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Abstract   :  
Under the notion of concentration of 

measure and (LDP) we found that the 

diameter of a section of any convex bodies 

will depends basically in the isotropic 

constant  of the polar body of the convex 

body and we found that 

where . 
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1. INTRODUCTION 

   The isometric embedding is a mapping :  where  is a metric space with a metric 
 and  is a metric with a metric . In embedding we want to find a plausible relation 

( ~ ) in such way that ( ), ( ) ( , ); for example the legal norm .  for a 
normed space and canonical Euclidean norm |. |. We say that a mapping :  whose  
and   as above is  where 1 is a real number, if there exists a number 

> 0 such that for all ,  the relation 

( , ) ( ), ( ) . ( , ) … … (1) 

exist.  

   With the forgoing definition, the notion of isometric embedding will relevant in some way 
with the concentration of measure phenomenon in such way that the Equation (1) above can 
be seen as 

( ), ( ) ( , )
[ ( , )]

… … (2) 

Where  is universal constant and = ( , ) 

The quantity  plays an important role in the process which is required as covariance of the 
point around the neighborhood. 

Kashin was discovered that there is a subspace of  of dimension proportional to  on 
which the    and   are equivalent. In the same way an inner product, which is a 
symmetric bilinear positive definite mapping . , . : ×  on a real vector space, 
assists in the construction of geometry. An orthonormal set basis of  is an orthonormal set 
{ } [ , ]such that all finite linear combinations  is dense in  . This complexity 
aids much better in the construction of the spaces.    

   Our paper concerns the diameter of these subspaces as sections of convex bodies. We 
investigate Large Deviation Principle (LDP) and its connection to the concentration of 
measure phenomenon. These mathematician process aids powerfully in the measurement of 
the diameter of the sections of convex bodies. Dvrotzky – Rogers in their Lemma had 
treated the problem of the length of the orthogonal coordinate upon concentration on a unite 
Euclidean ball. 

  Our paper is organized as follows. In the 1st section we discuss how embedding, which is a 
powerful tool in concentration of measure, affects to describe the geometrical property of 
any body. The 2nd section describes the notion of (LDP) and concentration of measure which 
is a powerful technique to describe and built a section of anybody in the space. Our 3rd 
section investigates the convex bodies and its geometrical properties upon embedding, also 
we describe the notion of the polar body  of any convex body and use it as concentration 
tool to describe the sections of any convex body. At last we had a short discussion.     
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Embedding and Construction of geometry  

   Embedding plays an important role in the construction geometry of spaces. If we embed to 
a random  subspace, such subspace can be chosen by selecting an 
orthonormal basis ( , , … , ) which is random  of unite orthogonal 
vector{ = 1} , where the coordinate of the projection from  to  can be produced 
in the manner of scalar product , , … , , , by the other hand the orthonormal basis 

, …  is chosen identically and independent where ,  (1 ). 
Dvrotezky and Rogers state in their Lemma that the construction geometry of random points 
will be stated with the notion of the scalar product. 

 Lemma (Dvortzky – Rogers): Let .  be a norm on  with unite ball , let  be the 
John ellipsoid. Then , … ,  which are orthonormal with respect to . , . , and 
such that 

2     , = 1, … , 1 … … (3) 

Dvortzky – Rogers Lemma state that, every unite ball contained a constructed geometry 
upon some orthogonal set of points which built a net on . 

 Lemma: Let (0,1) and let  be an  of . Then, for all , there a 
sequences ( )  and ( )  such that 

=  

1 

with this scalar product we can connect the norm .  on normed space ( , . ) with the 
legal Euclidean norm |. | on . 

   The quantity  controls  (an ambient dimension of the embed space = ( , ) . 

 Lemma: Let , … ,  be orthogonal transformations of . Let .  be a norm on  and 
let |. | denote the canonical Euclidean norm. Put | =  and assume |

| | for all  and some 0 < . Then  

| | … … (4) 

With the assumption of the Ex – Lemma we can conclude with | | | that | |

 with probability greater than , which enough with the constraints of 
the embedding process. Also we can deal with the notion of concentration of measure  

 Theorem (Jonson – Linden Strauss Flatting Lemma): Let  be an  set in a 
Euclidean space ( .  ) and let (0,1] be given. Then there exists a (1 + )

 of  into , where = ( log ). 

 Corollary : With the assumption of Lemma (1.3). Then 

| | | | 
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with, 

| | … … (5) 

Where, as we mentioned before. 

   The basic research of the approximate embedding is all about the quantities( , ), and as 
in the concentration of measure;  is the ambient dimension of the space and  is the 
diameter of the open neighborhood. 

 Theorem: There is a constant > 0 such that for all > 0, every  
normed space admits a subspace whose Banach – Mazure distance from  is at most 
(1 + ) and > log . 

   The relevant of the source dimension and the subspace dimension is created in the 
following theorem. 

 Theorem: For some universal constant  

 

   Where  stand for the number of orthogonal transformation as in Lemma (1.3). 

   The Banach – Mazure distance between two spaces  and  is ( , ) =
inf , ( ) ,      , where stands for the geometric distance 

( , ) = inf , ; ; , > 0  

   With the above theorem we guarantee that < log ; in a such way that: 
log  ( ) log (1 + )  where ,  are universal constants. In the same 

area we had 

 Theorem: There exist > 0 such that , > 0, every  normed 
linear space  admits a subspace  such that ( ) 1 + , and > log . 

 Theorem (Milman’s Dvortzky Theorem): There exist a function ( ) such that, for all 
( ), ( ) . Actually one may take ( ). 

Also classical Dvortzky theorem takes the same way  

 Theorem (Classical Dvortzky): Let  be a normed space of dimension . Then there exist 
a function ( ) 0 such that, for all ( ) log , ( ) . 

Which mean that | |, where ( ) log . So | |
| |
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By the other hand the notion of  play a basic role in the area of 
concentration of measure.  

Lemma (Lipschitz extension): Given a function  defined on a finite subset , … ,  of , 
there exist a function  which coincides with  on , … ,  is defined in the whole space 

, and has the same Lipschitz constant as . Additionally, it is possible to explicitly 
constructed  in the form: 

=
,.., ( ) + ( ) ( , )  + ( ) ,.., ( ) ( ) ( , )  … … ( )  

for any [0,1], with ( ) = max , ,…,
( )

,
.  

So as a consequence 
( )

,
( ) so ( ) ( ) ,  and : 

( ) ( ) , 2
( )  

2 ( ; ) … … (7) 

Notation: The Formula (6) above is equivalence with the definition of the convex body. So 
the  could create a convex body in .  

   Every bodies in  with simple assumption could create a convex body of it in  using 
concentration of measure phenomenon, in such way that their norms are equivalent.  

Theorem: Let  be a body with < , and let 0 < < 1. Then for any subspace  
of dimension , there exists a convex body  such that 

( ( ), ) < ( ), < ( , ) … … (8) 

Where  is the orthogonal projection onto  in , and ( ), ( , ) are independent 
of  and of . 

   Embedding also serves to construct a section of anybody in the space . 

Theorem: Let the space = ( , . , |. |) have the following property: | | for all 
 and for some > 0 and > 0, for every integer , , there are subspaces 

,  such that 

| | … … (9) 

For all , and moreover, for every such that , the probability that our element of ,  
satisfies this inequality is at least . Then there is a = ( , ) such that . /

|.|
/

.  
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Corollary: Let  be a body with < , and let 0 < < 1. Then for any subspace  
of dimension , there exists a convex body  such that  

(1 ) ( (1 + ) ( ) … … (10) 

Then there exist = ( , ) points such that: 

( ) | ( )| … … (11) 

Then, with probability greater than 2
( )

 

( ) ( ) ( ( ) ) … … (12) 

 Concentration of measure Verses Large Deviation Principle 

   The spirit of large deviation takes a chance in the theory of concentration of measure. The 
large deviation principle demands rate function which controls the speed of convergence 
(neighborhood). In [9] we found that = { ; ( , ) < } is the neighborhood of 
order > 0 of  for the geodesic metric on . The function  can be control the 
concentrate phenomenon. On the same area if  is continuous on  with modulus of 
continuity ( ) = sup{| ( ) ( )|; ( , ) < }then 

( ) 2 ( ) … … (13) 

  Where  is the median of the function .  

   The concentrate phenomenon serves also to generate sections of anybody in the space . 
Concentration of measure determined a probability measure in such way that ( , , ) is a 
metric space which equipped with the Borel measure . The level of concentration is 
determined with respect to the class of linear functional ( ) by 
measuring the size of minimal well – distributed substructures of certain probability space. 
And these substructures should exhibits a high level of concentration and, at the same time, 
they should represent the original space in an essential way. 

 Definition: A sequence of random variable , , …, with values in metric space is said to 
satisfy a large deviation principle with 

Speed  and 

Rate function , 

If, for all Borel sets  

lim
1

log { } inf ( ) ( ) 

lim
1

log { } inf ( ) ( ) 

Lemma: If  is a rate function and  is a Borel set, such that for every  and > 0 
with ( , . 
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lim
1

log { ( , )} ( ) … … (14) 

Then, 

lim
1

log { } inf  ( ) … … (15) 

   So, for ( , , then ( ( , ), ) ( ) with ( ) < . 

The right hand side of (15) above stands for some known quantity in isoperimetric process. 
By the other hand the nature of   appear in the sense of large deviation 
principle as contraction principle.  

Lemma (Contraction Principle): If , , … satisfies a large deviation principle with 
speed  and good rate function , and :  is continuous mapping, then the 
sequence ( ), ( ), … satisfies a large deviation principle with speed  and good rate 
function  given by  

( ) = inf ( ) ( ) … … (16) 

Corollary: If  is a rate function and is a Borel set, such that for every  with 
( , , then 

{ ( , )} ( )  , and 

{ }  ( )   

The rate function ( ) here stands for ( ) 
( )

. From Equation (17) we obviously see the 
notion of concentration of measure in the sense that . Concentration of 
measure is used to prove that  holds with high probability. 

Definition: Let ( , , ) be a metric space with metric  and ( 1, which is 
equipped with Borel probability measure . Then the concentration function on  is 
(Isoperimetric constant) ( ; ) = 1 inf ( ):     , ( , where 

= { : ( , } is the  of . 

   We had that  and this imply that ( , . So ( ; ) ( ) =
( ) ( ). 

Now according to Theorems (1.6), (1.12) and Corollary (2.4) we had the following 
corollary. 

Corollary: Let > 0, > 0. And let = ( , . , |. |) be  normed space 
which have the following property: | | for all . Let ( ,  be a body in 

. Then for ( )  there exist a  subspace , ( , ) 
such that: 

(1 + )| | … … (18) 

 … … (17) 
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For all ( , ), with probability greater than  ( ), where  stands 
for speed of convergence and ( ) stands for rate function. 

Theorem (Concentration on ): Let :  be  a   function. 
Then for any > 0 

{| ( ) ( )| > } 2 exp … … (19) 

So we can deal with convex body . 

Convex body & Diameter of its Section 

 By a convex body we mean isotropic convex body which is symmetric and centered at the 
origin. We say that a body  is convex if for , , (0,1), the relation { +
( ) }  holds. Apostolos, Librini and Antonios in their paper [13] recall that ( ) 
and ( ) as inradius and radius alternatively for the convex body  with  ( ). 
Kannan, Lovasz and Simonovitz [14] had proved that ( ( + 1) , where  is the 
isotropic constant for the convex body.  

Definition: A convex body in  is a compact convex subset  of  with nonempty 
interior. 

The best method to describe the convex body is with its support function which is principle 
tool to characterize the convex body.  

Definition: Let  be a convex body of volume 1 in , for 1 we define the 
 body ( ) of  by its support function  

( ) . , ( ) = ( )( ) = ( , ) = , | ( ) … … (20) 

Fact: we know that the  moment of any body for 1 will be at the form: 

( ) =
/

… … (21) 

( , ) = , | … … (22) 

Theorem (Alesker): Let  be an isotropic convex body in . For 2 we have 

(  

 

Where > 0 is an absolute constant. 

Also this moment function guarantees the embedding assumption 
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Lemma: There exist an absolute constants , > 0 such that 

, | ( ) max 1, … … (23) 

For every > 0and . 

We can conclude and according to Theorem (2.7) that 

Corollary: Let  be an isotropic convex body with log – concave measure , set 
(0,1) and let , with 

, | ( ) 1, … … (24) 

Then with probability greater than 

,

, we have  

, ( ) ( ) … … (25) 

For > 0 and .Where ,  are universal constants.   

So,  will control the neighborhood process. 

   The most advantage of the isotropic convex body with centered at the origin is that it does 
create a convex hull according to its measure. 

Fact: We say that the convex body  is isotropic if | | = 1and 

( , | ) ( ) = . Where  is the isotropic constant 

Theorem: Let (0,1) and  be an isotropic convex body with centroid at the origin in 
. For every (0,1), = exp( ) points , … ,  chosen uniformly and 

independently form  satisfy with probability greater than  

( , … , ) ( ) … … (26) 

   Also, the notion of convex body aids in embedding process. 

Theorem: For a centrally – symmetric convex body , there exists a centrally – 
symmetric convex body   with ( , log  and < , where , > 0 
are numerical constant. 

So, with probability greater than , we had . Where  is the convex 
constant  

   As in Theorem (3.6) the random points needs to distribute uniformly and independently 
and that will necessity a comfortable Borel distribution measure, which relevant in some 
way to notion of concentration of measure  
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Theorem: Let   be a unite sphere in  equipped with a geodesic , let  distributed 
according to  on . Let  be a measurable set of  that satisfies ( ,and 

= { : ( , )    }. Then ( ) = ( )
( )

.  

So, to get the notion of neighborhood, we need a probability distribution function, and for 
the convex body this function is considered as the support function as in Definition (3.2) 

   The other advantage of the convex body is that it creates a measure of its own. 

Theorem: Every convex body  creats a log – concave measure , and random set of 
exp( ) points chosen from  creates a body equivalent to  and, at the same time, form a 

 for . 

Definition: We say the Borel probability measure  is log – concave if ( +
( ) ) ( ) ( ) , and  

 is isotropic if , ( ) = . 

 is satisfy a with constant 1 if , ( ) . 

Fact: Every convex body can be identified with its polar body {
, , 1}. 

 So, according to Ex – fact, we can concentrate the convex body around its polar body, 
which is isotropic convex body, to identified it, i.e. . If we back to Lemma (1.1) 
there exists , … , which are orthogonal with respect to . , .  taking = 1, and that 
will built a net for . As in Theorem (1.4) this  points will produce an embedding into  
which equivalent in some way to the polar body of , with rate function as log – concave 
measure.  

Corollary (Diameter of Convex Body According to its Polar Body): 

   Let  be an isotropic convex body with , let = 1 and = log , there 
exists a subspaces  such that 

( ) max 1, … … (27) 

Then with probability greater than we have 

( ) ( ) … … (28) 

 

Then, 

( ) … … (29) 
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Discussion: We found that the best method to give approximated diameter for anybody in the space   
is with embedding it to its equivalent Euclidean body and compare its metric with the legal 
Euclidean metric.  
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