evolution of the
temperature as a function of the proper time T (τ, V ) is
then obtained at different volumes. Different times char-
acterising different scales of the whole time evolution,
like the time of the finite volume transition point τ0(V ),
the hadronic time τH(V ) at which the hadronization is
completed, the lifetime of the Colorless Partonic Plasma
∆τCPP (V ) and the lifetime of the confining phase transi-
tion ∆τPT (V ) are calculated and their finite size scaling
properties are studied in detail. New finite size scaling
laws are derived. Also, the time evolution of some Ther-
mal Response Functions as the order parameterH(τ, V ),
energy density ε(τ, V ), pressure P(τ, V ) and the sound

*Corespanding autor: mladrem@yahoo.fr

velocity Cs(τ, V ) are investigated and studied in detail.
We find that the time evolution of our system is really
affected by the colorlessness requirement and the initial
conditions of the partonic matter: the closer the volume
is to the thermodynamic limit, the longer are the times
and the lifetimes of the system. A detailed analysis of
the temporal decreasing, in negative power, of the en-
ergy density ε(τ, V ) ∝ τ−θ in each of the three stages
of the Bjorken expansion is carried out. It has been no-
ticed that pressure anisotropy, which appears during the
pre-equilibrium stage of the system, really affects the
subsequent temporal evolution of the system.

1 Introduction
The Quantum ChromoDynamics (QCD) Equation of
State (EoS) is of crucial importance for a better com-
prehension of the strongly interacting matter created in
the Ultra-Relativistic Heavy-Ion Collisions (URHIC) [1].
Due to the non-perturbative nature of QCD at low tem-
perature and small chemical potential where the system
is strongly coupled, lattice QCD approach is the most
successful method for determining the EoS in this part
of the phase diagram. However, since QCD at high tem-
perature is asymptotically free, an agreement between
the results from lattice QCD calculations and predictions
from perturbative theory is always realized.
It was noted even before the advent of QCD [2, 3]as
the underlying theory of strongly interacting matter, that
Hadronic Matter (HM) cannot exist as hadrons at an ar-
bitrarily high temperature or density. The existence of
a limiting temperature was formulated in the context of
the Hagedorn Resonance Gas Model [4]. Indeed, in the
context of QCD, the existence of a hadronic limiting tem-
perature is synonymous with a phase transition separating
ordinary HM from a new phase of elementary strongly
interacting Partonic Matter (PM).
The properties of the PM are currently under active exper-
imental investigation using the URHIC at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC). To make a connection between hot QCD
predictions and experimental data, it is essential to formu-
late a general framework in order to describe the space-
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time evolution of strongly hot/dense matter produced
in URHIC. The Relativistic Hydrodynamics (RH) using
appropriate initial conditions is known to be one such
framework. The hypothesis of considering dissipative
effects beyond the approximation of an ideal PM fluid
has been recognized recently both theoretically and ex-
perimentally. Among the most important results obtained
from the RHIC and LHC experiments [5, 6], is the fact
that the PM was a nearly perfect relativistic fluid, very
different from what was supposed to be, a partonic gas,
due to the asymptotic freedom of hot QCD. In the case
of peripheral collisions, the PM typically has an elliptic
shape in the transverse plane. The appearance of spatial
azimuthal anisotropy in the momentum distribution is
intimately related to the parton-parton interaction. The
stronger the parton-parton interaction, the more apparent
the asymmetry. Thus, the asymmetry property is nothing
but an indication that the system is not gas-like.

It is obvious and with great importance, that to understand
the physical properties at finite temperature of strongly
interacting matter, to study its EoS. It highlights the in-
timate relationship between the degrees of freedom and
the different phases of the system. Over the years, we
have acquired a solid knowledge concerning this EoS,
in the high temperature regime from perturbation the-
ory and in the low temperature regime from hadron gas
phenomenology.

Hydrodynamics is an approach which can describe the
motion of continuous medium based on their local prop-
erties and using the conservation laws of energy, momen-
tum, and other conserved quantities. The most important
role of hydrodynamics is to reduce the high number of de-
grees of freedom in the microscopic level to macroscopic
variables describing the local properties of the fluid.

Precisely, in the present work we want to perform a de-
tailed study of some interesting observables, outshining
the physics of their time evolution using the EoS of the
system undergoing a colorless QCD confining phase tran-
sition. At the transition point, the system exhibits, by def-
inition, a singular behavior in some Thermal Response
Function (TRF), which appears only in the thermody-
namic limit. Any TRF, with the duality temperature-time
relation, is translated to time Response Function (tRF).
When using the time as a variable, this tRF manifest
different behaviors from that of TRF and in some cases
drastic changes appear like the disappearance of the fi-
nite discontinuity. Since Bjorken equation will be solved
using the finite volume EoS of our system, certainly Fi-
nite Size Effects (FSE) will be observed in the extracted
times and lifetimes. We believe that this is the first time
that this kind of calculation dealing with the Finite Size
Scaling (FSS) properties in times and lifetimes is done
successfully and the corresponding FSE are quantitatively
studied. Therefore, bulk times and lifetimes are calcu-
lated. Due to the colorlessness requirement, the model
is not simple enough to obtain analytical results. There-

fore, numerical methods using Mathematica software are
employed to perform some calculations.

2 Conversion of Partonic Matter
into Hadronic Matter

Due to the color charge confinement property, only the
colorless part of the quark configurations would manifest
themselves as physically observed particles. All hadrons
created in the final stage of an URHIC are colorless.
Therefore the whole partonic plasma fireball needs to be
in a colorless state. In URHIC processes ranging from
low to high energies, there is a production of a multi-
tude of particles (multiparticle production). The stronger
growth of the multiplicity of these particles with the cen-
ter of mass energy

√
sNN is generally described with a

power law: ∝ sα [7]. Final-state interactions between the
produced particles determine the dynamical evolution of
the system. Most of these particles (hadrons) are created
not only just in the first stage of the collision but also in
the final stage after a subsequent evolution of the parton
states. We foresee the multiparticle processes proceeding
through the production of unobservable partonic states
in a first stage followed by the final stage consisting of
colorless hadronic states. The evolution from the first to
the final stage is described via the hadronization phenom-
ena, where the parton fragmentation refers to the process
of converting high-energy, colored partons into colorless
hadronic jets. Fragmentation phenomena incorporate
the non-perturbative effects at long distances in QCD of
the hadronization process, which cannot be calculated
analytically. At present, these can only be measured ex-
perimentally. The creation of the finite volume hot PM
is strongly indicated because some important signatures
are observed. One of these signatures is precisely the jet
quenching phenomenon, which inform us what happens
when a very energetic parton plows through the hot PM.
These energetic partons are produced within the same
collision that produces the hot PM itself. The physical
interest is focused on how rapidly the energetic parton
loses its energy when moving in the hot PM. The en-
ergy reduction of the jets is what we call ”jet quenching”.
Also, and due to thermal effects of the hot medium the
cross section of the hadronization and the fragmentation
process decrease. This what it was calculated, in the con-
text of TFD [8, 9], showing that at the lowest-order that,
as the temperature is increased, the hadron production
rate decreases. It would be interesting to measure the role
of temperature in converting partonic degrees of freedom
to hadronic ones.
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3 MIT-Bag Model with Colorless-
ness Condition

3.1 Non-ideality from Colorlessness Con-
dition

The confinement phenomenon concerns any partonic
many-body system, and then the Colorlessness Condi-
tion (CC) can be considered as an effect of the color
interaction between partons rendering the system to be
in a colorless state. One shall account for this parton-
parton interaction by requiring that all hadronic states
to be colorless with respect to the SU(3) color gauge
group. Not only at low temperatures the different hadrons
are colorless, even at fairly high temperatures there was
multiple evidence provided by lattice QCD calculations,
that colorless many-parton clusters can propagate in the
PM [10, 11]. Another important point in favor of CC
comes from the study of the SU(n) configurations of qq,
qq̄ and qqq systems using the explicit projection operators
method, in which it has proved that color confinement
phenomenon occurs only in colorless state [12].
This CC manifests itself as a non-ideal character in the
EoS. The ideal gas approximation is quite relevant at
high temperatures due to the property of asymptotic free-
dom in this regime. However, during the phase transition,
when the hadronic system is prepared for the colorless
deconfinement or just after, things are not so simple, in
which the non-abelian character of the CPP manifests
itself in an important manner. Consequently, the consid-
eration of perturbative and non-perturbative corrections
of higher order is more than necessary. The CC can be
then considered as an interaction effect represented by
different terms added to the ideal plasma EoS, improving
the approximation of the ideal gas and generating an EoS
of a non-ideal gas [13]. This non-perturbative effect is
visible in particular in the transition region. In the vicinity
of the transition point, this strong non-perturbative effect
dominates the deconfined state. Several models have
been proposed to describe this phenomenon by assum-
ing the appearance of massive quasi-particles, namely
massive partons. Such a quasi-particle model has also
been invoked in solid state physics and other fields of
physics to study phase transitions in which a large part of
the interaction between the real particles and the medium
can be viewed as an effective masses of quasi-particles
moving freely.

3.2 Total Partition Function with Color-
lessness Condition

The most important effect of the partonic interaction is
that only the colorless states exist. Thus, imposing this
condition on the total partition function of the partonic
system should retain a large part of the non-perturbative
aspects of the interaction. The color projection has to be

carried out simultaneously for the whole partonic system,
leading to an overall color correlation.
Logically, any theoretical approach which is intended
to describe the QCD deconfinement phase transition rig-
orously must contain the CC in its formalism. In our
previous work, a new method was developed which has
allowed us to accurately calculate physical quantities
which describe the deconfinement phase transition effi-
ciently within the QCD-MIT bag model, including the
CC and using a mixed phase system evolving in a finite
total volume V : this is what we call the Colorless QCD
MIT-Bag Model [14, 15]. The fraction of volume (de-
fined by the parameter h) occupied by the HM phase
is given by: VHM = hV , and the remaining volume:
VPM = (1− h)V contains then the colorless PM phase.
We neglect the different parton-parton, hadron-hadron
and parton-hadron interactions, even if they must interact
to achieve thermal equilibrium and in this case the total
colorless partition function factorized in the final form
reads:

LnZ (h, T, V, µ) = LnZCPP (h, T, V, µ) (1)
+LnZV ac(h, T, V, µ) + LnZHG(h, T, V, µ)

where,

LnZV ac(h, T, V ) = −(1− h)BV/T, (2)

accounts for the difference between the real vacuum and
the perturbative vacuum due to the color confinement
meaning that the constant (B) of the bag model repre-
sents the pressure on the surface of the bag in order to
balance the outward pressure exerted by the partons mov-
ing inside the bag. A non-variable Bag constant B is
not sufficient because the non-abelian nature of QCD
leads to a complicated non-perturbative structure of QCD
vacuum. For the hadronic phase, we simply assumed
only pionic degrees of freedom and the corresponding
partition function is just given by,

LnZHG(h, T, V ) = aHGhV T
3. (3)

Due to the internal symmetry of the color charge confine-
ment, which still remains valid, one must reduce the num-
ber of the states contributing really to the total partition
function of the partonic system by imposing specific con-
straint for a desired configuration. Therefore, the grand
canonical partition function of QCD many-parton system
subject to colorlessness condition, by means of the color
projection operator P̂ which selects those configurations
that are allowed by the colorlessness constraint, can be
written as,

ZCPP (T, VPP , µ) = Tr(P̂e−β(Ĥ−µN̂ )). (4)

When considering the color symmetry group SU(Nc)
with unitary representation Û(g) in a Hilbert space having
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the structure of a tensor product of all the Fock spaces as
H = Hq ⊗Hq̄ ⊗Hg , the projection operator P̂ for the
colorless configuration is given as

P̂ = dj

∫
SU(Nc)

dµ(g)χ∗j (g)Û(g). (5)

where dj = 1 and χj = 1 are the dimension and the
character of the irreducible representation j of SU(Nc)
and dµ(g) is the invariant Haar measure, respectively.
The colorless partition function for the partonic system
contained in a volume VPP , at a temperature T and with
quark chemical potential µ, after a considerable amount
of algebraic calculations using the group-theoretical pro-
jection method [16–21] and without any formal details,
becomes in its final form,

ZCPP (T, VPP , µ) =
4

9π2

∫ +π

−π

∫ +π

−π
dϕdψ (6)

M(ϕ,ψ)eG(ϕ,ψ,
µ
T )VPPT 3

,

where M(ϕ,ψ) is the weight function (Haar measure)
given by:

M(ϕ,ψ) =

[
sin

(
1

2
(ψ +

ϕ

2
)

)
sin(

ϕ

2
) sin

(
1

2
(ψ − ϕ

2
)

)]2

,

(7)
with,

G(ϕ,ψ,
µ

T
) = G(0, 0,

µ

T
) + GQG(ϕ,ψ,

µ

T
). (8)

The two functions are given in terms of (T, V, µ) variables
as follows:

G(0, 0,
µ

T
) = aQG +

NfNc
6π2

(
µ4

2T 4
+
µ2π2

T 2
) (9)

and

GQG(ϕ,ψ,
µ

T
) =

π2NcNf
36

∑
q=r,b,g

−1 +

((
αq − i( µT )

)2
π2

− 1

)2


−π
2Ng
96

4∑
g=1

(
(αg − π)

2

π2
− 1

)2

− NfNc
6π2

(
µ4

2T 4
+
µ2π2

T 2
). (10)

The two factors aHG and aQG which are related to the
degeneracy number of particles in the system are given
by,  aQG = π2

180 (7NcNf + 4Ng)

aHG = π2

90Nπ

(11)

when Nf , Nc, Ng and Nπ being the number of quark
flavours, of color charges, of gluons and of pions, respec-
tively. αq (q = r, b, g) are the angles determined by the
eigenvalues of the color charge operators in eq. (8):

αr =
ϕ

2
+
ψ

3
, αg = −ϕ

2
+
ψ

3
, αb = −2ψ

3
, (12)

and αg (g = 1, ..., 4) being: α1 = αr − αg, α2 = αg −
αb, α3 = αb − αr, α4 = 0. Thus, the partition function
of the CPP is then given by,

LnZCPP (h) = LnZPP (h) + LnZCC (h) , (13)

where

ZCC (h, T, V, µ) =
4

9π2

∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)

e(−h)GQG(ϕ,ψ, µT )V T , (14)

is the colorless part and,

LnZPP (h, T, V, µ) = (− h)V T G(, ,
µ

T
). (15)

is the PP part without the colorlessness condition. Finally,
the exact total colorless partition function is given by,

LnZ (h, T, V, µ) = Z̃ (h, T, V, µ)

= LnZ0 (h, T, V, µ) + LnZCC (h, T, V, µ) (16)

with Z0 (h, T, V, µ) is only the total grand partition func-
tion of the system without the CC, which can be rewritten
in its most familiar form as obtained in earliest papers(see
for example Ref.22):

LnZ0(h, T, V, µ) = V T 3

[
{
aQG +

NcNf
6π2

(
π2 µ

2

T 2
+

µ4

2T 4

)
− B

T 4

}
(1− h) + aHGh

]
(17)

where (B) accounts for the confinement of quarks and
gluons by the real vacuum pressure exerted on the per-
turbative vacuum of the bag model. A non-variable bag
constant B is not sufficient because the non-abelian na-
ture of QCD leads to the complicated non-perturbative
structure of the QCD vacuum. We will investigate some
additional consequences of the SU(3) colorlessness con-
dition of partonic matter beyond those studied and pub-
lished previously [18,19], especially in the context where
no approximation is used.
One of the advantages of factorizing the total partition
function (16) to be able to easily switch on/off the CC in
the calculations. As a consequence of its definition, the
colorless part of the partition function ZCC (q, T, V, µ)
possesses a certain main property which it is desirable
to state at once. This property expresses the fact that if
we want to omit the CC from the calculation and in order
to recover the ordinary partition function Z0(h, T, V, µ)
(Rel.17), just put this part of the partition function equal
to one:

ZCC (q, T, V, µ) = 1. (18)

Thus the CC influence of a specified parton on its envi-
ronment is to reduce the number of the possible states of
the whole system.
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3.3 Unified Lm,n-Method : to be Colorless
and not to be Colorless

The definition of the Hadronic Probability Density Func-
tion (hpdf) in our model is given by,

p(h, V, T, µ)

1∫
0

Z (h, V, T, µ)dh = Z (h, V, T, µ).

(19)
Since our hpdf is directly related to the partition func-
tion of the system, it is believed that the whole infor-
mation concerning the deconfinement phase transition
is self-contained in this hpdf. Then we can perform the
calculation of the mean value of any TRFQ(h, T, µ, V )
characterizing the system in the state h by,

Q(T, µ, V ) = 〈Q (h, T, µ, V )〉

=

1∫
0

Q (h, T, µ, V )p(h, V, T, µ)dh. (20)

For the sole purpose of simplifying the different relation-
ships in what follows, we define the mean value of the
temperature(volume) derivative of Z̃(h, T, µ, V ) as

∂xZ̃ (T, V, µ) = 〈∂Z̃(h, T, µ, V )

∂x
〉, (x = T, V ) (21)

In our previous work, as mentioned above, a new method
was developed, which has allowed us to calculate easily
physical quantities describing well the deconfinement
phase transition to a PM in a finite volume V [13–15],
namely the Lm,n method.
This method will enable us to carry out the study of the
hydrodynamical time evolution of the system using the
EoS of the Colorless QCD MIT-Bag model.
The most important result consists in the fact that prac-
tically all TRF calculated in this context can be simply
expressed as a function of only a certain double integral
coefficient Lm,n (q, T, V ), as defined in our previous
articles [13–15] and given by:

Lm,n (q, T, V ) =

∫ +π

−π

∫ +π

−π
dϕdψM(ϕ,ψ)(G(ϕ,ψ, 0))m

eq R(ϕ,ψ;T,V )

(R (ϕ,ψ;T, V ))
n , (22)

where the function R (ϕ,ψ;T, V ) is given by,

R (ϕ,ψ;T, V ) =

(
G(ϕ,ψ, 0)− aHG −

B

T 4

)
V T 3.

(23)
It’s obvious that these Lm,n(q, T, V ) are just state func-
tions depending on (T ,V ) and of course on state variable
q, and they can be calculated numerically at each value
of temperature T and volume V .

The idea is to try to rewrite the Lm,n (q, T, V ), in a way
to make appear the ZCC term, and thus be able to play
easily on the taking into account of the CC. We extrapo-
late in a very transparent way the colorlessLm,n-method
towards non-colorless case. In this sense, we build a
unified treatment of both cases, such that there is no fun-
damental difference defining an artificial border between
colorless confinement phase transition and non-colorless
confinement phase transition. In order to have the same
mathematical description of our system with and without
the CC, one starts to re-write these Lm,n (q, T, V ) in an
important form,

Lm,n (q, T, V ) =
9π2

4

m∑
k=0

Ckm
Kk

(V T 3)m−k

[ ∫
Dq
]n+k−m

eqR(0,0;T,V )ZCC (q, T, V, 0) (24)

where Ckm = m!
k!(m−k)! , K = aHG + B

T 4 and[ ∫
Dq
]p

=

∫ ∫ ∫
....

∫
dqdqdq....dq︸ ︷︷ ︸

p−times

(25)

The function R (0, 0;T, V ), can be deduced from the
general form given by the relation (23),

R (0, 0;T, V ) = (aQG −K)V T 3. (26)

As a consequence of the new definition of the Lm,n given
by the relation (24) and using the property (18), we can
derive the appropriate relation giving the Lm,n without
the CC,

L NCC
m,n (q, T, V ) =

9π2

4

m∑
k=0

Ckm
Kk

(V T 3)m−k[ ∫
Dq
]n+k−m

eqR(0,0;T,V ). (27)

Therefore, we summarize the two definitions of the Lm,n

: {
Lm,n (q, T, V ) with CC

L NCC
m,n (q, T, V ) without CC. (28)

We have a potent formula allowing us a direct translation
of any function of these Lm,n when the CC is taken
into account into the same function using L NCC

m,n when
the CC is not included in the calculation and vice versa.
This makes the analytical transition from colorless case
to no-colorless case very simple.{

Q(T, µ, V )CC = f(Lm,n).
Q(T, µ, V )NCC = f(L NCC

m,n ).
(29)

We will consider the case of vanishing chemical poten-
tial (µ = 0) and on only two lightest quarks u and d
(Nf = 2) and a massless pionic matter. The common
value B1/4 = 145MeV for the Bag constant will be
used.
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4 Finite Volume Colorless QCD
Thermodynamics: Results and
Discussions

4.1 Order ParameterH(T, V ) and Violette
Term V (T, V )

Two quantities are very important in our model which are :
the mean value of the hadronic volume fractionH(τ, V ),
which is considered as the order parameter of the phase
transition under consideration and the mean value of
the partonic degrees of freedom number V (T, V ) [23].
According to (19,20), these quantities are given by,

H(T, V ) =

1∫
0

hp(h, T, V )dh. (30)

We can also define the fraction of the total volume occu-
pied by the partonic plasma as q = 1− h and its mean
value as:

Q(T, V ) =

1∫
0

q p(h, T, V )dh. = 1−H(T, V ). (31)

First of all, we shall define the following TRF as repre-
senting the difference of the state function L0,1(q) in the
PM state and in the HM state

∆L0,1 = L0,1 (1)−L0,1 (0) (32)

In terms of Lm,n, the three quantities thus evoked before
are given by,

H(T, V )∆L0,1 = L0,2 (1)−L0,2 (0)−L0,1 (0) ,
(33)

Q(T, V )∆L0,1 = L0,2 (0)−L0,2 (1) + L0,1 (1) ,
(34)

V (T, V )∆L0,1 = L1,1 (1)−L1,2 (1) + L1,2 (0) ,
(35)

Also we can define the thermal derivatives of these func-
tions as :

• Hadronic Thermal Susceptibility

χHT (T, V ) = ∂TH(T, V ) = −∂TQ(T, V ) (36)

• Partonic Thermal Susceptibility

χPT (T, V ) = ∂TV (T, V ) (37)

We have shown that any TRF investigated within our
model [23], can be written by means of these fundamental
quantities.

4.2 Energy Density ε(T, V ) and Entropy
Density S (T, V )

The mean value of energy density ε(T, V ) is the most
important TRF and using the definition

ε(T, V ) =
T 2

V
∂T Z̃ (T, V ) (38)

thus, collecting terms to show up the fundamental TRF
H(T, V ), Q(T, V ) and V (T, V ) we obtain,

ε(T, V ) = 3T 4[aHGH(T, V )+V (T, V )]+BQ(T, V ).
(39)

We also can calculate the thermal derivative of the
ε(T, V ),

cT (T, V ) = ∂T ε(T, V ) = 3T 4(aHGχ
H
T + χPT )

+12T 3 [aHGH(T, V ) + V (T, V )]−BχHT . (40)

representing the specific heat of the system. When, in-
serting (33,34,35) in (39), we get the final expression of
ε(T, V ) in terms of Lm,n (q, T, V ). However, a prob-
lem appears when trying to calculate the Entropy Density
directly from its standard definition, but we can perform
the calculation easily from the energy density ε(T, V ) or
the specific heat cT (T, V ):

S (T, V ) =

∫
T−1∂T ε(T, V )dT

=

∫
T−1cT (T, V )dT = T−1ε(T, V )

+

∫
T−2ε(T, V )dT (41)

4.3 Thermodynamic Pressure P(T, V ),
EoS and Sound Velocity C 2

s (T, V )

The mean value of the thermodynamic pressure is calcu-
lated using the standard definition:

P(T, V ) = T∂V Z̃ (T, V ) , (42)

and after some mathematical calculation we can arrive
at the final expression showing the contribution of each
phase,

P(T, V ) = aHGT
4H(T, V )−BQ(T, V )+T 4V (T, V ).

(43)
A rapid growth of the pressure was clearly observed just
after the transition temperature(see Ref. 13), especially
when the volume approaches the thermodynamic limit.
When expressing the pressure as a function of the energy
density, the relation becomes more simple in its compact
form :

I (T, V ) = ε(T, V )− 3P(T, V ) = 4BQ(T, V ).
(44)
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Figure 1: Trace Anomaly from our EoS.

The difference between ε and 3P is known as the interac-
tion measure(or trace anomaly) I (T, V ), which vanishes
for a massless, non-interacting gas and is non-zero in the
case of an interacting system. It has been well under-
stood in our Colorless QCD-MIT Bag Model how the
non-zero value of the interaction measure is related to the
CC and the vacuum contribution. The appearance in our
EoS of the term 4BQ(T, V ), in which the TRF Q(T, V )
(Rel.34) is written based on the complex form of the
color double integral Lm,n (q, T, V ) (Rel.22), makes it
very complicated analytically. What we mean is that
the complexity of our EoS emerges from the presence
of color symmetry. This term marks well the difference
with the relativistic EoS, commonly used: 3P = ε. It
is connected to everything that happens during the de-
confinement phase transition; therefore, one recognizes
its non-perturbative origin. The plots given in the figure
(Fig.1) illustrate the variation of the interaction measure
I (T, V ) as a function of temperature for different vol-
umes [23]. We find that our results are in good agreement
with the common behavior of the trace anomaly. In par-
ticular, at low temperatures, I (T, V ) rises rapidly, and
at high temperatures, it slowly decreases, letting emerge
a maximum point just beyond the finite volume transi-
tion point. The volume dependence is small in both low
and high temperatures. However, this dependence is no-
ticeable in the central region, around the maximum. Just
above the finite volume transition temperature T0(V ), the
system is not in an ideal state. The mutual interactions
between partons lead to a resulting non vanishing inter-
action measure, which manifests a good agreement with
different models, like the hot lattice QCD calculations.
The fact that even at high temperatures, the pressure, en-
ergy density, and entropy density of the partonic matter
are far from their ideal gas values indicates substantial
remaining interactions among the partons, highlighting
the non-ideal nature of the strongly coupled PM.
Another quantity that will play an important role in the
hydrodynamic expansion is the relativistic sound velocity
C 2
s (T, V ), it measures the system’s tendency to expand

and the speed at which linear sound waves propagate.
When calculated from its definition, in the context of our
model, we obtain,

3C 2
s (T, V ) = 3

(
∂P

∂ε

)
= 1 + 4BχHT c

−1
T . (45)

A relationship that shows how sound velocity C 2
s (T, V )

is connected to both hadronic thermal susceptibility
χHT (T, V ) and specific heat density cT (T, V ). Finite
volume TRF, such as pressure and sound velocity, show
deviations from conformal ideal gas behavior even be-
yond the finite volume transition point T0(V ) and ap-
proach the ideal gas limit relatively in a rapid way than
in the case of the lattice QCD simulation [13]. Here also,
we can rewrite P(T, V ) and C 2

s (T, V ) as functions of
Lm,n (q, T, V ) using the relations (33-37). When, one
contemplates our EoS given by the two relations(44,45)
one notices the presence of an additional term, a com-
plicated non-perturbative term due to the confinement
phenomenon, marking a clear and important difference
with the conformal EoS. The general form of our EoS is
very similar to that obtained from lattice QCD calcula-
tions [24, 25].

5 Hydrodynamic Evolution in the
Boost Invariant Bjorken Model

5.1 The frame-independence or just the
boost invariance symmetry

The boost invariance property of the multiple particle pro-
duction probably comes from ideas developed by Feyn-
man [26] in its famous paper in considering the multiple
hadron production in high energies as a phenomenon of
field radiation. The boost invariance is just the symmetry
of the physical systems with respect to the Lorentz boosts
along the beam axis, from which particular constraints
are imposed on the form of the related physical quantities.
The frame-independence symmetry or just the boost in-
variance symmetry is very frequently used in the models
describing the evolution of matter created in the URHIC.
It reduces the number of independent variables and fa-
cilitates theoretical calculations. Bjorken in his famous
paper has succeeded to give global importance in using
this symmetry [27], where he implemented this symmetry
into hydrodynamic equations and made estimates of the
initial energy density accessible in the URHIC. From the
experimental point of view, one can notice that the boost-
invariance may be regarded as the good approximation
only for the central region of an URHIC. In other words,
there is an invariance of the system in all frames related
to the center of mass frame by a boost transformation
along the longitudinal direction. In the Bjorken model,
and after a certain proper time, we assume the system
acquires this boost invariance symmetry allowing a fur-
ther expansion governed by the hydrodynamic equation
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of motion. This symmetry provides a natural mechanism
which eventually leads to a flat inclusive longitudinal ra-
pidity distribution and it also admits a sharp cutoff in the
inclusive transverse momentum distribution. These fea-
tures differ from those of Landau’s model [30, 31]. The
hydrodynamic evolution preserves this boost-invariance,
which in URHIC is expected to be realized near mid-
rapidity [27].

5.2 Hydrodynamical Description in Milne
Space-Time

We shall begin this section by recalling the important
hydrodynamic equations of the perfect fluid by emphasiz-
ing the crucial role played by the initial conditions, that
should be very appropriate in the URHIC processes. Let’s
remember that the system subject to our study and formed
in URHIC starts expanding soon as it is produced. In both
sides of the deconfinement phase transition, it contains
a very huge number of particles in small finite volume
(partons in the PM and hadrons in the HM). If these par-
ticles interact strongly enough, the system may reach a
state of local thermodynamic equilibrium. If it can be
locally maintained during the subsequent expansion, the
further evolution of the PM and HM can be described
conveniently by RH. Hydrodynamics is a macroscopic
approach which describes the system by macroscopic
variables, such as local energy density ε(T, V ), pressure
P(T, V ), sound velocity Cs(T, V ), the dynamical num-
ber of degrees of freedom and entropy density S (T, V ).
It requires knowledge of the EoS, which gives a relation
between pressure, energy and entropy density, but not
detailed knowledge of the microscopic dynamics. The
simplest version is, of course the ideal RH, in which we
totally neglect viscous effects and assume that local equi-
librium is always perfectly maintained during the system
expansion [29]. Fundamentally speaking, this is fulfilled
when the scattering time is very much shorter than the
macroscopic evolution time and that the mean free path
is much smaller than the system size. We say that colli-
sions between particles keep the system in approximate
local thermal equilibrium. If this is not satisfied, viscous
effects manifest, and one can take them into account only
when the deviation from local equilibrium remains small.
When the system is far away from equilibrium, one has
to switch to a kinetic theory approach, such as parton
or hadron cascade models. Therefore, hydrodynamics
allow us to study the deconfinement phase transition to
the CPP in a simple, straight forward manner. We notice
that the EoS used in our analytical calculation provide us
the good behavior of the hydrodynamic evolution starting
from the PM phase. For a neutral fluid, the equations for
hydrodynamics are simply the stress tensor and entropy
conservation laws:{

∂µT νµ = 0
∂µS U µ = 0

(46)

where T νµ denotes the expectation value of the quan-
tum stress tensor operator. T νµ is in turn expressed via
constitutive relations in terms of a derivative expansion
of four hydrodynamic fields which we will choose to be
the temperature T in the local fluid rest frame and the
local fluid four-velocity U ν , normalized according to
U νUν = −1. Up to first order in derivatives, T νµ can
be written as

T νµ = ε(T, V )U νU µ + P(T, V )∆νµ

−σ(T, V )Πνµ − Σ(T, V )∂αU α∆νµ (47)

where{
∆νµ = ηνµ + UνUµ

Πνµ = (∆α
ν∆β

µ − 1
3∆νµ∆αβ)(∂αUβ + ∂βUα)

(48)
Based on the tensor algebra rules, the indices are raised
and lowered using the Minkowski metric : ηνµ. The
coefficients σ(T, V ) and Σ(T, V ) are the shear and bulk
viscosities, respectively. We can also continue the deriva-
tive expansion (47) to any higher order by including all
possible terms allowed by symmetries and the local sec-
ond law of thermodynamics.
In URHIC at RHIC and LHC, approximate invariance un-
der the longitudinal Lorentz boost is observed in particle
rapidity distributions around mid-rapidity. The Bjorken
scaling expansion of the system can best be described
by using the proper time τ =

√
t2 − z2 and space-time

rapidity η = tanh(1 − (z/t)) variables, usually called
Milne coordinates. The central point is the one dimension
ansatz for the 4-velocity Uµ = (t, 0, 0, z)/τ ; indicating
the proportionality between velocity in the z-direction
Uµ to z, which is an analogy to three-dimensional Hub-
ble flow of the universe. it is also called one-dimensional
Hubble flow.
Note that all volume elements are expanded linearly with
time and move along straight lines from the collision
point. Exactly as in the big bang, for each “observer”
(the volume element) the picture is just the same. The
history is also the same for all volume elements if it is
expressed in its own proper time τ . In the context of
the Bjorken symmetry, any TRF becomes independent
of η and depends solely on the proper time τ . When
composing this TRF with the duality temperature-time
relation T (τ), we get the corresponding tRF.
The boost invariance in the Bjorken model means that the
central rapidity regime is initially approximately Lorentz
invariant under longitudinal boosts, so that conditions at
point z at time t are the same as those at z = 0 at proper
time τ . Such invariance greatly simplifies the mathemati-
cal calculations in solving equations, since it relates the
distribution function at different points z in the central
region and is manifested as a central rapidity plateau in
the final particle distribution produced in URHIC.
The time evolution of the system can be studied by the
hydrodynamical Bjorken equation [27]. For one dimen-
sional expansion scenario in Bjorken Model of an Ideal
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Relativistic fluid, from the two conservation laws (46) we
can deduce, {

τ∂τ ε = −(ε+ P)
τ∂τS = −S .

(49)

The first equation can be deduced from

∂(τε)

∂τ
= −P, (50)

and the second provides the cooling law obtained by
Bjorken in his paper [27].
If the system does not have an ideal EoS but instead has
an EoS with a constant speed of sound, then it follows
that (P = ζε), where we have fixed the constant by
demanding that the pressure goes to zero when the energy
density goes to zero. The general EoS (P = ζε), which
is of simple kind most commonly known in theoretical
calculations, can be used to derive the most important
hydrodynamic relations. If the EoS has varying speed of
sound, then one can express the pressure P in terms of
an integral of ζ . Indeed, when considering ζ as a constant
and integrating the two partial differential equations (49)
with appropriate initial conditions τ = τi we get,

ε(τ) = ε(τi)
(τi
τ

)1+ζ

, (51)

S = S (τi)
(τi
τ

)
(52)

and,

P(τ) = P(τi)
(τi
τ

)1+ζ

. (53)

In fact, the power-law scaling in different tRF is due to
the Bjorken symmetry and related to the underlying EoS,
except the solution given by the relation(52) which does
not depend on the EoS. However, using the thermody-
namic relation TS = ε + P , we can easily find the
temperature as a function of τ ,

T (τ) = T (τi)
(τi
τ

)ζ
, (54)

indicating that there is a one-to-one correspondence be-
tween temperature T and τ .
An important feature to be noticed from these solutions
that the energy density ε(τ) and pressure P(τ) decrease
faster than the entropy S (τ) under the scaling expansion
of the fluid. The different solutions obtained and given
by the relations(51-53) indicate that the system cools non
linearly in time, and also, explain that the time evolution
is the same in both two phases of the system
We see, thus, that with these considerations that the time
evolution of any TRF is a function of only proper time
τ and depends on the initial conditions for the hydrody-
namic flow. Thus the expanding matter system would
appear to be similar in all frames related by different

Figure 2: Diagram of temperature T (τ) as a function of
the proper time τ during the evolution from PM phase to
a HM phase.

homogeneous Lorentz transformation. This feature is re-
ferred to exactly what we recall the frame-independence
symmetry or boost invariance.
Now, during the mixed phase system the temperature
is keep invariant and the evolution is isothermal. The
relation (51) remains valid and using the same thermo-
dynamic relation as above, we can easily derive the new
relation giving the entropy density as a function of τ ,

S = S (τi)
(τi
τ

)1+ζ

. (55)

This relation is very different from (52) showing the en-
tropy density decreases more rapidly during the confining
phase transition than in the PM and HM phases.

5.3 Time Evolution, Important Times and
Lifetimes

For simplicity, we consider an URHIC in which there
is an important Lorentz contraction in the longitudinal
direction allowing to represent the two heavy ions as
two thin disk. When the two nuclei cross each other and
due to the color transparency, recede from each other
after the collision. A large amount of energy is deposited
in a small space-time volume. The hot matter created
in the collision region has a very high energy density,
but a small net baryon content. This is similar as in the
case of the very small net baryon content of the early
universe, for this reason the type hot matter which may
be produced is of special astrophysical interest. Since
the ground state of matter with such an energy density
is in the PM phase and not in the HM phase, the quanta
which carry the energy deposited in the collision region
around z = 0 can be in the form of different partons. The
excited partons can rescatter and emit new particles and
thereby evolve through a pre-equilibrium stage towards
a thermalized CPP state, from which the system evolves
further according to the laws of RH. It is expected that
most of the entropy and transverse energy are produced in
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this pre-equilibrium stage. Moreover, the parton dynam-
ics during this stage determines the initial and boundary
conditions for a hydrodynamic expansion of the hot PM,
so all the physical space time evolution, which comes
afterwards takes its origin from these pre-equilibrium and
thermalization stages. This the main idea in Bjorken’s
model of the space-time scenario for a URHIC, indicating
that after the collision of the two nuclei at (z, t) = (0, 0),
the energy density may sufficiently high to make it likely
that a system of PM may be formed in the central ra-
pidity region. The PM initially may not be in thermal
equilibrium, but subsequent equilibration may bring it to
local equilibrium at the proper time τi, and then the PM
may then evolve according to the laws of hydrodynamics
thereafter. One can imagine the process of an URHIC
whose time evolution naturally splits into the following
stages(early, transient and late time stages):

• begining of the URHIC (τ = 0) and a Glasma state
formation if one adopt the Color Glass Conden-
sate(CGC) model [28],

• equilibration of the PM at τi and high temperature
Ti � T0,

• beginning of the hydrodynamic evolution of the PM
at τi,

• beginning of confinment phase transition and the
hadronization at τ0,

• end of confinement phase transition and the
hadronization at τH and formation of the HM,

• beginning of the hydrodynamic evolution of the HM
at τH ,

• beginning of the hadronic free streaming and
hadronic freeze-out at τf .

In this section we try to explain how to study the time
evolution of our system when the CPP start to cool, and
the HM start to form. As we know, based on the space-
time diagram of Bjoken Model [27], the hadronization
of CPP can be explained as follow: after collision and
creating the CPP phase in initial proper time τi and high
temperature Ti � T0, the CPP starts to cool-down in
time.
Under the assumption that thermal equilibrium is attained
within the formation (τi), the time dependence of the tem-
perature can be estimated in a hydrodynamical model.
A graphical representation of this evolution is shown in
(Fig.2). This figure depicts the longitudinal time evo-
lution of hot matter with a first-order phase transition
created at the central rapidity region of an URHIC. After
a certain initial time (τi) the produced CPP is considered
in thermal equilibrium at an initial temperature Ti. If we
assume that no dissipation occur during both expansion
and confining phase transition, meaning that these two
process are assumed to be adiabatic therefore isentropic

expansion of the fluid is presumed up to the transition
temperature T0(V ). During the transition from the CPP
to HM, the temperature in the mixed phase is maintained
constant meaning that the expansion is isothermic. The
latent heat of the first order confining phase transition
is absorbed in the conversion of the partonic degrees of
freedom into hadronic degrees of freedom. At (τH) the
hadronization is completed and the HM starts to cool
down under isentropic expansion up to (τf ) where the
density of the system is low enough for the hadrons to
escape. As the hadronization process was completed and
the hadronic fireball formed in the URHIC expands, its
density decreases and the hadronic mean free path in-
creases. Eventually, this process leads to the decoupling
of hadrons, becoming non interacting and moving freely.
During the time evolution of the system undergoing the
colorless confining phase transition, from the PM to the
hadronic gas passing by the mixed phase and the HM,
three broad and distinct periods emerge in the whole time
evolution separated by four times or instants:

• the initial time τi at which the temperature Ti is
large enough to produce the CPP, Ti > T0,

• the transition time τ0 at which the temperature drops
to the transition temperature T0,

• the hadronic time τH at which the hadronization
process is completed. At this time a HM is formed.
The last two times, namely τ0 and τH are calculated
using the following relations:

∂2T
∂τ2 (τ = τ0, V ) ≡ Maximum or

H(τ0) = 1/2
∂2T
∂τ2 (τ = τH , V ) ≡ minimum or

τH = τ0

(
aQG
aHG

) 1
(1+ζ)

τ0

The relationship relating τH with τ0 can be easily
derived from the entropy density of the system (55)
as given in Ref.(30).

• The freeze-out time τf at which the hadrons become
free without interactions. At this time the hadron
breakup occurs.

From these four times we can thus define three lifetimes:

• the lifetime of the hot matter during the pre-
equilibrium stage: ∆τG = τi, called Glasma in
the framework of CGC model [28],

• the lifetime of the CPP phase given by: ∆τCPP =
τ0 − τi,

• the lifetime of the confining phase transition given
by: ∆τPT = τH − τ0,

• after the phase transition is completed at τH , the in-
teracting HM undergoes a hydrodynamic expansion.
The lifetime of this Hadronic phase until the freeze
out is given by: ∆τHG = τf − τH .
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The times and lifetimes, thus defined, are important for
a good description of the time evolution of our system.
It should be noted that our model allows us to study
easily the FSE on these times and lifetimes, thus the FSS
properties are investigated.

6 Bjorken Expansion in Colorless-
QCD Confining Phase Transition

6.1 Solution of Finite Volume Bjorken
Equation: T (τ, V )

The time evolution of the expanding CPP, created in
URHIC and undergoing the confining phase transition to-
wards a HG, will be discussed in the context of a unified
model combining our Colorless QCD-MIT Bag Model
with the boost invariant Bjorken expansion. Such a model
is a more physical generalization of the previous simpli-
fied models. The better way is to solve the finite volume
Bjorken equation in order to deduce the variation of the
temperature T (τ, V ) as a function of the proper time τ
and of the volume V [31]. Initially, for (τ ≥ τi), the
CPP system expands and cools down with decreasing
temperature under the relation (54) with initial condi-
tions (Ti ∼ 2T0) and τi ∼ 0.1 − 1fm/c until reaching
T0(V ) the transition temperature at time τ0. At τ0, the
phase transition starts, a mixed phase system starts to
develop until converting totaly PM phase into HM phase
at τH , the temperature of the total system is maintained
constant (T0 ∼ TH ). After τH the system is completely
in hadronic phase and continues to cool down until the
freeze-out time τf .
The solution of the finite volume Bjorken equation using
our EoS (44) is given by:

τ(T, V ) = τi exp

[∫ T (τi)

T (τ)

3cT (T, V )

4(ε(T, V ) + BQ(T, V ))
dT

]
,

(56)
where (τi) and (T (τi)) are the initial time and the initial
temperature when the system is in the PM phase. With a
specific numerical method, the results of the integration
of the Bjorken equation are presented in Figs.(3,4). We
show the variation of temperature as a function of the
proper time τ : T (τ, V ) at different volumes. Also the
effect of the CC is displayed. We have considered a
range of variation of the volume as 100− 1000fm3 and
analyzed the role played by the CC. We have extracted
the different times and calculated the different lifetimes
as defined in the section (5.3).

6.2 Results and Discussion
In this paragraph we intend to summarize the results ob-
tained from the solution of the finite volume Bjorken
equation. These results concern the different times and

Figure 3: Temperature evolution vs the proper time τ
with initial conditions τi = 0.6fm/c and Ti = 200MeV
without colorlessness condition and for different volumes
V .

Figure 4: Temperature evolution vs the proper time τ
with initial conditions τi = 0.6fm/c and Ti = 200MeV
with colorlessness condition and for different volumes
V .
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lifetimes characterizing our system evolving from the
CPP state until HG state. In the figures (3,4), we show
clearly the same behavior as in Fig.(2) and a constancy
of the temperature during the phase transition mainly in
the thermodynamic limit. Initially, the temperature of the
system drops rapidly due to rapid longitudinal expansion.
During the next stages of the time evolution, the rate
of longitudinal expansion decreases progressively and
mainly due to the confining phase transition. The time of
the complete hadronization of the system is well localized
and defined in the colorless case, allowing a more precise
calculation of the lifetime of the CPP and getting a better
knowledge of its physical meaning. The shifting effect of
the transition point is clear on Fig.(4) as resulting from
the CC. In the case of the partonic plasma without the CC,
the temperature during the phase transition is not really
constant when the volume is finite. A slightly increas-
ing dependence on V is noticed in almost results apart
from the time τNCCH and the lifetime ∆τNCCPT in the case
without the CC. This is related simply on the difficulty of
extracting the times τNCCH because the second particular
point does not appear in a clear way even when the vol-
ume is large. However, we would point out that the CC
increases the times and lifetimes. The PM lifetime lies
in the range 2.86177fm/c ≤ ∆τNCCPP ≤ 3.58577fm/c
and the CPP lifetime lies in the range 3.03277fm/c ≤
∆τCCCPP ≤ 3.60614fm/c. An order of increasing no big-
ger than 6%. When we observe the results, we also note
that the lifetime of the colorless phase transition lies in
the range 40.79905fm/c ≤ ∆τCCPT ≤ 45.76331fm/c
and non-colorless phase transition lies 24.14182fm/c ≤
∆τNCCPT ≤ 44.44157fm/c.
Our results agree qualitatively and quantitatively with
the results obtained using different approaches [31–35,
37, 38, 47]. We find that in both PM and HM phases
the cooling is a little slower than predicted by Bjorken’s
scaling solution(θ . 1/3). However, in terms of cooling
speed the PM’s cooling is considerably faster than of
the HM. Another comparison makes us very confident
with our timescale, from the beginning of the hadroni-
sation process until the freezeout, which is in complete
agreement with the pionic freezeout time as evaluated in
the context of Hadronic Rescattering Model(HRM) for
URHIC in RHIC and LHC [39]. When we compare ours
results with those obtained from the hydrodynamic sim-
ulations [40] and from the fluid dynamical simulations
of URHIC in full 3-Dim space [41], a good qualitative
similarity should be noted. Due to the mere presence
of longitudinal expansion in our model, on can under-
stand why the times and lifetimes are relatively long and
the cooling process is slow. If one wants to develop a
complete model one has to include the transverse expan-
sion during the Bjorken type of longitudinal expansion
is happening. Certainly, a 3-Dim expansion will allow
the system to cool down more rapidly and to reduce the
different times and lifetimes. A prolongation of times and

lifetimes is noticed in case a rapid change in the degrees
of freedom occurs. Thus, we conclude that the effect
of the CC and the confining phase transition is to make
the times and the lifetimes longer than in other cases.
The effect of the CC in the CPP is the same as if the
CPP system possessed a certain viscosity. The different
parton-parton interactions making the PM to be colorless
generates a kind of viscosity in the system and the CPP
becomes non-ideal [13, 42].

7 Finite Size Scaling Study of dif-
ferent times and lifetimes in Col-
orless Case

7.1 Theoretical Derivations

Phase transitions occur in nature in a great variety of sys-
tems and under a very wide range of conditions. Phase
transitions are abrupt changes in the global behavior and
in the qualitative properties of a system when certain
parameters pass through particular values. At the transi-
tion point, the system exhibits, by definition, a singular
behavior. As one passes through the transition region,
the system moves between analytically distinct parts of
the phase diagram. The singularity in a first order phase
transition is entirely due to the phase coexistence phe-
nomenon, for against the divergence in a second-order
phase transition is intimately caused by the divergence of
the correlation length. Now, if the volume is finite at least
in one dimension with a characteristic size L = V 1/d,
the singularity is smeared out into a peak with finite math-
ematical properties and Four Finite Size Effects(4FSE)
can be observed [14]:(1) the rounding effect of the dis-
continuities,(2) the smearing effect of the singularities,(3)
the shifting effect of the finite volume transition point
T0(V ),(4) and the widening effect of the transition re-
gion around the transition point. These 4FSE have an
important consequence putting the first and the second
order phase transitions on an equal footing and can be
described easily by a simple power law when neglecting
the leading terms. In the case of a first order phase transi-
tion the FSS power law of the temperature-shifting effect
is given by [14, 15],

T0(V ) = T0(∞) + aV −1 +O(V −2), (57)

where T0(∞) is the temperature of the bulk transition
point. Using the relation between the temperature and the
proper time T (τ)(54) during the hydrodynamic evolution,
we can easily deduce the following FSS law of the time-
shifting effect,

τ0(V ) = τ0(∞)− τ0(∞)a

T0(∞)ζ
V −1 +O(V −2) (58)
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∆τCPP (V ) = ∆τCPP (∞)− τ0(∞)a

T0(∞)ζ
V −1 +O(V −2)

(59)
with  τ0(∞) = τi

(
Ti

T0(∞)

) 1
ζ

∆τCPP (∞) = τ0(∞)− τi
(60)

In order to extrapolate our FSS calculation for the
hadronic time τH we need to know how the FSE affect
this time. Previously, we have obtained and discussed
extensively the physical meaning of the particular points
appearing in different TRF and the emergent correlation
between them. [14,15,44,45] The transition temperatures
T0(V ) as a function of the hadronic temperature TH(V )
is shown in figure(Fig.5). While the results display a
linear correlation of T0(V ) with TH(V ) which can be
described by a relationship : TH(V ) = λT0(V ) + ρ with
λ = 0.24983, ρ = 78.46915. Thus, using the equation
(57) we can get,

TH(V ) = TH(∞) + bV −1 +O(V −2) (61)

with {
TH(∞) = λT0(∞) + ρ

b = λa
(62)

In fact, by inverting the problem, starting from the same
FSS’s law given by the two relations (57,61), we can
derive the following relation easily,

TH(V ) = (
b

a
)T0(V ) + T0(∞)(1− b

a
), (63)

a result in complete agreement with the correlation dis-
played in figure(Fig.5). And with the same analytical
derivation we obtain the FSS law of τH(V ),

τH(V ) = τH(∞)− τH(∞)b

TH(∞)ζ
V −1 +O(V −2), (64)

and,

∆τPT (V ) = ∆τPT (∞)−
[ bτH(∞)

ζTH(∞)
− aτ0(∞)

ζT0(∞)

]
V −1+O(V −2),

(65)
with  τH(∞) = τi

(
Ti

TH(∞)

) 1
ζ

∆τPT (∞) = τH(∞)− τ0(∞)
(66)

We are interested in the viability of the derived time FSS’s
laws that could explain the FSS behaviors of times and
lifetimes, then it is natural to check if our theoretical
calculations fit well our results.

Figure 5: Linear correlation between TH(V ) and T0(V ).

7.2 Results and Discussion
The FSE are more than clear on the whole TRF inves-
tigated in this work specially in the colorless case. For
this reason, we have performed a detailed FSS study of
different times and lifetimes. The results obtained in solv-
ing the finite volume Bjorken equation with the initial
conditions τi = 0.6fm/c and Ti = 200MeV when the
volume varies in the range of 100−1000fm3 are plotted
as functions of the volume on Figs.(6-9). The simple
way to do this, is to study these quantities as functions
of the volume and try to fit the FSS behavior using the
relationships derived before. From the relations derived
previously concerning the FSS laws of times and life-
times (58,59,64,65) during the hydrodynamic evolution,
we can write them in more general forms,{

τ(V ) = α+ βV −1 +O(V −2)
∆τ(V ) = γ + δV −1 +O(V −2)

(67)

We focus on the scaling times and lifetimes with system
size. In finite-size systems, times and lifetimes may con-
verge to a finite value, which goes to bulk value when
the system volume goes to infinity. However, using an
approach based on the standard FSS theory we show that
the FSS of times and lifetimes should scale with inverse
polynomial of the volume.
The inverse law between the temperature and the proper
time transforms the shifting towards the low tempera-
tures into shifting towards the high times. In the end, it
all comes down to the simple and unique distinctive dif-
ference regarding the sign of the different fit parameters:
α > 0, γ > 0 and β < 0, δ < 0. The decreasing behav-
ior of the different temperatures becomes an increasing
in different times until reaching the thermodynamic limit.
In the thermodynamic limit, we notice the physical mean-
ing of the two fit parameters α and γ as being the bulk
values of times and lifetimes.{

lim
V→∞

τ(V ) = τ(∞) = α

lim
V→∞

∆τ(V ) = ∆τ(∞) = γ
(68)
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Figure 6: The second-order FSS fitted curve (Rel. 67) of
τCC0 (V ).

Figure 7: The second-order FSS fitted curve (Rel. 67) of
τCCH (V ).

Table 1: Fit parameters of the four times τCC0 (V ) ,
τCCH (V ) , ∆τCCCPP (V ) and ∆τCCPT (V ).

fit s τCC0 τCCH ∆τCCCPP ∆τCCPT
parameter

α(γ) [fm/c] 4.267 50.280 3.667 46.013
−β(−δ)

[
fm4/c

]
63.8 613.7 63.85 549.945

χ2 0.999 0.972 0.999 0.9668

Figure 8: The second-order FSS fitted curve (Rel. 67) of
∆τCCCPP (V ) .

Figure 9: The second-order FSS fitted curve (Rel. 67) of
∆τCCPT (V ) .
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We have to notice that the FSE are more evident and clear
in the CC than in the NCC and the quality of the fits
in the colorless case is better than the case without the
CC. Probably this is due to the fact that the CC make a
larger contribution in the FSE. As we see in Figures (6-9),
the derived time-FSS’s laws (Rel. 67) fit very well our
results. It is important to note that the results of τCC0 (V )
and ∆τCCCPP (V ) are well described than those of τCCH (V )
and ∆τPTCPP (V ). It appears that this can be essentially
explained by the effect of CC which is predominately
present in the PM phase. The different values of the χ2

are all larger than 0.94. The table (1) contains the numer-
ical values of the fit parameters. The lifetime of our CPP
is about 3.667fm/c and the duration of the colorless
confining phase transition is about 46.013fm/c. We find
that the system spends much of its time in such a mixed
phase during the confining phase transition. This means
that the expansion rate in both hadronic and partonic
matter is fast compared to the hadronization rate [46].
After the CPP reaches the transition temperature T0(V ),
it must convert the entropy stored in the partonic matter
into the entropy of a hadron matter. Since the degrees of
freedom of the CPP are an order of magnitude larger than
those of a HM, this conversion takes a long time. If the
system is only longitudinally expanding during this time,
the ratio of the time at which the plasma began the phase
transition, τ0(V ), to that at which it completes the phase
transition, τH(V ) is given by the ratios of these degrees
of freedom τH/τ0 ≈ aQG/aHG ≈ 12− 13. The system
spends a very long time in mixed phase at a tempera-
ture close to the transition temperature T0(V ). We have
obtained somewhere long lifetime, indicating that the
longitudinal expansion alone is not sufficient. Thus the
inclusion of a transverse expansion would certainly cool
the system more rapidly and reduce its lifetime. It is re-
markably interesting to note that our lifetimes are in good
agreement with those, averaging the values of the initial
conditions, obtained by other models [31–33, 35, 47].

8 The Effects of Initial Conditions
(Ti, τi)

8.1 Early Stages and Importance of the
Initial Conditions

As shown previously, our hydrodynamic model contains
a set of differential equations for each fluid element. The
integration of these differential equations necessitates
initial conditions for the system consisting of the distribu-
tions of energy, charge densities, and the velocity fields at
an initial time (τi) appropriately chosen. It is important
to remember that once the EoS, and initial conditions
for the differential equations are fixed, the hydrodynamic
equations govern the space-time evolution and described
by their solutions. In the ideal fluid approximation, only

the EoS of the fluid system contains the complete infor-
mation about the nature of the constituents of the fluid
and their mutual microscopic interactions.
We know that many works have been published trying
to draw a bridge from the original quantum state of the
two colliding ultra-relativistic heavy ions towards the
macroscopic matter that defines the initial conditions, in
order to initiate the hydrodynamic expansion. It is not
the topic of the present work related to the energy density
of the system (εi) without detailed features. Only, we
focused on trying to learn more about the hydrodynamic
expansion, given by the simplest version of the 1-Dim
space Bjorken flow, using our colorless EoS without any
approximation. Only, in order to keep a clear picture and
to study the effect of the CC on the hydrodynamic expan-
sion, that our first choice was a simple 1-Dim expansion
meaning that we do not consider transverse expansion.
Thus the initial conditions needed to solve the hydrody-
namic equations were simple, initial values of time and
temperature: (Ti, τi). The 3-Dim expansion, including
all necessary details, is planned for future work.
Many of early works on hydrodynamic properties from
the produced PM used this kind of initial condition. Some
(3 + 1)Dim codes for such purposes also have been devel-
oped (see Ref. 49). Later, phenomenological or theoreti-
cal approaches on the physics of the URHIC advanced,
and several realistic models have been developed. How-
ever, with the advent of the experimental program at
RHIC and LHC, early studies of the experimental results,
which started in 2001, have been conducted using hy-
drodynamic calculations based on different approaches
like,

• The simulation approach using the geometrical point
of view of the URHIC, called Monte-Carlo Glauber
model (MC-G) [50]. The centrality is an impor-
tant property of an URHIC, and given by the im-
pact parameter of the collision. It is relatively well-
estimated on an event-by-event basis. The impact pa-
rameter is a crucial factor in determining the overlap
geometry of the nuclear collision, but unfortunately
alone is not enough to determine more detailed fea-
tures of initial conditions.

• More elaborated microscopic transport models were
built, based on nucleon-nucleon event generators
such as HIJING, PYTHIA, NEXUS, UrQMD, etc
[49]. Full 3-Dim space hydrodynamic simulations
were performed (See Table 3 of reference 48).

• The theoretical ideas evolve, the vision of phenom-
ena change and new models are emerging. In this
context, a new approach appeared, may be the most
interesting because it enables us to relate the initial
conditions of the system easily to the state of its fun-
damental structure. This approach is very different
and is based on the fundamental property of gluon
saturation in QCD at high energies, assimilating an
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URHI as a Lorentz-contracted of highly coherent
and dense gluon matter, called Color Glass Conden-
sate (CGC) [28], a universal form of hadronic matter
at extremely high energies. Then, an URHIC can
be viewed as a collision of two CGC sheets creat-
ing between them a coherent classical gluon field,
called Glasma, which eventually decays into differ-
ent partons and thermalizes, forming the PM. In the
context of this model, the initial energy-momentum
tensor is estimated from the glasma state.

The conceptual difference between the different ap-
proaches mentioned above leads to very different pictures
for the initial state in order to start the hydrodynamic
expansion. Therefore, different models can exhibit quan-
titative differences and depending on the initial condition
model, the initial profile of the energy density distribution
changes appreciably, and the final observables, like parti-
cle multiplicities and their fluctuations, can be affected
also.

8.2 Initial Conditions in Our Model
In studying the space-time evolution of a hot QCD mat-
ter, once it has been formed in an URHIC, it is usually
assumed that RH is applicable. Furthermore, even if a
hydro-dynamical description is appropriate, one needs
to fix the boundary and initial conditions. As it is well
known that our time-Bjorken equation describing the
hydrodynamic expansion of our system its integration
should be supplied with the appropriate initial conditions.
These initial conditions are very important to start the
time evolution of the system under consideration. The
initial conditions are the necessary ingredient for solving
the hydrodynamic equations and the resulting solutions
depend intimately on their choice. Therefore, the effect of
initial conditions of proper time and temperature (Ti, τi)
on hydrodynamical evolution of the system undergoing
the colorless confining phase transition is important to
investigate. The lack of information concerns the initial
conditions, since these depend on the pre-equilibrium
stage of the URHIC, a crucial little known stage, that
is, the space-time evolution of the system from the mo-
ment of nuclear overlap between the two heavy ions to
the establishment of an equilibrated PM. The initial con-
ditions for the hydrodynamic description (Ti, τi), at a
specified time to when the fluid dynamical expansion of
the plasma starts, depend sensitively on the preceding
space-time evolution during the pre-equilibrium stage.
They are usually chosen on the basis of rough but ac-
ceptable estimates based on different approaches. The
pre-equilibrium phase is of crucial importance because
it has proved to have an influence on the hydrodynamic
expansion of the PM and on the yield of certain physical
observables. In this section we discuss in more detail
the effect of the initial conditions, in proper time and
temperature, used by us to analyze the behavior of the

Figure 10: Time evolution of TNCC(τ) vs the proper
time τ for different values of Ti (V = 1000fm3 and
τi = 0.6fm/c).

time evolution of the system.

8.3 Results and Discusion

The finite volume Bjorken equation is solved with some
particular initial conditions. As well known that, these
initial conditions are sufficiently chosen to ensure that
the PM is formed in an equilibrium state. Like the proper
time τi which expected to be around 0.1− 1fm/c [51],
and the initial energy density εi which, according to
Bjorken work [27], is estimated to εi ∼ 1−10GeV/fm3

for the RHIC collider and εi ∼ 15GeV/fm3 for Pb-
Pb collision in LHC collider [52]. In this work, we
choose the range of initial temperature Ti between
180− 300MeV which equivalent to initial energy den-
sity in εi ∼ 1.7− 12.7GeV/fm3. Because we have two
initial conditions (τi, Ti), in order to investigate the effect
of them one has to fix one and let the second variable. We
perform the work with a fixed volume V = 1000fm3

in the two cases : without and with the CC. The plots
displayed in figures(Fig.10-13) represent the results ob-
tained concerning the relation T (τ) for different initial
conditions:(Ti, τi). We see that the behavior of the whole
plots is the same as depicted by the first ones(Fig.3-4),
only there is some dilation in times with increasing the
initial conditions, which consequently is reflected by the
increase in different lifetimes. The plots displayed in fig-
ures(Fig.14-17) represent the different times and lifetimes
as a function on the initial conditions (Ti, τi). However
and in order to avoid overlapping, similar curves have
been shifted vertically for clarity. We notice an increas-
ing of the different times and lifetimes with increasing
the initial conditions. Even in the case of 3-Dim fluid
dynamical simulations of URHIC [41], similar behavior
is observed. The dependence of times and lifetimes on
the initial conditions is not affected by the CC.
When trying to fit these different plots using functions

16



Figure 11: Time evolution of TCC(τ) vs the proper time
τ for different values of Ti (V = 1000fm3 and τi =
0.6fm/c).

Figure 12: Time evolution of TNCC(τ) vs the proper
time τ for different values of τi (V = 1000fm3 and
Ti = 200MeV ).

Figure 13: Time evolution of TCC(τ) vs the proper time
τ for different values of τi (V = 1000fm3 and Ti =
200MeV ).

Table 2: Fit parameters of the four lifetimes ∆τNCCPP ,
∆τNCCPT , ∆τCCCPP and ∆τCCPT and the four times τNCC0 ,
τCC0 , τNCCH and τCCH .

fit parameters ∆τNCCPP ∆τCCCPP ∆τNCCPT ∆τCCPT

µT 3.02625 3.00008 2.99526 3.00068
µτ 0.98727 1.0000 0.98727 1.000

τNCC0 τCC0 τNCCH τCCH

νT 3.0279 3.00067 2.99809 3.00067
ντ 0.99369 1.0000 0.99320 1.000

given by the following power laws,{
τ(Ti) ∝ (Ti)

νT

∆τ(Ti) ∝ (Ti)
µT (69)

{
τ(τi) ∝ (τi)

ντ

∆τ(τi) ∝ (τi)
µτ ,

(70)

we obtain excellent results which are summarized in the
table (2).
These behaviors can be explained from the general forms
(Rel.60,66), predominantly due to the τ0(∞) and τH(∞)
as functions of τi and Ti and therefore a good agree-
ment is noticed. A similar behavior between the lifetime
and the initial energy density was observed in the con-
text of different approach [36, 37] and indeed confirms
our results. As the initial conditions become large, it
takes longer to cool the system and the different lifetimes
become longer. Finally, we can say that the numerical
values of the different exponents are basically,{

µT = νT ' 3
µτ = ντ ' 1.

(71)

9 Time Evolution of Thermal Re-
sponse Functions : time Re-
sponse Functions

9.1 Mathematical Property of Functions
Composition

In a system within our Colorless QCD MIT-Bag Model,
some TRF are discontinuous functions (like ε(T, V ),
H(T, V ), ...) and other TRF are continuous (like
P(T, V ),
C 2
s (T, V ), ... ). In any discontinuous TRF due to the first

order confining phase transition, which is related to the la-
tent heat, a finite discontinuity which is delimited by two
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Figure 14: Variation of ∆τNCCPP , ∆τCCCPP + 1fm/c ,
τNCC0 + 2fm/c and τCC0 + 3fm/c vs the initial temper-
ature Ti.

Figure 15: Variation of ∆τNCCPT , ∆τCCPT + 10fm/c ,
τNCCH + 20fm/c and τCCH + 30fm/c vs the initial tem-
perature Ti.

Figure 16: Variation of ∆τNCCPP , ∆τCCCPP + 1fm/c ,
τNCC0 + 2fm/c and τCC0 + 3fm/c vs the initial time
τi.

Figure 17: Variation of ∆τNCCPT , ∆τCCPT + 5fm/c ,
τNCCH + 10fm/c and τCCH + 15fm/c vs the initial time
τi.

particular points. The solution of the Bjorken equation
that we have obtained has revealed that the discontinuity
in T (τ) is delimited by the same particular points. Math-
ematically speaking in order to get the time dependence
of any TRF F (τ) we shall compose the first TRF F (T )
with T (τ). In any case, it is worth pointing out two im-
portant properties of the composition of discontinuous
functions :

• 1st property If F (T ) is discontinuous
and if T (τ) is discontinuous

⇒ F ◦ T = F (τ) is continuous
(72)

The composition of two functions with the same
finite discontinuity generates a continuous function.

• 2nd property If F (T ) is continuous
and if T (τ) is discontinuous

⇒ F ◦ T = F (τ) is discontinuous
(73)

The composition of a continuous function with a discon-
tinuous function with a finite discontinuity generates a
discontinuous function with the same discontinuity. One
intriguing mathematical property being explored in any
functional analysis textbook is that of the continuity prop-
erty in the composition of functions. The continuity
property between composing functions and the resulting
function may help us to explain the behavior of the time
evolution of different tRF investigated in this part of the
present work.

9.2 Results of H(τ, V ), ε(τ, V ), P(τ, V )
and C 2

s (τ, V ): Analysis and Discusion
We have used the duality relation T (τ, V ) in order to
transform the order parameterH(T, V ), the energy den-
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sity ε(T, V ), the pressure P(T, V ) and the sound ve-
locity C 2

s (T, V ) into the corresponding tRF H(τ, V ),
ε(τ, V ), P(τ, V ) and C 2

s (τ, V ). The results we obtained
were presented graphically and displayed on different
plots given by the figures (Figs.18-25). We start our
discussion with the plot of the order parameterH(τ, V )
which increases monotonically in both cases (colorless
case and the non-colorless case) without discontinuities,
Figs.(18,19). During the longitudinal expansion and as
the confining phase transition progresses, the available
space will be progressively invaded by HM, thus the
order parameter increases as a function of proper time.
The delay in completion of QCD confining phase tran-
sition due to CC is seen clearly. Our order parameter
has a behavior in complete agreement with those ob-
tained and quoted in Refs.(33, 35). The same behavior is
noticed in Figs.(20,21) showing the plots of the energy
density ε(τ, V ) with a decreasing feature. It is logical that
the energy density decreases when the volume increases,
following the hydrodynamical expansion of the system.
With a system that looks like ours, namely a system un-
dergoing a confinement phase transition, using a 3-Dim
hydrodynamic simulation model, the time evolution of
the energy density obtained is very similar to ours [40].
A time evolution that can be easily described by a power
law of type: ε(τ, V ) ∝ τ−θ, with a slight dependence of
the exponent θ with the volume.

However, on the plots of the pressure P(τ, V ) the shape
of the curves is very different, a knee structure appears
when we take into account the CC, which manifests itself
as a second particular point in Figs.(22,23). We notice
that the FSE are more clear in the colorless case than in
the non-colorless case. The two particular points emerg-
ing in the behavior of P(τ, V ) are nothing the points
marking the beginning of the confining phase transition
occuring at τ0 and its end of the mixed phase period τH .
The change in the cooling law for the pressure when
entering the mixed phase period is clearly visible. A sim-
ilar behavior and an agreement is noticed with the result
obtained in Ref.(37) using simpler EoS than ours.

In the plots of pressure P(τ, V ) the FSE are important
around the first particular point in the colorless case than
in the non-colorless one. However, this behavior is re-
versed around the second particular point. The appear-
ance of the second particular point is more obvious in
the colorless case rendering the emergence of the softest
region more clear in the colorless case and the time dura-
tion of this region is more definite which is nothing that
the ∆τCCPT .

Most of these physical properties of the system control
well the origin of the disturbances that are produced in
the system and the way of their propagation due to the
high energy collision. This fact has led to extensive stud-
ies of the hydrodynamics associated with the propagation
of the sound. The time evolution in the first-order confin-
ing phase transitions involves nontrivial hydrodynamics.

For that reason, the study of the propagation of sound
in that system is very interesting. The speed of sound
has long been considered as a sensitive hydrodynamic
function to the behavior of the strongly interacting mat-
ter undergoing a variation in its EoS (phase transition).
As a consequence, from a hydrodynamic point of view,
the sound velocity varies in space and time during the
confining phase transition.
From the definition of C 2

s (Rel. 45) we can write it as a
function of (P

ε ),

C 2
s =

(
∂P

∂ε

)
=

(
P

ε

)
+ ε

∂

∂ε

(
P

ε

)
(74)

Let us now return to the curves displayed in Figs.(24,25)
illustrating the variation of the speed of sound squared
as a function of time τ for different volumes. When ap-
proaching the thermodynamic limit the speed of sound
takes the value for an Ultra-Relativistic(UR) ideal gas
C 2
s = 1/3 at τ ≤ τ0 and τ ≥ τH . On a range of evolu-

tion time between τ0 and τH , i.e., commonly known as
the softest region, during the mixed phase the speed of
sound is nearly vanishing, reflecting the first order char-
acter of the transition. In our case and from figure 25, we
can extract the numerical values of τ0 ∼ 4.267 fmc and
τH ∼ 50.280 fmc . It has been interpreted that the state
of the mixed phases does not expand due to its internal
pressure, even if there are strong gradients in the energy
density, which has the consequence of not performing
mechanical work and therefore cools less quickly. Thus,
the expansion of the system is delayed and its lifetime
is considerably prolonged. For small systems, the sound
velocity is damped during the phase transition and does
not vanish, since pressure gradients are finite, but they
are still smaller than for an ideal gas EoS, and therefore
the tendency of the system to expand is also reduced.
During the lifetime ∆τPT of the confinement phase
transition, the energy density ε(τ) changes significantly,
while the pressure P(τ), which is discontinuous, varies
slowly. The sound velocity C 2

s (τ) must therefore be-
come very small in this range of time. The EoS of the
system, relating energy density ε(τ) with pressure P(τ),
is called stiff when the sound velocity is high and soft
when it is low. Thus, our PM EoS is therefore stiff well
before and well after the confinement phase transition,
but becomes soft near the finite volume transition point
T0(V ).
The exact value C 2

s = 1/3 is reached following different
ways in the two regions(PM and HM phases). In the HM
the tendency to reach the UR limit is slower in the non
colorless case than in the colorless case, however the FSE
are more pronounced in the colorless case as always.
Also, in these plots we notice that the FSE are more
important in the colorless case than in the non colorless
case, leading the sound velocity at the softest point to
be distinctly higher in the colorless case. For example
C 2
s (τ)CC = 0.050 and C 2

s (τ)NCC = 0.020 at V =
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Figure 18: The order parameter HNCC(τ, V ) vs the
proper time τ , without CC, for different volumes V .

Figure 19: The colorless order parameterHCC(τ, V ) vs
the proper time (τ) for different volumes V .

100fm3 [13].
We also find, when approaching the thermodynamic limit,
that the sound velocity, in the PM phase, C 2

s reaches the
UR value C 2

s = 1/3 for the time values larger than
in the finite volume case. This what it is displayed in
Fig.(25). The minimum in the sound velocity squared
is found to be (C 2

s )min ' 0.00744 at V = 1000fm3

and (C 2
s )min ' 0.04252 at V = 100fm3. The sound

velocity value drops by a factor of 7 at V = 1000fm3

and by a factor of 3 at V = 100fm3 when the time is
between the two limits.
The softest region in EoS of our system is expected to
have a significant influence on the collective dynamics
of the hot and dense matter formed in URHIC. In partic-
ular, a small sound velocity delays the expansion of the
compressed matter and also leads to a reduced transverse
collective flow. The plot of C 2

s (τ) as a function of τ is
very similar to the plot of C 2

s (ε) as a function of ε (see
the Ref. 13). This similarity is essentially due to the
continuous decreasing behavior of energy density ε(τ) as
a function of proper time τ only the order between HG
and CPP phases is inverted.

Figure 20: The energy density εNCC(τ, V ) vs the proper
time τ , without CC, for different volumes V .

Figure 21: The colorless energy density εCC(τ, V ) vs
the proper time τ for different volumes V .

Figure 22: The pressure PNNC(τ, V ) vs the proper time
τ , without CC, for different volumes V .

20



Figure 23: The colorless pressure PCC(τ, V ) vs the
proper time τ for different volumes V .

Figure 24: The sound velocity (C 2
s )NCC(τ, V ) vs the

proper time τ , without CC, for different volumes V .

Figure 25: The colorless sound velocity (C 2
s )CC(τ, V )

vs the proper time τ for different volumes V .

9.3 Time Evolution of Energy Density
ε(τ, V ) : Detailed Analysis and Discus-
sion

In the context of our model the time evolution of the
system, undergoing the confining phase transition from a
CPP through the mixed phase to HG, experience in three
stages. Obviously and because of the hydrodynamic ex-
pansion, the energy density decreases with time. The
plots displayed in figures (Figs.26,27 and 28) depict this
decreasing of the energy density with time during each
stage of the hydrodynamical expansion, starting from the
CPP phase until the final HM phase and going through
the mixed phase at V = 1000fm3. These figures con-
tain different sketches representing the different phases
taken from the reference [53]. Within each stage the sys-
tem follows its time evolution. We have analyzed each
stage individually. During the first stage, starting from
τi until τ0, the colorless PM evolves hydrodynamically
following the power law : ε ∝ τ−θCPP . The second
stage starts when the hadronic conversion is triggered
and the mixed phase system evolves with a power less
than the first one: ε ∝ τ−θMixed . This stage corresponds
to the confining phase transition. In the final stage the
system consist in pure HM, follows an hydrodynamical
evolution with a freeze out towards a hadronic gaz. The
density energy in this stage is similar to the first one
ε ∝ τ−θHG with a power greater than one. From the
fitting work, the numerical values of the different pow-
ers obtained are: θCPP = 1.26087, θMixed = 1.00865
and θHP = 1.33135. We see from the first value
θCPP = 1.26087 < 4/3 meaning that the CPP is not
a perfect gaz, may be in a correlated state like a liquid
state and confirming our previous result [13]. What is
interesting to mention in this case concerns this tempo-
ral decrease in the energy density of the PM, deduced
from two completely different approaches, namely the
Partonic Cascade Model(PCM) [38] and its modified
version(θRHIC ∼ 1.31093, θLHC ∼ 1.27265) [54],
which is in agreement with our result. Also, the same
energy density decreasing with time is obtained using
the Hot Glue Model(HGM) [70]. Concerning the mixed
phase, during the confining phase transition, the time evo-
lution is slowed down. The system evolves with a power
close to unity which is in good agreement with the fact
that during the phase transition the sound velocity is fun-
damentally zero. This explains why the phase transition
make the lifetime of the system longer and why the time
evolution is linear. However, when the system becomes a
pure HM the trend of time evolution becomes again simi-
lar to the first one. The evolution becomes faster and the
numerical value of the power is greater than one but re-
mains below the ideal value: 4/3. In the case of a 3-Dim
space expansion of the system one can expect the numer-
ical values of the θ exponent greater than 4/3 [71,72]. In
order to compare our results with a hydrodynamic expan-
sion in 3-Dim space, we have extracted the numerical of
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Figure 26: Time evolution of the CPP phase for a volume
V = 1000fm3.

θ in each of the three stages of the time evolution of the
energy density result: ε ∝ τ−θ, obtained in the context of
the hydrodynamic simulations [40]. After performing the
fitting work, we obtained the following numerical values
of the different powers: θQGP = 1.488, θMixed = 1.973
and θHP = 3.160. These exponents reflect a a 3-Dim
expanding system with a more rapid cooling process than
in 1-Dim space expansion.
In each stage of the hydrodynamical evolution, the en-
ergy density decreasing process is due to the longitudinal
scaling expansion of the system and to a mechanical
work if it is possible. In the mixed phase stage only the
geometrical dilution plays its role, leading to the cool-
ing law described by a power θMixed ∼ 1. However,
during the first and the third stages, additional work is
performed and the system is in possession of a trend to
cool more faster leading to cooling law with different
powers θCPP ∼ θHG > 1.
Now, when think over about the figure (Fig.25) we see
that C 2

s becomes gradually zero when approaching the
thermodynamic limit. This tendency affects the variation
of the exponent θMixed as a function of the volume. Af-
ter extracting the numerical values of θMixed at different
volumes and plot them as a function of V , we obtain
the graph displayed by the figure (Fig.29). We notice a
logical decreasing in agreement with the known result
according to which the sound velocity should converge
towards zero value during the mixed phase in the ther-
modynamic limit. The fitting function is nothing that the
FSS power law with an exponent close to one:

θMixed(V )− 1 ∝ V −1 +O(V −2) (75)

We show that the CPP is maintained for a remarkably
long lifetime in colorless case than that in non-colorless
case. Consequently, we say that the effect of the confin-
ing phase transition and the effect of the CC, makes the
lifetime of the partonic matter remarkably longer than
other cases. The same result was already obtained in a
different context [42]. The CC has the same effect as the
viscosity [35]. Such a colorless state would exhibit some

Figure 27: Time evolution of the mixed phase for a vol-
ume V = 1000fm3.

Figure 28: Time evolution of the HM phase for a volume
V = 1000fm3.

Figure 29: FSS behavior of the exponent in the hy-
drodynamical evolution during the mixed phase: ε ∝
τ−θMixed .
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viscosity effects which can substantially affect the EoS by
making it not ideal [13] and slow down the cooling rate
of the colorless PP mainly during the two first stages of
the hydrodynamic expansion [54]. The emergence of the
color charge confinement from parton-parton interactions
renders the CPP as a system having some viscosity and
as a strongly correlated system. Also, under other mod-
els [32,47], the evaluation of the lifetime of the confining
phase transition has provided results in agreement with
ours.

9.4 Periodic Cycle in Time Evolution, Pres-
sure Anisotropy, and Viscosity.

If we analyse the time evolution of the energy density
ε(τ) during the whole expansion, starting from zero the
instant of the collision until the total freeze-out, one can
notice a periodic cycle between different time scaling
laws as clearly seen on the table(3). We can summarize
that the time behavior of the energy density ε(τ) as a
function of proper time τ reveals a different scaling law
in each stage of the time evolution. During the first stage
which corresponds to the pre-equilibrium stage very well
described by the Glasma model, the system manifests a
free streaming behavior signaled by ∝ τ−1 [55, 56]. It
can be understood as being due to non-interacting parti-
cles away from the collision point: the system expands
freely without losing any energy. This scaling law means
that the energy density multiplied by the time, τε(τ), satu-
rates at a certain time τG, sometimes called the formation
time, i.e. the time at, which partons are liberated from
the nucleon’s wave-function, where the free-streaming
expansion starts [59]. This is natural on physical grounds,
because the classical fields of the Glasma keep interacting
strongly until τG , and become quasi-free at τ >> τG.
The same time behavior is obtained for the energy den-
sity ε(τ) during both the confinement phase transition
stage and the hadronic free streaming stage. However,
in the second and the fourth stages the energy density
is described by another time behavior: ε(τ) ∝ τ−4/3.
Therefore, one can notice the periodicity of the behav-
ior of the time evolution of the energy density ε(τ) with
a definite time cycle. In our Colorless QCD-MIT Bag
model, the transition from the hydrodynamic behavior
ε(τ) ∝ τ−4/3 during the colorless partonic phase into
a free streaming behavior during the confinement phase
transition ε(τ) ∝ τ−1 normally occurs since the total
partition function of the system contains the different
parts of the system. Even so, the transition from the
pre-equilibrium stage towards the hydrodynamic stage
remains somewhere mysterious.
The traceless and conserved energy-momentum tensor
(Rel.46) of our system with no transverse coordinate
dependence is uniquely determined in terms of the energy
density ε(τ) takes the form ,

T ν
µ = diag

[
ε(τ),PT (τ),PT (τ),PL(τ)

]
. (76)

The longitudinal pressure PL(τ) and the transverse pres-
sure PT (τ) are consequently given by [67, 73] :{

PL(τ) = −ε(τ)− τ dε(τ)
dτ

PT (τ) = +ε(τ) + 1
2τ

dε(τ)
dτ

(77)

The precise form of the energy density as a function of
time ε(τ) depends on the initial state and is governed by
our complicated EoS is given by the plots (20,21).
In addition to this, the first equation in (Rel. 49) can be
rewritten in the form,

τ∂τ ε = −(ε+ PL). (78)

It is in the case where PL is exactly zero that the system
reaches the limit of the free-streaming expansion lead-
ing to ε(τ) ∝ τ−1. On the other hand, if the system
is completely thermalized, meaning that the pressure is
completely isotropic:PL = PT leading to an expansion
with positive PL and producing work against the expan-
sion of the matter, the energy density decreases faster
than in the free-streaming case: ε(τ) ∝ τ−4/3 using the
relativistic EoS ε = 3P . This time behavior is also ob-
tained in the case of a purely longitudinal (i.e., Bjorken
expansion). Therefore, the isotropization process cannot
be attained using a Glasma alone as an initial state; thus,
one should look for another mechanism occurring in the
higher-order corrections, leading to the growth of the lon-
gitudinal pressure PL. An example of this mechanism
is the instability due to the η-dependent fluctuations in
the Glasma state [59]. There is an alternative mechanism
by which the time scaling law of the energy density is
given by: ε(τ) ∝ τ−1. This mechanism corresponds to
a phase transition phenomenon. One can imagine that
a kind of a phase transition occurs just before thermal-
ization, during which the sound velocity can be reduced
to zero. In this case, we can get τε(τ) ' constant. We
know that during the pre-equilibrium stage, the internal
structure evolves enormously and quickly; it consists of
pure gluonic state. As time proceeds, the phenomenon of
creation of pairs comes into play, the gluonic pure state
turns into another state, namely partonic state, which
thermalizes afterward. Consequently, we can say that
somewhere a phase transition is responsible for the scal-
ing law ε(τ) ∝ τ−1 during the pre-equilibrium stage.
Also in the case of expansion with dissipative corrections
to first order, where σ(T, V ) represents the shear viscos-
ity, the equation of motion may be rewritten in the form,

τ∂τ ε = −(ε+ P − 4

3

σ

τ
). (79)

Assuming the constancy of σ(T, V ), the solution for the
energy density is given by ε(τ) ∝ τ−1 [62–64]. Mean-
ing that the partonic plasma cools more slowly than in
the absence of dissipative effects σ(T, V ) = 0, and the
corresponding expansion is just a constant-energy one
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Table 3: Different Time Scales
Time
Interval 0− τi τi − τ0 τ0 −

τH

τH − τF τF −∞

Time
Scaling
Law τ−1 τ−4/3 τ−1 τ−4/3 τ−1

of
ε(τ) ∝
State Glasma Partonic Mixed Hadronic Hadronic

Matter Phase Matter Gaz
κ(τ) 0 1 0 1 0

τε(τ) ' constant rather than isentropic one. It also co-
incides with the maximum-entropy expansion considered
in Ref 65.
It appears clearly that the variation cycle of the time be-
havior in energy density is related to the anisotropy of
the pressure. Generally, the study of the time growth
of the longitudinal pressure PL is done by the follow-
ing ansatz: PL(τ) = κ(τ)PT (τ), where κ(τ) repre-
sents the anisotropy function, measuring the pressure
anisotropy of the fluid. Also, one can quantifies this
pressure anisotropy by introducing another dimension-
less parameter: ∆(τ) = κ−1(τ)− 1 [77]. The pressure
anisotropy emerges at various stages of the hydrodynamic
evolution of the hot matter created in the URHIC induc-
ing even a variation in the geometric form of the system
until its final isotropisation [75]. The isotropic case cor-
responds to the value κ(τ) = 1 and the free streaming
behavior is obtained with κ(τ) = 0. Finally, one can say
that the pressure anisotropy and the dissipative effects in
the strongly interacting matter evolving from the first in-
stants of the URHIC are crucial and important ingredients
for the time evolution of the system.

10 Conclusion

The hydrodynamic evolution of a system undergoing the
QCD deconfinement phase transition exhibits in different
time intervals, quite different physics. This is a part of
the richness of the QCD theory at positive temperature.
The time evolution of the confining phase transition from
a CPP created in URHIC towards a Hadronic Gas, dom-
inated by the hadronization phenomena, is discussed in
the context of the hydrodynamical Bjorken expansion
with our Colorless QCD-MIT Bag Model. The finite
volume Bjorken equation in the case of a longitudinal
expansion scenario of an ideal relativistic medium in fi-
nite volume is solved using certain initial conditions and
their effect is studied in detail showing a good agreement
with the theoretical predictions. The evolution of the
temperature as a function of the proper time T (τ, V ) is
then obtained at different volumes. Different times char-

acterising different scales of the whole time evolution,
like the time of transition point τ0, the hadronic time τH ,
the lifetime of the CPP ∆τCPP and the lifetime of the
confining phase transition ∆τPT are calculated and their
finite size scaling properties are studied in detail. In par-
ticular, we showed that our model with and without CC
makes different predictions about times and lifetimes.
In the colorless case, these times and lifetimes scale with
Taylor expansion depending on the inverse system size:
V −1 as a variable. The latter results have been rigorously
confirmed from theoretical calculation based on the stan-
dard FSS theory of the thermal phase transition in which
we insert the duality relation T (τ, V ) and from which a
new finite size scaling law is derived.
Also, the time evolution of some tRF as the order param-
eterH(τ, V ), energy density ε(τ, V ), pressure P(τ, V )
and the sound velocity Cs(τ, V ) are investigated. The
continuity properties of these tRF as a function of τ is
discussed. Indeed, these properties result from the com-
position of the TRF with the duality relation T (τ, V ).
We have also investigated the implications of having a
variable speed of sound in the time evolution.
The confinement phenomenon and the underlying CC
in any many-parton system are considered as resulting
from the color interaction between partons, rendering the
system colorless. This manifests itself as a non-ideal char-
acter in EoS. The results of this work show that the CC
has a reasonable mechanism for inducing liquid behavior
in the PM system. The numerical value of θCPP < 4/3
characterizing the negative power of the time decay of
the energy density ε(τ) ∝ τ−θCPP is consistent with our
estimate of the plasma parameter ΓCPP [13].
On the other hand, the restriction to colorless states leads
to an increased lifetimes and times, which may play a sig-
nificant role in the confining phase transition, as well as
for the process of hadronization. The colorless QCD con-
fining phase transition has three important consequences
(i)to extend the different times and lifetimes (ii)to signifi-
cantly slow down the cooling of the system and (iii) to
produce a (longitudinally) large volume of a hot hadronic
gas at T0(V ). It is natural that longitudinal expansion
dominates early stages of an URHIC because simply in
the Bjorken picture the system is characterized by an
anisotropic initial condition. If one wants to develop a
complete model one has to include the transverse expan-
sion during the Bjorken type of longitudinal expansion
is happening. During the confining phase transition and
since the bulk sound velocity is zero: Cs(τ,∞) = 0, the
expansion of the mixed phase does not contribute to the
transverse expansion [68].
Finally, let us give some comments concerning the com-
parison between our results and those obtained from
the predictions of other models(like Nucleation Model
[33–35], Partonic Cascade Model [38], Phenomenolog-
ical Model based on an Operator-Field Langevin Equa-
tion [42, 43] and Hot Glue Model [69, 70]) used in this
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work. The mathematical approach in our model and its
physical content are clearly different. Our study is fo-
cused on the CC, on the FSE and on the initial conditions
which mark the end of the very important pre-equilibrium
stage, in which pressure anisotropy is considered as a cru-
cial and an important ingredient for the subsequent time
evolution of the system. In spite of that, numerically
and qualitatively our results are consistent with results
obtained by these different models.
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[75] M. Strickland, Acta Physica Polonica B 45, 12,
2355(2014).

[76] G. Policastro, D.T. Son, A.O. Starinets, Phys.
Rev. Letters 87, 8, 081601(2001).

[77] M. Martinez and M. Strickland Phys. Rev. C 81,
2, 024906(2010).

27


	1 Introduction
	2 Conversion of Partonic Matter into Hadronic Matter
	3 MIT-Bag Model with Colorlessness Condition
	3.1 Non-ideality from Colorlessness Condition
	3.2 Total Partition Function with Colorlessness Condition 
	3.3 Unified Lm,n-Method : to be Colorless and not to be Colorless

	4 Finite Volume Colorless QCD Thermodynamics: Results and Discussions
	4.1 Order Parameter H(T,V) and Violette Term V(T,V) 
	4.2 Energy Density (T,V) and Entropy Density S(T,V) 
	4.3 Thermodynamic Pressure  P(T,V), EoS and Sound Velocity Cs2(T,V)

	5 Hydrodynamic Evolution in the Boost Invariant Bjorken Model
	5.1 The frame-independence or just the boost invariance symmetry
	5.2 Hydrodynamical Description in Milne Space-Time
	5.3 Time Evolution, Important Times and Lifetimes 

	6 Bjorken Expansion in Colorless-QCD Confining Phase Transition
	6.1 Solution of Finite Volume Bjorken Equation: T(,V)
	6.2 Results and Discussion

	7 Finite Size Scaling Study of different times and lifetimes in Colorless Case
	7.1 Theoretical Derivations
	7.2 Results and Discussion

	8 The Effects of Initial Conditions (Ti,i)
	8.1 Early Stages and Importance of the Initial Conditions
	8.2 Initial Conditions in Our Model
	8.3 Results and Discusion

	9 Time Evolution of Thermal Response Functions : time Response Functions
	9.1 Mathematical Property of Functions Composition
	9.2 Results of H(,V), (,V), P(,V) and Cs2(,V): Analysis and Discusion
	9.3 Time Evolution of Energy Density (,V) : Detailed Analysis and Discussion
	9.4 Periodic Cycle in Time Evolution, Pressure Anisotropy, and Viscosity.

	10 Conclusion
	11 Acknowledgement

