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Abstract. This paper discusses the practical adoption of t-way strategies (also
termed interaction testing) for interaction testing. Unlike earlier work, this
paper also highlights and unifies the different possible use of t-way strategies
including uniform interaction, variable strength interaction, and input-output
based relations. In order to help engineers make informed decision on the
different use of t-way strategies, this paper discusses the main issues and
shortcomings to be considered as well as demonstrates some practical results
with a-step-by-step example. In doing so, this paper also analyzes the related
works highlighting the current state-of-the-arts and capabilities of some of the
existing t-way strategy implementations.
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1 Introduction

The demand for multi-functional software has grown drastically over the years. To
cater this demand, software engineers are forced to develop complex software with
increasing number of input parameters. As a result, more and more dependencies
between input parameters are to be expected, opening more possibilities of faults due
to interactions. Although traditional static and dynamic testing strategies (e.g.
boundary value analysis, cause and effect analysis and equivalent partitioning) are
useful in fault detection and prevention [1], however they are not designed to detect
faults due to interaction. As a result, many researchers nowadays are focusing on
sampling strategy that based on interaction testing (termed t-way testing) [2].

As far as t-way testing is concerned, 3 types of interaction can be associated with
interaction testing (i.e. uniform strength interaction, variable strength interaction and
input-output based relations). Although one interaction type has advantages over the
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others in certain cases, however, no single interaction type can claim to be the ultimate
solution for all interaction testing problems. Motivated by this challenge, this paper
unifies and highlights the ditferent possible use of t-way strategies. In order to help
engineers make informed decision on the different use of t-way strategies, this paper
also discusses the main issues and shortcomings to be considered as well as
demonstrates some practical results with a-step-by-step example. In doing so, this
paper also analyzes the related works highlighting the current state-of-the-arts and
capabilities of some of the existing t-way strategy implementations.

For the purpose of presentation, the rest of this paper is organized as follows.
Section 2 discusses fundamental of t-way strategies. Section 3 demonstrates the
running example. Section 4 highlights our observations and issues. Section 5 analyses
the related works. In Section 6, we present the digest of our analysis. Finally, section 7
summarizes our conclusion.

2 Fundamental of T-Way Strategies

Mathematically, t-way strategies can be abstracted to a covering array. Throughout
this paper, the symbols p, v, and t are used to refer to number of parameters (or
factor), values (or levels) and interaction strength for the covering array respectively.
Referring to Table 1, the parameters are A, B, C, and D whilst the values are (al, a2,
bl, b2, c1, c2).

Earlier works suggested three definitions for describing the covering array. The first
definition is based on whether or not the numbers of values for each parameter are
equal. If the number of values is equal (i.e. uniformly distributed), then the test suite is
called Coverage Array (CA). Now, if the number of values in non-uniform, then the
test suite is called Mixed Coverage Array (MCA) [3, 4]. Finally, Variable Strength
Covering array (VCA) refers to case when a smaller subset of covering arrays (i.e. CA
or MCA) constitutes a larger covering array.

Although useful, the aforementioned definitions do not cater for the fact that there
could be consideration of input and output (IO) based relations in order to construct
CA, MCA, and VCA. As will be seen later, building from VCA notation for covering
array, we have introduced a workable notation for IO based relations.

Normally, the CA takes parameters of N, t, p, and v respectively (i.e. CA(N,t,p,v)).
For example, CA (9, 2, 4, 3) represents a test suite consisting of 9x4 arrays (i.e. the
rows represent the size of test cases (N), and the column represents the parameter (p)).
Here, the test suite also covers 2-way interaction for a system with 4 3 valued
parameter.

Alternatively, MCA takes parameters of N, t, and Configuration (C) (i.e. MCA (N,t,
C)). In this case, N and t carries the same meaning as in CA. Here, C captures the
parameters and values of each configuration in the following format: v, ! 2 L Vo
P indicating that there are pl parameters with vl values, p2 parameters with v2
values, and so on. For example, MCA (1265, 4, 1()24]3227) indicates the test size of
1265 which covers 4-way interaction. Here, the configuration takes 12 parameters: 2
10 valued parameter, 1 4 valued parameter, 2 3 valued parameter and 7 2 valued
parameter. Such notation can also be applicable to CA (e.g. CA (9,2,4,3) can be
rewritten as CA (9,2,3%).
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In the case of VCA, the parameter consists of N, t, C, and Set (S) (i.e. VCA
(N,t,C,S)). Similar to MCA, N,t, and C carry the same meaning. Set S consists of a
multi-set of disjoint covering array with strength larger t. For example, VCA (12, 2,
322% {CA (3,3°2))) indicates the test size of 12 for pairwise interaction (with 2 3
valued parameter and 2 2 valued parameter) and 3-way interaction (with 1 3 valued
parameter and 2 2 valued parameter). As a special case of VCA, we can also consider
cumulative combination of interaction. Using the same example, we can have VCA
(14, {CA (2, 322%)}, {CA (3, 3°2)}). Here, we have the test size of 14 for both
pairwise and 3-way interaction (with with 2 3 valued parameter and 2 2 valued
parameter).

In order to expand the scope of covering arrays for 10 based relations, there is a
need for a more compact notation. Here, building from CA, MCA, and VCA notation,
we can express 1O base relations (IOR) as IOR (N, C, R). Here, N and C take the same
meaning given earlier whilst R represents a multi set of parameter relationship
definition contributing towards the outputs. For example, for a 4 parameters system
with 2 values and each parameter will be assigned a number 0, 1, 2 and 3 respectively.
Assume two input-output relationships involve in the outputs (i.e. the first and the last
parameter for the first output and the second and third parameter for the second
output). Here, the relationship is written as R = {{0, 3}, {1, 2}}. Assuming the test size
is 12, the complete notation for can be expressed as IOR (12, 4 2 ({03}, {1.2} ).

3 Running Example

In order to aid the discussion, consider the following software system example in Fig. 1.

Xo Xn
Software System

fo(Xo.Xn) .. f(Xo..Xn)

Fig. 1. Model of a Typical Software System

Assume that the input set X = {xo.... X, } significantly affects the output, noted as fo
(Xg.... Xp) to In (Xq.... x,). If X is known to take a set of data values: D(xg), D(x1)...
D(x,), then the system must be tested against the set of all possible combinations of
D. Here, the result is an ordered n-tuples {d0,d1...dn} where each d; is an element of
D(x;). The size of the test suite would be the product size of all D(x):

T qite = { D(x0) x D(x) x....D(X)} (D
Obviously, the test suite T ;e can grow exponentially with the increase size of

data element in the set D(xg), D(x;)... D(x,). As far as the actual test data of T ;. is
concerned, one can consider the interaction between all n variables x0, x21, x2...xn,
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termed, exhaustive test. Optionally, one can also consider the interaction of any t-way
interactions of variables. Here, the value of t can take the minimum of 2 and the
maximum of n-1. As a running example, let us assume that the starting test case for X,
termed base test case, has been identified in Table 1. Here, symbolic values (e.g. al,
a2, bl, b2, cl, c2) are used in place of real data values to facilitate discussion.

Here, at full strength of interaction (i.e. t=4), we can get all exhaustive combination.
In this case, the exhaustive combinations would be 2*=16.

As highlighted earlier, considering all exhaustive interaction is infeasible for large
number of parameters and values. The next sub-sections demonstrate the fact that by
adopting the t-way strategies (i.e. relaxing the interaction strength), the test data for
testing can be systematically reduced. In this case, a step-by-step example will be
demonstrated to illustrate the possible use of t-way strategies including uniform
interaction, cumulative interaction, variable strength interaction, and input output
relation based interaction.

Table 1. Base Data Values

Input Variables
A B C D
Base Values al bl cl dl1
a2 b2 c2 d2

Table 2. Exhaustive Combination

Input Variables
B C D
Base Values al bl cl dl1
a2 b2 c2 d2
al bl cl dl1
al bl cl d2
al bl c2 dl
All al bl 2 d2
Combinatorial al b2 cl dl
Values al b2 cl d2
al b2 c2 di1
al b2 c2 d2
a2 bl cl dl
a2 bl cl d2
a2 bl c2 dl1
a2 bl c2 d2
a2 b2 cl dl
a2 b2 cl d2
a2 b2 c2 dl
a2 b2 c2 d2

3.1 Uniform Strength T-Way Interaction

Here, it is assumed that the interaction of variable is uniform throughout. Revisiting
Table 1, and considering t=3, Fig. 2 highlights how the reduction is achieved. Firstly,
the interaction is broken down between parameters ABC, ABD, ACD, and BCD.
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Here, when parameters ABC are considered, the values for parameter D are don’t cares
(i.e. any random valid values for parameter D suffice). Similarly, when parameters
ABD are considered, values for parameter C are don’t cares. When parameters ACD
are considered, values for parameter B are don’t care. Finally, when parameters BCD
are considered, values for parameter A are don’t cares. Combining these results, we
note that there are some repetitions of values between some entries for ABC, ABD,
ACD and BCD. If these repetition is removed, we can get all the combinations at t=3.

Combining each 3-way
combinations

Input Variables Input Variables All 3-way combinations
Base Values A B | c | b A B c b N

al | bl | ol | di BaseValues | a1 | b1 | of | df Input Variables
a2 | b2 | 2 | &2 a2 | b2 | 2 | & A[B|[c|D
al b1 cl d1 eal bl 1 dt Base Values al b1 c1 d1
al b1 c2 d2 eatl b2 1 d2 a2 b2 c2 d2
Ci i i al b2 cl d1 c i i eatl bl 2 dt al b1 cl d1
values for al | b2 | c2 |[d2 values for ACD, eat i bt 2 d2 al b1 c2 | d2
ABG; =3 a2 | bl | of |[a1 ea2 | bl | et | dt al | b2 | o1 | dt
a2 b1 c2 d2 ®a2 bl 4 a2 . al b2 c2 d2
a2 b2 cl d1 2 b2 2 dt petiti s a2 b1 cl d1
a2 b2 c2 d1 ®a2 | b2 2 a2 a2 b1 c2 d2
Combinatorial | 220 | p2 | ¢1 | di

-— p
+ ] Values with t=3 2 02 |2 | a
Input Variables Input Variables al b1 o a2
A B c D A B c D at o2 2 a
Base Values T o1 T Base Values T — al | b2 | ol | d2
2 i a2 | bl | ol | @
2 | b2 @

a2 | b2 | c2 | d2

a2 | b2 | c2 | d2

4
2

1 b1 [eT | dt e 1 bt 1 a1

a1 bt et | d2 | 2 bt ot I a Total test data = 13
Combinatori al | b2 |[[c2 | d1 c PN | B Y
values for al | b2 ||cl d2 values for bt 2 —d2
ABD, t=3 2 1ot 1ot |ate BCD, t=3 2 o o1 | a1
a2 | bl |[ct | @2 1l b2 et 2
2 | b2 2 |t 2 | b2 |2 |t
a2 | b2 [[c2 | @2 pa2 | b2 | c2 | @2

Fig. 2. Uniform t-way Interaction Results (t=3), CA (13,3,24

Here, we note that the test suite has been reduced from 16 (for exhaustive
combination) to 13 (for t=3), a saving of 18.75 percent. Using the notation discussed
earlier, we can write this test suite as T gie = CA (13,3,2%).

3.2 Variable Strength T-Way Interaction

In many real applications, interaction may not be uniform for all parameters. Here, a
particular subset of variables can have a higher interaction dependency than other
variables (indicating failures due to the interaction of that subset may have more
significant impact to the overall system). For example, consider a subset of
components that control a safety-critical hardware interface. We want to use stronger
coverage in that area (i.e. t=3). However, the rest of our components may be
sufficiently tested with t=2. In this case, we can assign variable coverage strength to
each subset of components as well as to the whole system.

To illustrate variable strength t-way interaction, we adopt the same example as
Table 1. Now, we assume that all interaction is uniform at t=2 for all parameters (i.e.
based on our result in Fig. 3). Then, we consider t=3, only for parameters B,C,D.
Combining both interactions yield result shown in Fig. 3. Here, the test suite has been
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reduced from 16 (for exhaustive case) to 13, a saving of 18.75 percent. Using the
notation describe earlier, we can write this reduction as T g ;. = VCA (13,2,24,
{CAB2Y)).

t=2

~—

Input Variables
A[B[c D

Base Values al b1 cl d1
a2 b2 c2 d2

Input Variables
T Basevales A | B | C | D
al | b1 | el | dl
Input Variables Input Variables 2 (b2 [ 2 | a2
AlB[c D B | c D al [ b1 | ol | dl
Basevaues A B ° 3 BaseValues | — 21 (b2 @2 a2
a2 | b2 | c2 | d2 a2 | b2 | 2 | d2 ) a2 [ b1 [ et [ dt
al [ b1 [ et [ a1 toobt et r'ii'&ﬂféﬁi ;If’z:::: a2 [ b2 [ 2 | d2
al [ b2 |2 | a2 | 4 al [ b1 [ el | d2 — it a2 [ b1 | el | dl
a2 | b1 | ol | di Variable 2| b1 |2 | d1 - Values al | b1 | 2 | d2
Combinatori a2 [ b2 | 2 | @2 - Strength a2 | b1 | c2 | 42 a2 | b2 | o | d1
Values with =2 | a2 | b1 | ¢l | di Values BOp | 82 | b2 | ol | di al [ b2 [ o1 | d2
al | b1 | c2 | 42 with t=3 b d2 a2 | bl | c2 | d1
a2 [ b2 [ cl | dt a2 [ b2 | c2 | di al | b1 [ 1 | d2
al | b2 | ol | d2 at——b2 <2 —d2 a2 [ b1 [ [ d2
a2 [ b1 [ 2 | dt a2 | b2 | 1 | di
Total test data = 8 a2 [ b2 | 2 | di

Total test data = 9
Total test data = 13

Fig. 3. Variable Strength Interaction, VCA (13,2,2, {CAB3.2H))

As a special case for VCA, we can also consider cumulative strength, t=3 and t=2.
Revisiting Table 1, we can derive the test suite for t=2 using the same technique as t=3
(see Fig. 4).

Combining each 2-way

combinations
Input Variables Input Variables
Base Values A | B | C D Base Values A| B | C D
al b1 c1 d1 al b1 c1 d1
a2 b2 2 d2 a2 b2 c2 d2
al | bl [[cf |[[d1 bt A—p-dt -
Combinatorial al | b2 || 2 |l 2 Combil i al | b2 2 [ a2 All 2-way combinations
values for AB, 2 b1 values for AC, BEoNII 1 1 1 g1
t=2 et fij at =2 Input Variables
a2 | b2 || c2 ||| a2 82 | b2 {e2 i d2
: Base Values A B ¢ D
Removing al | b1 | of | di
Input Variables Input Variables a2 | b2 | c2 | d
al b1 cl d1
Base Values AlB]C Ll Base Values AlBC D al | b2 | 2 | &2
al | bt | ol | d1 al [ bl [l [ a1 | = B T
@ |2 @ F @2 || 2 @ i
P~ | v | T 1 b7 a7 Ci i a2 | b2 | c2 | d2
i i i i e - Values with t=2 | a2 b1 (] d1
C C
values for AD LR | R values for BC, || L 2 | &2 al | bl | 2 | @
2 a2 || ot [ et [ at =2 e |e2 | et [at
2 1o o I 2 b 2 lap a2 | b2 | ¢l [ di
i al | b2 | o | @
a2 b1 c2 d1
Input Variables Input Variables Total test data =9
Base Values A B c b Base Values A B c | D
al b1 cl d1 al b1 cl d1
a2 [ b2 |2 | & a2 | b2 | 2 | 42
at bt + dt al b1 1 d1
Combinatorial -t bt <2 Combinatorial | a1 | o2 || o1 | @
values for BD, [ values for CD,
=2 b2 Adt =2 a2 [ b1 || e2 | di
a2 [[-b2—f c2 {[-d2 a2 ff b2 2 a2

Fig. 4. Uniform t-way Interaction Results (t=2), CA 9,2,2%
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Cummulative t=3 & t=2
All 3-way
combinations
All 2-way Input Variables Input Variables
combinations A B c ) A B c )
Input Variables Base Values a1 b1 ol a1 Base Values a1 b1 o1 a1
e — | a2 | b2 | c2 | d2 a2 | b2 | c2 | &2
BaseValwes |~ | B 1€ ]D]| al | b1 | of | d al [ bl |l | df
L L R al | b1 | 2 | @ ) al [ b1 | 02 | @
a2 | b2 | 02 | & al | b2 | of | di oving al | b2 | of | di
1 bt 1t p
Bk R el al | b2 | c2 | d2 al | b2 | c2 | d2
T b2 2 @
+ 2 | bl | ol | d = a2 | bt | o | dtf
2 | bt 1 gt
—— = a2 | b1 | c2 | d2 Combinatorial | @2 | bl | c2 | d2
Combinator: \'I‘ X i o = a2 [ b2 [ ot | di Values for g3 "pp | c1 | di
Values with t= 22— bt 4 d1 ‘alues wif
—— —— a2 | b2 | c2 | dl =28 t=3 a2 | b2 | c2 | d
at b1 | ¢l | d2 al b1 | ¢t d2
2 b2 | ot |t
al | b2 | c2 | di al | b2 | c2 | d
T b2 ot @
at b2 | ¢l | d2 al b2 | c1 d2
g2 |l b |l e || GO a2 | bt | ol | @ 2 [ bl | ol | @
Total test data =9 a2 | b2 | c2 | d2 a2 | b2 | 2 | &2
Total test data = 13 AL Ed

Total test data = 14

Fig. 5. Cummulative (=2 & (=3 Results, CA (14, {CA (9,2, 2%}, {CA (13, 3, 2Y})
Combining the test suite with t=3, yields the following result (see Fig. 5). Here, we note that T
suite fOT =2 is not necessarily a subset of T ;e for t=3. In this case, the test suite has been
reduced from 16 (for exhaustive case) to 14, a saving of 12.5 percent. Using the notation
described earlier, we can write this reduction as T g, = CA(9,2,2% + CA (13,3,2% or simply T
wie= CA (14, {CA (9.2,2%}, {CA (13,3, 2Y}).

3.3 Input Output Relation Based Interaction

Similar to variable strength t-way interaction, input output relation based interaction
does not deal with uniform interaction. Also, unlike other interaction possibilities
discussed earlier, the reduction is performed by considering the knowledge on the input
and output relationship amongst the parameter values involved. Normally, this
relationship can be derived based on some statistical analysis such as Design of
Experiments (DOE).

Input Variables
"aA B c | p  Considering Input Output
Base Values al | b1 | o | di Relationship
a2 | b2 | c2 | &2

Input Variables
1 = f(A,B,C] =
h ! f2=fAD) Base Values A B c b
Input Variables Input Variables al [ b1 [ et | dl
e ——| a2 b2 c2 d2
Base Values A B | c | b Base Values A B c D al b1 ct d1
al b1 | cl | d1 al b1 cl d1 & b1 2 @
L + 2 2 al | b2 | of | di
o
al | b1 | ct d1 = = AR
al | b1 | c2 || d2 o : o b2 2 I 4o values for
~ a2 | bl | ol | dl
al | b2 | ¢ || dt values for 2| b1 4 —dt f1=1(A,B,C)
Combr i b2 | c2 || d2 f2=f(A,D) 2 | o2 2 [ &2 and a2 | b1 | c2 | &2
values for |21 2 2 " P=fAD) | a2 | b2 | of | di
= fAB,C) :2 : :2 1 a2 | b2 | 2 | di
1 a2 Total test data = 4 2 02 |2 | @
a2 | b2 | cl d1
a2 | b2 | c2 | di Total test data =9

Total test data = 8

Fig. 6. Input Output Based Interaction, T ;. = IOR (9, 24 {{0,1,2},{0,3} D
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To illustrate the input output based interaction, we revisit Table 1 with the following
input output relationship.

i. Only two outputs are considered, f1 an f2.
ii. f1 is a function of A,B,C, that is, 1=f(A,B,C).
iii. f2 is a function of A,D, that is, 2={(A,D).

Ideally, these input output relationship are not to be assumed as they come from
experimental results. Upon establishing these assumptions, we can derive the test suite
accordingly. Fig. 6 illustrates the complete results. Here, the test suite has been reduced
from 16 (for exhaustive case) to 9, a saving of 43.75 percent. Using the notation
described earlier, we can write R ={{0,1,2}, {0,3}} or the overall reduction as T g =
IOR (9, 2%, {{0,1,2}, {0,3} ).

4 Observation and Issues

The main observation here is the fact that by relaxing the interaction, we can
systematically reduce the test data for consideration significantly. Other subtle
observations can also be discussed further here.

e The final results for all cases discussed earlier (i.e. for uniform interaction,
cumulative interaction, variable strength interaction, and input output relation
based interaction) are not the most optimum, that is, all the interaction
elements appear more than once. In order be optimum, more efficient
algorithms are required (see section 5 on related work).

e Uniform strength strategies are useful when there is little knowledge on the
system under test. Thus, the interaction is assumed to be uniform throughout
through judicious (e.g. based on experience on similar system) selection of
interaction strength (t).

e  Variable strength interaction strategies are applicable when a particular subset
of input parameters has a higher interaction dependency than other parameters
(indicating failures due to the interaction of that subset may have more
significant impact to the overall system). As such, at least two interaction
strengths can be assigned accordingly with one being stronger than the other.

e Input output relation based strategies are useful when the relationship amongst
inputs and outputs are known (e.g. often through statistical method such as
Design of Experiments) in advanced. Thus, the interaction can be properly
established.

5 Related Works

The main aim of any t-way strategies is to ensure that the generated test suite covers
the interaction tuples of interest for a certain type of interaction at least one whilst
reducing the test data into manageable ones. However, there is no unique solution to
this problem (i.e. NP-hard problem [5, 6]). In fact, it is unlikely that a unique strategy
exists that can always generate the most optimum number of test case in every
configuration.
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A number of useful strategies have been developed from the last decade. A
significant number of work have focused on pairwise (t=2) strategies (e.g. OATS
(Orthogonal Array Test System) [7], IRPS [8], AllPairs [9], IPO [10], TCG (Test Case
Generator) [11], OATSGen [12], ReduceArray2 [13], DDA (Deterministic Density
Algorithm) [14], CTE-XL [15], rdExpert [16],and SmartTest [17]). As interaction is
limited to t=2, pairwise strategies often yield the most minimum test set as compared
other interaction. Although useful in some class of system, pairwise testing is known
be ineffective for system with highly interacting variables [18-20]. For this reason,
rather than dwelling on pairwise strategies, we are more interested on a general
strategy for t-way test generation including that of variable strength, and input output
based relations. The survey of each of these strategies is discussed next.

Klaib and Zamli developed a deterministic t-way strategy called GTWay [21, 22].
The main feature of GTWay is that it supports both test data generation and automated
execution. This strategy heavily depends on its pair generation and backtracking
algorithm. Once all pairs are generated, the backtracking algorithm will iteratively
traverses all pairs in order to combine pairs with common parameter values in order to
complete a test suite. To ensure the optimality of test data generated, combination of
pairs can only be accepted if its cover the most uncovered pairs. In case of pairs that
cannot be combined, the algorithm falls back to the first defined value.

Hartman et al. developed a t-way strategy, called IBM’s Intelligent Test Case
Handler (WHITCH), as Eclipse Java plug-in tool [23]. WHITCH uses the sophisticated
combinatorial algorithms based on exhaustive search to construct test suites for t-way
testing. Although useful as part of IBM’s automated test plan generation, WHITCH
results appear to be not optimized as far as the number of generated test cases is
concerned. Furthermore, due to its exhaustive search algorithm, WHITCH execution
times typically take a long time.

Jenkins developed a deterministic t-way generation strategy, called Jenny [24].
Jenny adopts a greedy algorithm to produce a test suite in one-test-at-a time fashion. In
Jenny, each feature has its own list of t-way interaction. It starts out with 1-way
interaction (just the feature itself). When there are no further 1-way interaction left to
cover, Jenny goes to 2-way interactions (this feature with one other feature) and so on.
Hence, during generation instance, there could have one feature still covering 2-way
interaction while another feature is already working on 3-way interactions. This
process goes on until all interactions are covered.

Cohen et al developed the first commercialized t-way strategy, called AETG [25]..
AETG starts with the generation of all possible parameter interactions. Based all the
possible parameter interactions, AETG then decides the combination of values to
maximize the interaction coverage so that it can build an efficient test set. This
selection process is performed ‘“‘one-test-at-a-time” until all the parameter interactions
are covered. To enhance its capability (e.g. for better test size), a number of variant
AETG implementations have been implemented such as that of mAETG [3], TCG [11]
and mTCG [3].

Lei et al developed TPOG [26] based a novel “one-test-at-a-time” approach. In
IPOG, the interaction parameters will be generated first as the partial test suite based
on the number of parameters and interaction value. The test suite is then extended with
the values of the next parameters by using horizontal and vertical extension
mechanism. Here, horizontal extension extends the partial test suite with values of the
next parameter to cover the most interaction. Upon completion of horizontal extension,
vertical extension may be summoned to gencrate additional test cases that cover all
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uncovered interactions. More recently, a number of variants have been developed to
improve the IPOG’s performance (i.e. [IPOG-D [27], IPOF and IPOF2 [28]).

Younis and Zamli proposed another variant for IPOG named MIPOG [29, 30].
Addressing the dependency issue arising in [POG strategy (i.e. generation of a test data
can be unstable in IPOG due to the possibility of changing values during the vertical
extension especially for test cases that include “don’t care” value), MIPOG introduces
two new algorithms for both horizontal and vertical extension. Here, the both
algorithms remove the inherent dependency between subsequently generated test data
(as occurred in IPOG family). Furthermore, MIPOG strategy also further optimizes the
don’t care value during vertical extension making this strategy in most cases
outperform TPOG in term of test size. As the data dependency issue is removed,
Younis and Zamli implemented the parallel MIPOG strategy in the Multi-core
platform (called MC-MIPOG (MultiCore MIPOG)) [31] as well as in the Grid
platform (called G-MIPOG (Grid MIPOG)) [32]. By implementing the strategy in
multi-core and grid environment, the time taken to produce the final test suite for
MIPOG strategy is reduced.

Arshem developed a freeware Java based t-way testing tool called Test Vector
Generator (TVG) [33] based on extension of AETG strategy to support t-way testing .
Similar efforts are also undertaken by Bryce and Colbourn [34, 35] to enhance AETG
for t-way testing. Nie et al. [36] proposed a generalization for IPO with genetic
algorithm (GA), called TPO_N, and GA_N respectively for t=3. Here, IPO_N
performed better than GA_N in terms of test size as well as execution time [36].

As far as variable strength t-way strategies are concerned, Cohen et al.
implemented the first model t-way strategy with variable strength based capability
based on simulated annealing (SA) [37]. Although generating optimal test suites, this
approach is very time consuming because all interaction elements needs to be
analyzed exhaustively using binary search strategy.

Wang et al. extended the model proposed by Cohen et al [37] and proposed a more
general strategy relying on two greedy algorithms. The first algorithm is based on
one-test-at-a-time strategy while the other algorithm is based on in-parameter-order
strategy [38]. Although useful as far as addressing the limitation of the Cohen’s
model in terms of the need for the interaction strength (t) involved to be disjoint,
Wang et al. approach appears to produce non-optimized set for mixed parameter
values.

Chen et. al. proposed a variant algorithm based on ant colony approach (named
Ant Colony Strategy (ACS)) in order to support variable strength capability [39].
Similar to Cohen et al [37], this approach is also time consuming and supports low
interaction strength 2<t<3. Apart from these approaches, new version of TVG [33]
also addresses the variable strength capabilities but with non-optimized set.

Concerning the strategies that address the support for input output based relations
much work has started to appear. The input output based strategies can be considered
as the general case for t-way strategies as they can be customized to behave as such to
support all interaction possibilities (i.e. uniform strength and variable strength
interactions). However, if the parameters are large, setting up for uniform and variable
strength interaction can be cumbersome as there is a need to define all the relations
for each interaction.

Schroeder and Korel developed an input output relations based strategy called
Union [40, 41]. In the case of Union, the strategy generates the test suite for each
output variable that cover all associated input interaction and then assign random
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value for all the ‘don’t care’. Then, the strategy finds the union of all test suites in
order to reduce the number of generated test data.

Building from the Union Strategy, Schroeder et al developed the Greedy strategy
[41, 42]. Similar to Union, the Greedy strategy also generates the initial test suite that
covered all associated input interaction by randomly selecting values for all don’t care
parameters. Nonetheless, unlike the Union strategy, the Greedy strategy picks only
the unselected test case from the initial test suite which covers the most uncovered
interactions as the final test suite. In this manner, the Greedy strategy often generates
a more optimal test size than that of the Union Strategy.

Wang et al developed two strategies to support input based relations called
ParaOrder and ReqOrder [43]. ParaOrder strategy implements horizontal and vertical
extension for generating the final test cases, much like the uniform strength TPOG
implementation [26]. The main difference between ParaOrder with IPOG is the fact
that the initial test case for the former is generated based on the first defined input
output relationships while the initial test case for the latter is generated in-defined-
order-of-parameter found. In the case of ReqOrder, the selection of initial test case
does not necessarily follow the first defined input output relationships rather the
selection is done based on the highest input output relationship coverage.

6 Analysis of Related Works

In order to help test engineers make inform decision on the adoption of a particular t-way
strategy implementation, Table 3 provides the digest information regarding the supported
interactions by all strategies discussed earlier. It should be noted that an “V*” indicates
that the strategy implementation of interest partially supports the said interaction (i.e.
only supports pairwise interaction) whereas an “V” indicates that the strategy
implementation of interest provides full support. An “X” indicates the missing support.

Table 3. Analysis of Related Works

Uniform | Variable /0 Uniform | Variable /0
Strate; Strate;
8y Strength | Strength | Relations 8y Strength | Strength | Relations
OATS i X X IPOG v X X
IRPS e X X IPOG-D N X X
AllPairs i X X IPOF v X X
PO # X X IPOF2 N X X
TCG i X X MIPOG N X X
OATSGen g X X MC-MIPOG N X X
ReduceArray?2 * X X G-MIPOG N X X
DDA g X X TVG N N N
CTE-XL e X X IPO_N N X X
rdExpert [ X X GA_N \ X X
SmartTest ¥ X X SA N N X
GTWay N X X ACS N N X
WHITCH v X X Union v N N
Jenny N X X Greedy N N N
AETG v X X ParaOrder v N N
mAETG N X X

WTCG 7 X X ReqOrder v v v
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Referring to Table 3, most strategy implementations merely support uniform
strength interactions. Here, only Union, TVG,ParaOrder, and ReqOrder to support all
possible type of interactions. With such knowledge, test engineers can adopt the tool
implementation accordingly (i.e. based on the interaction requirements).

7 Conclusion

Summing up, this paper has presented the different possible use of t-way strategies
including uniform interaction, variable strength interaction, and input-output based
relations. Additionally, this paper has also analyzed the related works by highlighting
the capabilities of some of the existing t-way strategy implementations. It hoped that
such an analysis can help test engineers choose the interaction type of interest as well
as the tool support required.

Finally, while much useful research work has been done in the last decade (i.e. as
evident by the large number of developed strategy implementations), the adoption of
interaction testing for studying and testing real life systems has not been widespread
[44]. In order to address this issue, more research into the algorithms and techniques
are required to facilitate its adoption in the main stream of software engineering.
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Abstract. The analogy between proving theorems and writing com-
puter programs has been debated for a long time. In a recent paper,
Calude and others [5] argue that - albeit mentioned analogy seems to
exist - the role of proof in mathematical modeling (and hence program-
ming) is very small. Describing the act of proving and the act of writing
a computational program with the help of the SECI model, a model used
widely to describe knowledge creation processes, it can be argued that
the thought processes needed for both activities complement each other.
This fact can then be used to justify a sound and rigorous training in
proof writing for the programmer and future software developer.

Keywords: proof writing, programming, software development, com-
puter science education.

1 DMotivation

The similarity (or difference) between the act of proving a theorem and the act
of writing a computer program has caused many discussions in the computer
science community [1,2]. Some authors like Friske [3] focussing on the immanent
use of abstract objects in both activities find a strong similarity: “There is a close
analogy between the thought processes used in computer programming and the
thought processes for proof writing.“ Daly [4] described similar experiences in
teaching concluding: “Constructing a mathematical proof is isomorphic with
writing a computer program. Validating a proof is as difficult as validating a
computer program.“

Others like Calude [5] stressed the importance of the outcome of the thought
processes involved. In their view, computer programs correspond to models and
proofs correspond to algorithms. Henceforward, computer programs are subject
to adequacy tests, while theorems and proofs are subject to a correctness test.
This difference is often justified by the (de facto) non existence of correctness
proofs in the programming world. But it also allows for a different view of pro-
gramming where programming is seen as an art that is centred around human
machine interaction. It could then be easily interpreted to minimize or relegate
the role of mathematics and abstract thinking taught in computer science classes
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