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Preface

Modern techniques to produce nanoparticles, nanomaterials, and nanocomposites are 
based on physical and chemical (of zerovalent (elemental) metals, their oxides and 
salts), various nanomaterials and nanocomposites are examined. Main (of zerovalent 
(elemental) metals, their oxides and salts), various nanomaterials and nanocomposites 
are examined. Main methods for green synthesis include the use of natural products 
(i.e., tea, banana, coffee, wine, glucose, sugar, extracts of various plants or parts of 
plants, simple amino acids), acting as capping, chelating agents, and/or reductants 
(mainly polyphenols) in these processes. Indeed, a variety of plant biomolecules 
(vitamins, alkaloids, sugars, enzymes/proteins, etc.) can contribute to the formation 
and stabilization of nanoparticles. These techniques are environmentally friendly, 
simple, and mainly one-step method as a part of biosynthesis applies several bacteria 
for nanoparticle formation. The yield of final products, size and method as a part of 
biosynthesis applies several bacteria for nanoparticle formation. The yield of final 
products, size and morphology of nanoparticles, extraction of biologically produced 
metal nanoparticles will be discussed.

Currently, in addition to the biological methods above, several physical and 
chemical routes for nanomaterials fabrication can be considered as green methods, 
for example UV-irradiation, ultrasound- or microwave-assisted reactions (dry media 
synthesis), use of special microreactors, water, liquid and supercritical CO2, some 
ionic liquids, supercritical fluids, glycerol and polyethylene glycols as nonharmful 
solvents, green catalysis (or catalyst-free reactions) in organic synthesis, incorpora-
tion of reactants in clays, zeolites, silica, or alumina. Methods of green synthesis are 
frequently simple, inexpensive, and efficient, without hazards for the environment.

We are extremely grateful to all authors for their hard work in creation of the 
present Handbook and hope that this collection will be a useful guide for developing 
novel materials and reaction routes for a sustainable and clean future.

Editors
Boris I. Kharisov

Oxana V. Kharissova
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11.1 Introduction

During the previous decades, several achievements in the creation of nanomaterials 
have pulled in tremendous considerations in multidisciplinary research areas along with 
commercial [1], agricultural [2] and medicinal [3] packages. Moreover, nanomaterials 
usually possess great mechanical, magnetic and electrical residences etc., which lessen 
the impurity on fabric surfaces and lead to superior functional advantages [4].

Nano-size particles of less than 100 nm in diameter are currently attracting more 
attention for the wide range of new applications in many fields and industries because 
of some effects like small particle dimension, high surface to volume ratio and their 
quantum confinement [5,6].

Nano chemistry is the understanding and control of matter of sizes roughly in the 
range of 1 to 100 nanometers. If one of the dimensions is in this range, it is considered 
a nanoparticle. Bulk materials when reduced to the nanoscale show some properties 
(melting point, physical strength, surface area, penetration power, electric conduct-
ance, optical effect, magnetism etc.) which are different from what they exhibit on 
a macro scale enabling unique applications. These materials can be either natural or 
engineered.

At nanoscale, gravity would become less important, whereas surface tension and 
van der Waal forces would become more important [7]

In the meantime, the remarkable surface properties of nanomaterials enrich them 
as special materials with better practical exhibitions material to progressively sensi-
tive conditions [8,9].

The name mechanochemistry became carried out to the kind of reactions accom-
plished via mechanical strength. A narrower area, tribochemistry, became used for 
reactions generated by way of friction at some point of the milling

Mechanochemistry deals with chemical transformations induced by mechani-
cal means such as compression, shear, or friction. In mechanochemical processes, 

11
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the energy required for the activation of chemical reactions is usually provided by 
mechanical force as similar to thermochemistry, photochemistry, or electrochemistry, 
where energy is provided by heat, light, or electrical potential, respectively.

Mechanochemical processes have a long history and continue to be of high impor-
tance because these can quantitatively and rapidly promote solid-phase reactions only 
using nominal amounts (wet milling or liquid-assisted grinding). In conventional 
chemical synthesis, the solvent often plays a key role in energy dispersion, dissolu-
tion/solvation and transportation of chemicals.

Mass and energy transport may be hampered in solvent-free reactions. The effi-
cient mixing process under ball milling or grinding can offer an effective way out 
from this problem, enabling the reactions between solids or solidified reagents in 
solvent-free conditions. Despite these advances in solvent-free molecular synthesis, 
solvents remain prevalent for the isolation of products in satisfactorily pure forms. 
‘‘Liquid-assisted grinding’’ (LAG) has been introduced to provide a potential alterna-
tive to minimize the use of solvents in (nano)materials syntheses.2 In contrast to ‘‘dry 
milling’’ mechanochemical processes, LAG may offer advantages such as greater 
time efficiency, proper usage of materials and energy and can result in the discovery 
of new or improved reactivity and products [10].

The first part of the chapter is devoted to this subject and discusses various topics, 
including the theoretical background for Mechanochemistry and relation between 
milling conditions and phase formation, the course of mechanochemical reactions 
including amorphization and nucleation phenomena triggered by high-energy milling, 
the formation of intermediate phases during a reaction, the evolution of the crystal-
lite size and the particularities of the nanocrystalline products and the preparation of 
nanosized pharmaceutical drugs.

11.2 Theoretical background

Generally, the mechanochemical treatment of solids leads to a positive influence on 
the solid – liquid kinetics [11,12]. It has been documented by [13] that the breaking of 
bonds in the crystalline lattice of solids brings about a decrease (ΔE*) in the activation 
energy and an increase in the rate of leaching

 ∆E E E* *= −  (11.1)

 k k E RT* * /= ( )exp ∆  (11.2)

where E is the apparent activation energy of the non-disordered solid, E* is the apparent 
activation energy of the disordered solid k, R and T stand for the rate constant of leaching 
for the non-disordered solid, (the pre-exponential factor) gas constant and reaction tem-
perature, respectively; k* is the rate constant of leaching for the disordered solid.

If E > E*, then exp (ΔE*/RT) > 1 and thus it follows from eq. (11.2) that k* > k, 
i.e., the rate of leaching of a disordered solid is greater than that of an ordered mineral.
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Senna have analyzed the effect of surface area and the structural disordering on 
the leachability of mechanically activated solids [14]. In order to solve the problem, 
whether the surface area or structural parameters are predominant for the reactiv-
ity the rate constant of leaching was divided by the proper surface area and plotted 
against the applied energy by milling (Fig. 11.1).

For example, if the rate constant of leaching divided by the surface area remains 
constant with respect to the applied energy, as shown in Fig. 11.1A, then the measured 
surface area may be the effective surface area and at the same time, the reaction rate 
is insensitive to structural changes. If, on the other hand, the value  k/Si decreases 
with applied energy, as shown in Fig. 11.1B, then the surface area is probably not the 
effective surface area. In the third case where k/Si increases with increasing applied 
energy, as shown in Fig. 11.1C, the surface area Si, may be again the effective surface 
area, with an overlapping effect of the structural imperfection as a result of mechani-
cal activation. Alternatively, when k/Si and X vary parallel to each other with E, as 
shown in Fig. 11.1D, or the value k/Si is proportional to X, as shown in Fig. 11.1E, 
it seems more appropriate to accept the chosen Si as an effective surface area [15].

11.3 Mechanochemical reactors

Processing in mechanochemical reactors can be completed in an assortment of ways. 
The most straightforward is the laboratory mortar and pestle. This hand processing 
forms can incite countless mechanochemical responses, which do not require the out-
performing of a high-vitality hindrance. Ball plants are utilized when higher vitality is 
included and when the processing time requires hours or even days. Research center 
vibrators of the Wiggle-Bug type are exceptionally productive in processing small 

k/Si

k/Si

k/Si

k/Si or X

k/Sik/Si
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Fig. 11.1 Schematic diagrams representing the mutual dependence of physicochemical 
characteristics and reactivity of mechanically activated solids: k – the rate constant of 
leaching, Si – surface area, X – structural imperfections, E – applied energy [14].
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samples. Exceptionally high-vitality vibrators, for example, fast attritors or treated 
steel ball plants of high effect are utilized for delayed high vitality processing as in 
mechanical alloying or amorphization of hard crystalline solids. This area features a 
portion of the significant utilizations of mechanochemistry in natural blend utilizing 
mortar and pestle, high speed ball milling (HSBM) process, high intensity grinding 
(HIG) [16].

11.3.1 Ball milling

This mechanical method of production of nanomaterials works on the principle of 
controlled impact. The size reduction is achieved through the impact caused when the 
balls drop from the top of the chamber containing the source material.

A ball mill consists of a hollow cylindrical chamber (Fig. 11.2) which rotates about 
a horizontal axis, and the chamber is partially filled with small balls made of steel, 
tungsten carbide, zirconia, agate, alumina, or silicon nitride having diameter gener-
ally 10 mm. The inner surface area of the chamber is lined with an abrasion-resistant 
material like manganese, steel, or rubber. The magnet, placed outside the chamber, 
provides the pulling force to the grinding material, and by changing the magnetic 
force, the milling energy can be varied as desired. The ball milling process is carried 
out for up to approximately 150 h to obtain uniform-sized fine powder (Fig. 11.3).

In high-energy ball milling, vacuum or a specific gaseous atmosphere is maintained 
inside the chamber. High-energy mills are classified into attrition ball mills, planetary 
ball mills, vibrating ball mills, and low-energy tumbling mills. In high-energy ball 
milling, formation of ceramic nano-reinforcement by in situ reaction is possible.

It is an inexpensive and easy process which enables industrial scale productivity. 
As grinding is done in a closed chamber, dust, or contamination from the surround-
ings is avoided. This technique can be used to prepare dry as well as wet nano pow-
ders. Composition of the grinding material can be varied as desired. Even though this 
method has several advantages, there are some disadvantages. The major disadvan-
tage is that the shape of the produced nanoparticles is not regular. Moreover, energy 
consumption is relatively high, which reduces the production efficiency. This tech-
nique is suitable for the fabrication of several nanocomposites, which include Co- and 
Cu-based nanomaterials, Ni-NiO nanocomposites, and nanocomposites of Ti, C [18].

Container Gas Seal

Steel ball bearings

Rotating impeller

Ball

Nanoparticles

Fig. 11.2 A ball mill consists of a hollow cylindrical chamber [17].
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11.4 Mechanochemical synthesis of metal nano-particles

Mechanochemical reduction could be an effective route for the synthesis of metal 
nanoparticles (generally noble metals) with improved structural and catalytic proper-
ties. Mechanochemically prepared Ag/Al2O3 nanomaterials have been prepared and 
tested in the selective catalytic reduction (SCR) of NOx using hydrocarbons in the 
presence and absence of hydrogen [19,20].

The catalyst exhibited a remarkable increase in activity at lower reaction temperatures 
as compared to traditional catalysts prepared via standard wet impregnation methods. The 
enhanced activity of the mechanochemically synthesized catalyst was related to surface 
modifications that provided an increased affinity towards hydrocarbons relative to water, 
consequently reducing the activation barrier for the reduction of NOx.
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The straightforward two-step process involved a dry mixing of a precursor metal 
salt (e.g., a metal acetate) with carbon nanotubes (single- or multiwalled) followed by 
heating in an inert atmosphere in the absence of any solvent, reducing agent or elec-
tric current. The proposed methodology can be, in principle, scalable to multigram 
quantities and generally applicable to various other carbon substrates (e.g., carbon 
nanofibers, expanded graphite and carbon black) and many metal salts (e.g., Ag, Au, 
Co, Ni and Pd acetates) [21].

Generally, mechanochemical synthesis has attracted considerable scientific and 
technical interest in recent years as a consequence of the unique nanostructures and 
properties developed by this process. High-energy milling can be used to induce a 
wide variety of solid-solid and even solid-liquid reactions [22,23]. A chemical reac-
tion is believed to occur at the interfaces of the nanometer sized grains that are con-
tinually regenerated during milling. As a consequence, reactions, that would normally 
require high temperatures to occur, due to separation of the reacting phases by the 
product phases, can occur at lower temperatures in a ball mill. An important feature of 
the mechanochemical synthesis is the rapid refinement of the particle microstructure, 
i.e. grain size or crystallite size, during milling. While powder particle sizes generally 
decrease only to the micrometer level, a nanometer grain size can develop within each 
particle [23].

Farit Kh. Urakaev 2012. Have studied the mechanochemical synthesis of nanopar-
ticles by a dilution method. The results showed that studying the kinetics of mechano-
chemical processes can be recommended to find the specific features for the numerical 
estimation of the mass transfer coefficient in a mechanochemical reactor [24].

C.-F. Zhou et al,. 2009 studied the synthesis of polyaniline nanofibers, by a sim-
ple solid-state mechanochemical reaction and template-free method. Another study 
by Venkatesha Narayanaswamy et al., 2019 regarding the synthesis of Graphene 
oxide-Fe3O4 nanocomposites by a mechanochemical method to yield extremely het-
erogeneous particles. The nanocomposites milled for deferent extents of time have 
shown deferential behavior for magneto thermic heating. The magnetic composites 
synthesized by the ball milled method were able to retain the functional groups of 
graphene oxide [25].

From supported metal nanoparticles, composite nanomaterials to metal oxide 
nanoparticles and metal organic frameworks (MOFs) including covalent organic 
frameworks (COF). Examples of relevant materials include zinc-based ZIF-8 struc-
tures (BIT-11), Cu (INA)2 and Cu-containing HKUST-1 as well as supported noble 
metals on aluminosilicates, and graphene [26].

11.5 Mechanochemical synthesis of complex ceramic oxides

In general, complex ceramic oxides exhibit a variety of properties, making them attrac-
tive for a diversity of different applications. The main effects associated with each 
direct mechanochemical synthesis (regarding the formation of the final product at once 
at some stage in milling) and the mechanochemical activation-based synthesis (relating 
to excessive-electricity milling, used to increase the reactivity of the powders, which is 
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accompanied through an annealing step to set off the formation of the very last prod-
uct) of complex oxides with a variety of properties is investigated [27].

Ferroelectric, antiferroelectric, piezoelectric, relaxor and multiferroic oxides as 
well as oxides with magnetic, semiconducting and catalytic properties are high-
lighted, in particular the influence of mechanochemical activation on both the phase 
formation during subsequent annealing and the preparation of the final ceramics, the 
influence of milling conditions, such as humidity, and the effect of the hydration state 
of the reagents on the course of the mechanochemical reaction as well as the issue of 
contamination during milling [27].

In metallic–ceramic composite powder formation, the preparation of metals and 
alloys by reducing their salts or oxides with more reactive metals is commonly known 
as metallothermic reduction. This reaction is expressed in general by the equation:

 M X M M M XA B A B+ > +  (11.3)

where a metal MA is reduced by a more reactive metal MB (reductant) to the pure 
metal MA. MAX and MBX are oxides, chlorides, sulphides and other salts.

Metallothermic reactions are characterized by a large negative free-energy change 
and therefore they are thermodynamically feasible at room temperature [27].

Mechanochemical synthesis has recently received a lot of interest for processing 
ceramic powders, opening up better approaches for creating mechanically significant 
oxides with complex compositions one of the most significant research regions is 
the investigation of the mechanisms and kinetics of mechanochemical reactions, 
which structure the basis of the further advancement of mechanochemical synthesis 
[19,21,27].

11.6  Mechanisms and kinetics of mechanochemical 
reactions

Based on the theory of glancing collision of rigid bodies, the theoretical calculation 
of t–P–T conditions and the kinetics of mechanochemical processes are possible for 
the reactors that are intended to perform different physicochemical processes during 
mechanical treatment of solids. According to the calculations, the ‘physicochemi-
cal’ effect of mechanochemical reactors is due to short-time impulses of pressure 
(ΔP = σ ∼ 1010–1011 dyn cm−2) with shift, and temperature ΔT(x, t). The highest 
temperature impulse ΔT ∼ 103 K are caused by the ‘dry friction’ phenomenon.

Typical spatial and time parameters of the impact–friction interaction of the parti-
cles with a size R ∼ 10−4 cm are as follows: localization region, Δx ∼ 10−6 cm; time, 
Δt ∼ 10−8 s. the effect of short-time contact fusion of particles treated in various can 
play a key role in the mechanism of activation and chemical reactions for wide range 
of mechanochemical processes.

The spatial and time characteristics of the fused zone are such that quenching 
of non-equilibrium defects and intermediate products of chemical reactions occurs; 
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solidification of the fused zone near the contact point results in the formation of a 
‘nanocrystal or Nano amorphous state’. The calculation models and the kinetic equa-
tions permit quantitative estimates of rate constants to be performed for any particular 
processes of mechanical activation and chemical transformation of the materials in 
ball mills [28].

The main merits of applying mechanochemistry to various functional materials 
are charge transfer across a boundary of dissimilar solids with simultaneous polariza-
tion, size reduction and homogenization without external heating. This could prompt 
development in organic syntheses starting from the solid state, involving solvent-free 
and subsequently green chemical processes. Affordable metals could be used instead 
of noble metals in catalysis process since the mechanical stress applied brings excited 
state. Mechanochemical processes is expected to be applied further in different fields 
including biocompatible complexes and pharmaceutics [29,30].

Seyedia et al.,2015 clarified that Nano-size particles of less than 100 nm in diam-
eter are currently attracting more attention for the wide range of new application in 
many fields and industries because of some effects like small particle dimension, 
high surface to volume ratio and quantum confinement, [31–33] Mechanochemical 
processing is a new method involving the mechanical activation of solid-state chemi-
cal reactions displacement during ball milling which has been widely researched in 
the recent years and were used to synthesize of metallic, oxide and sulfide nanopar-
ticles, [31,32]. The other competitor methods that have been developed to synthesize 
nanoparticles include sol-gel, vapor phase condensation, sputtering, wet chemical 
precipitation and hydrothermal synthesis.

The main advantage of mechanochemical synthesis is that in this method the pro-
cess carried out in solid state and agglomeration did not occur in comparison to the 
above methods. In addition, the control of the overall particle size distribution in this 
method is easier, Yang et al. (2004). During milling fracture, deformation and weld-
ing of the reactants take place. Chemical reactions occur at the interface of reactants, 
consequently the chemical reactions that require high temperature will occur at low 
temperature without any external applied heat,[ 31, 35,36]. Mechanochemical synthe-
sis was done by displacement reaction according to the following reaction:

 AxC yB=xA=ByC+  (11.4)

where AxC and B are the reactants, A is favorable product and ByC is by-product 
of the reaction. By choosing suitable conditions such as milling parameters, suitable 
BPR and the stoichiometric ratio of starting materials, mechanochemical process-
ing can be used to synthesize nanocrystalline particles. After the milling process, 
the nanoparticles will be surrounded with by-product materials which are dispersed 
within this soluble salt matrix, selective removal of the matrix phase must be done by 
washing the resulting powder with appropriate solvents.

After that nanoparticles will be formed as small as 5 nm, [34,36]. Nowadays fab-
rication of iron oxide nanoparticles has attracted a lot of attention due to their unique 
properties and industrial capability.
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11.7 Aldol condensation

The reaction of two carbonyl compounds, one as a nucleophile (in the form of an 
enol or enolate derivative) with another acting as an electrophile, gives rise to a 
b-hydroxycarbonyl compound. This on dehydration produces an a,b-unsaturated car-
bonyl compound which is commonly referred to as the aldol condensation reaction. 
These reactions are utilized to underivative ketones and aldehydes with simple acid 
or base catalysis, the reaction is usually carried out using preformed enolates which 
serve both to increase the driving force of the reaction and to ensure that the desired 
chemoselectivity is achieved [30].

11.7.1 Reformatsky reaction

Toda et al. demonstrated that Reformat sky reactions proceed efficiently in the 
absence of solvent. The solvent-free reaction was carried out by mixing aldehyde or 
ketone, a-bromo ester and Zn-NH4C1 in an agate mortar and pestle while keeping the 
mixture at room temperature for several hours. Treatment of the aromatic aldehydes 
with ethyl bromoacetate and Zn-NH4C1 gave the corresponding Reformatsky reaction 
products in very high yield (80–94 percent) (Fig. 11.4).146 The reaction yield was 
found to be much better than that obtained by the reaction in dry benzene–ether solu-
tion (61–44 percent); the additional advantage of solvent-free Reformatsky reaction 
is that it does not require the use of an anhydrous solvent [30].
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11.7.2 Luche reactions

Toda and coworkers also found the Luche reactions proceed efficiently in the absence 
of solvent, although Grignard reactions under similar conditions are not very efficient 
and give more reduction product than the normal carbonyl addition product. The 
solvent-free Luche reactions can be carried out by a very simple procedure and give 
very high yield in comparison to the reaction under conventional reaction conditions 
using solvent [30,35–36].

11.8 Mechanochemical synthesis of carbon nanotubes

In a more recent report, carbon nanotubes were also utilized as support for Pd NPs 
using a similar solvent less dry milling method in the absence of any reducing agent 
or electric current [25]. 16 Pd NPs (1–3 nm size) could be uniformly dispersed on 
the support and the mechanochemically prepared Nano catalyst exhibited excellent 
activities in Suzuki cross coupling reactions with high turnover numbers (TON) and 
turnover frequencies (TOF). Pd NPs prepared by thermal annealing (300 °C) formed 
larger NPs due to agglomeration as compared to Pd NPs prepared at room tem-
perature, thereby leading to reduced catalytic activities. A similar mechanosynthesis 
technique can be utilized to prepare functionalized ultra-small Au NPs in gram scale 
using a bottom-up approach [17]. The size of AuNPs could be controlled by varying 
the ligand/precursor ratio, milling time and/or the nature of the ligand [25].

Along these lines, a simple and scalable method for the preparation of supported gold, 
palladium and gold–palladium bimetallic catalysts via the physical mixing of the acetate 
salts of metals followed by a simple heat treatment was also recently described.

11.9  Mechanochemical dry synthesis of nanocrystalline 
semiconductors

Nanocrystalline semiconductors, also called quantum dots, appear to be interesting 
objects for studying basically novel properties of matter. In general, reducing the size 
of semiconductors down to the nanometer length scale is expected to increase the 
energy gap of the semiconductor structure and, consequently, to give rise to shorter 
wavelengths optical emission spectra relative to that of bulk semiconductors [1].

Tatykaev et al., have successfully prepared nanoparticles of silver chloride 
dispersed within a soluble salt matrix by means of powders grinding in a mortar 
(z = z2 = 3:64) and in rotating laboratory mill (z = z1 = 7:22) via reaction NH4Cl + A
gNO3 + zNH4NO3 = (z + 1)NH4 NO3 + AgCl. The synthesis of silver chloride by soft 
mechanochemical reaction, revealed by XRD,and that the sizes (L) of synthesized 
particles are L(z2) = 132 nm, L(z1) = 151 nm. The SEM examination of the reaction 
products suggests the formation of silver chloride particles with wide ranges of size 
distribution, commonly less than 200 nm. Thermal analysis allowed identification of 
the optimal temperature range to yield nanoparticles of a desired phase [37].
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11.10  Mechanochemistry in the preparation of nanosized 
pharmaceutical drugs

During KOFST project at the College of Pharmacy of Pusan National University, 
Baláž et al. clarified that “Mechanochemical preparation of nano – sized pharmaceuti-
cal drugs for the application in cancer therapy”. The obtained results are good starting 
point for the future research activities. Arsenic sulphides belong to the very progressive 
compounds in pharmaceutical applications. In medicine, there is a great need for an 
effective treatment of cancer, particularly haematological cancer including leukaemia 
and lymphomas. Further, there is a great need for orally active anticancer agents. Drugs 
with arsenic sulphides as active components are good candidates for such demands [15].

11.11 Conclusions

Mechanochemistry has made significant progress during the recent decade. The 
accessible hypothetical, experimental and applied results are outlined in this chapter. 
The distinguished hallmarks of mechanochemistry include: impacting reactivity by 
creating interphases (particularly in composite and multi/phase systems), abandons 
in solids and by presence of relaxation phenomena, making great crystalized cores 
of nanoparticles with disordered near surface shell regions, performing simple, dry, 
time-convenient one-step syntheses, preparing nanomaterials with properties set in 
advance, scaling up to industrial production, and empowering work under environ-
mentally friendly and essentially waste-free conditions.

In general, there is still a long way to go in mechanochemistry. Mostly the 
clarification of the mechanism of the reactions and industrial application of mecha-
nochemistry in nanotechnology are the issues. However, there is no doubt that 
mechanochemistry should be incorporated in textbooks of not only solid-state, but 
additionally other branches of chemistry. A similar idea was proposed by Wilhelm 
Ostwald (The Nobel Prize in Chemistry 1909) long time ago.
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in [bmim] [BF4], 387, 388f
in [bmim] [PF6], 391f
Bronsted acid DMMI HSO4-catalyzed, 

393, 393f

catalysts for, 388, 391, 388f, 391f–392f
of cyclic ketone and N-(p-

methoxyphenyl)-protected 
iminoglyoxylate, 392

[DDPA] [HSO4] and [TMBSA] [HSO4] 
catalyzed, 390, 390f

1-methylimidazolium trifluoroacetic acid 
([Hmim]+Tfa2) catalyzed, 388, 388f

RuCl2(PPh3)3 catalyzed, 388, 389f
using imidazolium ionic liquids, 392f
using proline functionalized catalyst, 

392, 392f
M13 bacteriophage, 794
m-cresol oxidation, 420f, 421, 424
Mechanochemical processes, 406

mechanisms and kinetics of reactions, 
411–412

rate of leaching, 406–407
of solids, 406
synthesis of

carbon nanotubes, 414
complex ceramic oxides, 410–411
metal nano-particles, 409–410
nanocrystalline semiconductors, 414
nanosized pharmaceutical drugs, 415

Mechanochemical reactors, 407, 409f
ball milling, 408, 408f

high-energy, 408
Medicine, nanotechnology in, 691
Metal-embedded MOFs, 70
Metal-free material, 927
Metallic nanoparticles (MNP), 586
Metallocene, synthesis of, 559f
Metallothermic reactions, 411
Metal oxide NPs, 110, 120, 112t, 923

copper, 111
iron, 111–112
mesoporous ZnO nanocrystals, 121
monodispersed CuONPs, 122
nano-sized nickel oxide (NiO) 

photocatalyst, 122
nickel oxide (NiO) nanorods, 122
titanium NPs, 111
using Abelmoschus esculentus (okra) 

mucilage, 121
using Allium eriophyllum leaves extract, 111
using Annona muricata, 122
using Calliandra haematocephala dry 

leaves, 121
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using Eclipta prostrata leaves extract, 111
using flaxseed (Linum usitatissimum), 121
using Garcinia mangostana leaf extract, 111
using Limonia acidissima Christmas 

juice, 122
using Psidium guajava leaf extract, 122
using Vaccinium floribundum extract, 112
ZnONPs, 120–121

Metal oxides,
Metal sulfide, 926
Microreaction technology (MRT), 616
Microreactor-assisted synthesis, of colloidal 

solutions, 15
Microwave-assisted bond, 492
Microwave-assisted nanoparticles synthesis, 7

of AgNPs, 9
of AuNPs

from chloroauric acid, 10
from HAuCl4, 10

of AuNPs from HAuCl4, 10
of Au@TiO2NPs from HAuCl4, 10
of CuO and Fe2O3NPs, 12
gold/silver NPs from HAuCl4/AgNO3, 9
of metallic alloy (Pt-Au) NPs, 8
monometallic and monodispersed PtNPs, 8
of noble metal NPs (Au, Pt, Pd), 10
of PdNPs, 8–9
of PtNPs from H2PtCl6, 7
of PVP-stabilized monometallic (Pt, Pd, 

Rh, Ru) NPs, 8
reduction of AgNO3 to AgNPs, 9–10
Ru-based NPs, 10
Ru-perovskites, 11
of TiO2/AuNPs, 10
of ZnO-based NPs, 11

from ZnCl2, 11
from Zn(NO3)2.6H2O, 11

Microwave-assisted organic synthesis 
(MAOS), 491

Microwave-assisted reactions, 492t
MIL-91(Ti), 70
Mixed-Valent Oxide Catalytic Carbonization 

(MVOCC), 292
Mizoroki-Heck reaction, 252
Molybdenum oxide, Schiff base complexes 

of, 547f
Morita-Baylis-Hillman reaction, 372
Multicomponent reactions (MCR), 572
Multiwalled carbon nanotubes (MWCNT), 258

N

Nanobiocatalysts (NBCs), 743
in pesticide degradation, 745

Nanobiotechnology, 736–737, 740
application of, 741

Nanocatalysts, 445, 447
green reaction

acetylations, 452
arylations and diarylations, 452
conversion of organosilanes to silanols, 

453
deoxygenation of epoxides, 451
deoxygenation reaction, 452
esterification of alcohols, 451
Heck cross-coupling reaction, 452
hydration of nitriles, 451
hydrogenation reactions, 452–453
lactonization of diols, 451
oxidation reactions, 454
oxidative coupling of alcohols, 451
reduction of p-nitrophenol to 

p-aminophenol, 451
Sonogashira cross-coupling reactions, 

453
Suzuki cross-coupling reactions, 454
Ullmann reaction, 453

Nano chemistry, 405
Nanocomposites (NCs), 126t, 664

AgNPs decorated P-doped g-C3N4 (Ag/
PCN) composites, 124

chitosan cross-linked silver NCs 
(CSHD-Ag NC), 123

few-layer graphene/silver NPs, 125
graphene-Ag (GAg) NC, 123
graphene metallic NPs, 123
lichen-reduced graphene oxide (LrGO)-

bimetallic NP (LrGO-AgAu) NCs, 125
one-pot synthesis, 150, 154t

bioinspired, 152
palladium (Pd)@graphene NCs 

(SP-HRG-Pd), 123
RS-AgNPs, 123
silver-chitosan NC, 125
silver/polystyrene (AgNPs/PS) 

nanocomposite (NC), 123
using Cassytha filiformis L. extract, 124
using Jatropha Cordata plant extract, 125
using Rhubarb stems, 123
using Salvadora persica L., 123
Zeolite/Fe2O3 NCs, 125

Metal oxide NPs (Continued)
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Nanoflowers
one-pot synthesis of, 161, 164t

bio-inspired, 162–163
for SERS applications, 161

Nanohybrids, 127
GSGNPs, 127
of reduced graphene oxide/Fe3O4/Ag 

ternary nanohybrid (rGO/Fe3O4/
AgNH), 127

of sheet-like cellulose nanocrystal-zinc 
oxide (CNC-ZnO) nanohybrids, 127

of tea polyphenol-assisted 
Ag-nanodiamond (Ag-TPND) 
hybrid, 127

Nanomaterials
applications of, 137, 139f

as catalysts, 140
for energy storage/production, 141
in healthcare, 141
as sensors, 140
wastewater treatments, 140

bacteria in manufacture of, 689, 690t
bio-assisted green synthesis of, 788
classification of, 138f
defined, 663
manufacturing, 686
one-pot synthesis, 144, 144f

size and shape, 145
preparations, 141, 142f–143f

biological methods, 142
bottom-up approach, 142
chemical methods, 142
physical methods, 142
vapor-phase methods, 142

synthesis of M13 bacteriophages,  
795

synthesis of, 588
bimetallic nanoparticles, 607
copper, 598
gold, 607
lanthanides, 603
nickel, 590
palladium, 591
platinum, 593
silver, 605
zinc, 601
zirconium, 602

virus-mediated biosynthesis of, 789
Nanoparticles (NPs), 252, 683

biogenic synthesis of, 862

biological synthesis of, 702
algal species, 703, 710
fungal species, 705, 714
yeast species, 718

fungi-mediated synthesis of, 865
green synthesis of, 615
HRTEM images of, 765f
inorganic, 684
one-pot bio-inspired synthesis of, 147–148, 

149t
one-pot synthesis, 144
synthesis, 586f

methods in, 618f
modes of, 618

Nanosilver, in medicine, 667
Nanotechnology, 273, 585, 615, 785

computational, 615
defined, 683
diverse, 616f
dry, 615
future applications of, 692
in medicine, 691
wet, 615

Nanowires and nanofibrous mats, 882
National Environment Methods Index 

(NEMI), 48–49, 48f–49f
classification, 49
requirements, 48–49

National science foundation fund (NSFF), 741
Native cyclodextrins (NCD), 111
Natural composites, 664
1-n-butyl-4-methyl-pyridinium bromide 

[1-n-B-4Mpyr] Br, 366
Nelson-Riley (N-R) analysis, 111
Nickel, 590, 590
Ni-luminol complex, microwave synthesis 

of, 563f
Ni/SiO2 catalyzed organic transformations, 

431, 431f–432f
Nitrile functionalized ILs, 16
Nitrone cycloaddition, 517f, 563f
3-(N,N dimethyldodecylammonium)

propanesulfonic acid hydrogen 
sulfate ( [DDPA] [HSO4]), 390, 390f

noble-metal NPs
of Palladium (Pd) NPs, 119
of Platinum (Pt) NPs, 120
using aqueous ethanol and methanol 

extracts of Achillea millefolium 
(family Asteraceae), 119
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using aqueous ethanolic extract of black 
pepper, 119

using Coffea arabica seed (CAS) extract, 
117–118

using Euphrasia officinalis leaf extract, 119
using Ononidis radix extract, 120

1-n-octyl-methylpyridiniumbromide [1-n-O-4-
Mpyr]Br using 4-methylpyridine, 366

nonbiogenic greener approaches, 80–81
nonmetal NPs, 118t

from ascorbic acid, 116
biogenic sulfur NPs, 115
of fluorescence carbon dots (CDs), 

115–116
from folic acid, 116
selenium NPs, 112–114
spice-derived C-dots, 116
sulfur NPs, 114
using carrot juice, 115
using Clausena dentata plant leaf 

extract, 113
using eutrophic algal blooms, 115
using fenugreek seed extract, 113, 117
using Ficus bengalensis leaf extract, 115
using hawthorn fruit extract, 113
using lemon juice, 117
using Punica granatum peels aqueous 

extract, 114
using saponin, 114
using Withania somnifera leaves 

extract, 114
Norfloxacin (NOR), 671
NPs-based system, 736
Nucleophilic substitution, 263

O

Octahedral chromium complexes, 547f
Octenyl succinic anhydride (OSA), 253
OH-functional ILs (FILs), 16
Oligomerization mechanism, glycerol based-

catalyzed, 841f
Olive leaves, 668
One-pot synthesis

nanocomposites (NCs), 150
of nanoflowers, 161
nanoparticles (NPs), 144
quantum dots (QDs), 154

Onium ion-tagged proline catalysts in, 361
Organically-modified montmorillonite 

(OMMT), 279
Organic chemistry metrics (OCM), 39
Organic compounds.

summary of microwave, 493f
Organic-inorganic hybrid (OIH) materials, 

463f, 459, 466
multifunctional and smart, 476, 476
sol-gel materials, 471–472, 475

research challenges, 476–478
Organic reactions and ultrasound, 251
Organotin (IV) complexes, synthesis of, 573f
Organotin (IV) Schiff bases complexes, 

synthesis of, 573f
Osmium synthon, microwave synthesis, 556f
Oxadiazine, 73
Oxazole, 73
Oxidation reactions, 421
Oxodiperoxo molybdenum complexes, 

546, 547f
Ozone formation potential (OFP), 57

P

Palladium, 591
Passerini reaction, 521–522, 522f
p-cresol oxidation, 424, 425f
Penicillin G, 434, 435f
Pentamethylcyclopentadienyl rhodium, 

microwave-assisted synthesis of, 561f
Peroxide, 65
Peroxo molybdenum complexes, 546
Petasis reaction, 529
Petroleum products, 909
Phenanthroline chromium complex, 546f
Phenanthroline mixed nickel, microwave 

synthesis of, 562f
Phenanthroline vanadium complex, synthesis 

of, 544f
Phosphonium and imidazolium-based ILs, 21
Phthalocyanine zinc complexes, synthesis 

of, 568f
Pinacol boron-ate ester, synthesis of, 570f
Plant-based (green) synthesis of 

nanomaterials, 110
Plant extracted solvents, 912
Plant-mediated nanostructures, 764
Plant-mediated synthesis, 761

noble-metal NPs (Continued)
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Plasmonic materials, 754
Plasmonic nanoparticles, 772
Platinum, 593
PMMA/Fe3O4 nanocomposites, 6
Polyaniline (PANI), 150

PANI-Au NCs, 150
PANI/Fe3O4 NCs, 150
PANI-NPs, 150

Polyaniline emeraldine base (PANIEB), 672
Polyanilines, 71
Polyethylene terephthalate (PET), 259
Polyimine, solvent-free synthesis of, 516f
Polymeric amphiphiles, 67
Polymeric ILs (PILs), 22
Polymer-inorganic NCs (PINCs), 152
Polymer NPs, 89
Polyol, 588

process, 588
advantages of, 589f

Polyoxazolines, 67
Polypyridine-ruthenium complexes, 554

microwave synthesis of, 554f
Polysodium 4-styrene sulfonate, 263
Polystyrene sulfonic acid (PSSA), 501
Polysubstituted cyclopropanes, sythesis of, 

430, 430f
Polyvinyl alcohol (PVA), 263
Polyvinylpyrrolidone (PVP), 607
Porous carbon nanomaterials, 297
Porous carbon nanosheet like structures 

(PCNS), 297
Product mass intensity (PMI), 44–45
Propionibacterium acnes isomerase  

(PAI), 64
Protein glycosylation, 152
Pulsed electric energy (PEE), 255
Pyrazolylrhenium complexes, synthesis 

of, 549f

Q

Quantum dots (QDs)
applications of, 157
bioinspired one-pot synthesis of,  

156–157
one-pot synthesis of, 154, 158t
water-soluble and biocompatible, 156

Quinuclidine and hydroxyl ionic liquid 
(HIL)-immobilized quinuclidine, 372

R

Reaction mass efficiency (RME), 44, 45t
Reactor technology, in NP synthesis, 12

of Ag and AuNPs, 13
of AgNPs, 12–13, 13f
of AuNPs, 14
of AuNPs from HAuCl4, 12
cobalt ferrite NPs, 15
cobalt/reduced graphene oxide (Co/rGO) 

nanocomposites, 15
of colloidal solutions, 15
of magnetic iron-oxide NPs, 14
of NiNPs, 14
of PdNPs using NaBH4, 15
of platinum NPs by reduction of 

H2PtCl6, 15
of ultrafine, uniformly distributed, and 

highly crystalline α-alumina NPs, 15
of ZnONPs, 14, 14f

Reduced graphene-oxide (rGO) based NPs, 148
Reformat sky reactions, 413

of b-hydroxy ester, 413f
Re(I) complexes, multicomponent microwave 

assisted synthesis of, 548f–549f
Retro Diels-Alder reaction, 517, 517f
Rhenium complexes, importance of, 548
Rhizome, 774
Ribosomes, 683
Riboswitches, 149
Ring-closing-metathesis reaction, 493, 495f
RNA-based NPs, 149
Ruthenium complexes

microwave synthesis of, 555f
synthesis of, 555f

S

Salen-type chromium complexes, synthesis 
of, 546f

S-Alkylation reaction, 427, 428f
Scanning tunneling microscope, 738
Schiff base cadmium complexes, synthesis 

of, 569f
Schiff base vanadium complexes, microwave 

synthesis of, 544f
Secondary metabolites, 757
Selected-area electron diffraction (SAED), 705
Silk fibroin fibers (SFF), 671
Siloxane surfactants, 68
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Silver NPs (AgNPs), 146–147
Single-molecule magnet, structure of, 551f
SiO2 catalysts, 421, 424
Sn(II)-based MOF, 71
Sodium borohydride-cellulose sulfuric acid 

(CellSA) catalyst system, 73
Sol-gel process, 459, 473t

fundamentals, 466–467, 468t, 469–470
acidic catalysis, 469
alkaline catalysis, 470
condensation reaction of Si(OR)4-

n(OH)n, 470
historical perspective and applications, 

460–461, 462f, 464t
steps, 467f

Sol-gel techniques, 684, 685f
mechanical installation, 685
mechanical preparation, 685
monitoring and glazing, 685

Solid-liquid phase transfer catalysis, 515
Solid-phase peptide synthesis, 72
Solid waste production (SWP), 57
Solubility, 900
Solvent-free reactions, 515
Solvents Polarity index, 500t
Solvent system- based “green” 

synthesis, 620
Sonochemistry, 4
Soxhlet extraction, 256. See also Ultrasound
Soxhlet system, 759

schematic diagram, 760f
Stan model reaction, 436f
Staudinger reaction, 530
Stoichiometric factor, 45–47, 47t
5-substituted 1H-tetrazoles, 64
Supercritical carbon dioxide (scCO2),  

15, 23
formation of Ru- and Rh-based NPs, 24
properties of, 23
in synthesis of

bimetallic NPs, Pt-rich NPs, 23
CuNPs, 25
flower-like ZnONPs, 25
PdNPs, 24–25
PtFe/ordered mesoporous carbon 

(OMC) catalyst, 24
Pt-W nanocomposite, 24

in synthesis of
imetallic NPs, Pt-rich NPs, 23

Supercritical fluid, 895
chromatography (SFC), 905
extraction, 910
technique, 907

Suzuki coupling and C-C coupling reactions
between benzhydrol and aromatic 

compounds, 396f
continuous microflow system, 397, 397f
Heck reactions, 398, 398f
of N-contained heterocyclic chlorides, 395
palladium catalyst, 394–395, 394f, 397f, 

398
Suzuki Cross-coupling reaction, 514, 514f

T

Tandem reaction process, 530
Temsirolimus, 73
Terbium (III) complex, synthesis of, 575f
Thermal gravimetric-differential thermal 

analysis (TG-DTA), 638
Tobacco mosaic virus (TMV), 793
Transesterification reaction, 45, 46f, 826
Transformation GAL (tGAL), 59
Triaryl phosphates, 65
Tribochemistry, 405

U

Ugi reaction, 518, 519f
Ultrasonic and microwave technologies, 759
Ultrasound, 248

application in food, 257
bioactive compounds, 254, 254f
green chemistry and, 249
organic reactions and, 251
surface modifications of nanostructures, 258

Ultrasound-assisted nanoparticle synthesis, 4
of AgNPs from AgNO3, 5
of bimetallic Hg/ PdNPs, 6, 7f
of crystalline ZnONPs from zinc acetate, 5
Cu-doped TiO2NPs using sol-gel method, 6
of Fe3O4, 6
of flower-like ZnONPs, 5
Heck reaction between iodobenzene and 

ethyl acrylate, 4
of MnFe2O4 NPs, 6
of nanodisperse NiNPs over ZrO2, 6
Pt-graphene oxide-TiO2 nanosized 

photocatalyst, 6
of rod-like zinc oxide nanocrystals, 5
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of silver and iron oxide NPs using 
fenugreek seed extract, 5

of spherical AuNPs, 5
of spindle-like silver/zinc oxide 

nanomaterials, 6
of starch-stabilized AgNPs, 4–5
of substituted-pyridopyrimidines, 6

Ultrasound assisted reactions
addition reactions

of 3,3-di(heteroaryl)indolin-2-one 
derivatives, 194, 195f

of 2,3-epoxyl-1,3-diaryl-1-propanone, 
195, 196f

of ferrocenyl substituted 1,5-diketone 
and cyclic α,β-unsaturated ketones, 
194, 194f

of 2-((1H-indol-3-yl)(aryl)methyl)
malononitriles, 196, 196f

of β-indolylketones, 194, 195f
of ortho-benzoquinones with furan, 

194, 195f
alkylation and acylation reactions

of 2-alkyl-2-alkoxy-1,2-di(furan-2-yl)
ethanone, 209, 210f

C-alkylation of benzyl cyanide, 209, 209f
of δ-chloroesters, 209, 209f
of dioximes, 210, 210f
of 2-methoxynaphthalene, 209, 209f
of N-alkoxyphthalimides, 210, 210f
N-alkylation of pyrrole, 208, 208f
of phenylacetonitrile, 208, 208f

bromination of acetophenones, 228
conversion of nα-urethane, 221, 222f
coupling reactions

of α-amino phosphonates, 207, 207f–208f
of biaryls, 206, 207f
of β-iodoethers, 206, 207f
of propargylamines, 206, 206f
Suzuki reaction, 206, 206f
of z and e stilbenes, 205, 205f

1,1-diacetate preparation, 215, 215f
diarylmethanes preparation, 216, 216f
esterification

of bile acids, 213, 214f
of palmitic acid, 213, 214f

iodination of unactivated aliphatic 
hydrocarbons, 229

nitroalkenes preparation, 216, 216f
organic electrosynthesis, 224, 224f

oxidation reactions
of alkylarenes, 215, 215f
of α-benzoylbenzyl cyanide & 

alkylphenyl ketone, 212, 212f
of dihydropyrimidinones, 212, 212f
epoxidation of cyclohexene, 215, 215f
glucose oligomerisation and sucrose 

oxidation, 213, 213f
of isatoic anhydrides, 214, 214f
of phenols, 213, 213f

photochemical reactions
of bromotrichloromethane, 205
of cyclohexanone, 204, 205f
of 1-Iodocyclohexene, 204, 205f

polymerisation reactions
dimerization of pivalic acid, 211, 211f
of poly-organosilanes, 210, 210f
of siloxanes, 211, 212f
sonochemical polymerization, 211, 211f

protection of alcohols, 233, 234f
radical cyclisation of o-allyl benzamides, 

227, 229f
reaction of 5H,5Cl-dibenzo[a,d]cyclohept

atriene, 224, 225f
rearrangement of methylbutynol, 224, 224f
reduction

of arylalkanones, 201, 201f
asymmetric transfer hydrogenation of 

ketones, 204, 204f
chemo-enantioselective hydrogenations, 

203, 203f
clemmensen-type reduction, 201, 202f
of enones, 201, 202f
of fluorinated alkanes and cycloalkanes, 

200, 200f
of 1α,7α,10αH-guaian-4-11-dien-3-one 

and hydrocolorenone, 201f
of 1α,7α,10αH-guaian-4-11-dien-3-one 

and hydrocolorenone, 201
of histrionicotoxin, 202, 202f
hydrogenation of trifluoromethyl 

ketones, 203, 203f
hydrosilylation of alkyl substituted 

cyclohexanones, 203, 203f
indirect electroreduction of benzyl 

chlorides, 204, 204f
regioselective nitration of phenols, 229
regioselective synthesis of ketones, 

216, 217f
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sonochemical excitation in reactions, 
222, 223f

sonochemical reactions
of genistein derivatives, 225, 226f
in solution, 221, 222f
of triphenylmethane and 

triphenylmethylcarbinol, 223, 224f
substitution reactions

of 4-alkyl-(aryl)aminobenzaldehydes, 
196, 197f

anchoring of carboxylic acids to 
merrifield resin, 198, 198f

of arylacetylenes, 198, 198f
of bis(indolyl)methanes, 200, 200f
of diaryl ethers, 199, 199f
of ferujol, 196, 197f
nitration of phenols, 200, 200f
of oximes, 196, 196f
sonochemical reaction of 

bromothiophenes with 
chlorotrimethylsilane, 199, 199f

of trimethylsilyl pseudohalides, 198, 198f
supported catalysis, 225, 225f
synthesis

of alkynyl sulfonate esters, 228
of bis(substituted pyrazol-4-ylcarbonyl)-

Substituted thioureas, 221, 221f
of 5,9-Dimethylpentadecane and 

5,9-Dimethylhexadecane, 233
of disteryl ethers, 222, 223f
of 2,3-epoxy-1-phenyl-3-aryl-1-

propanone, 227, 227f
of 2H-indazole derivatives, 219, 219f
β-lactams and β-aminoesters, 228, 230f
of mandelic acid, 231, 232f
of metal-1,3-diketonates, 233, 233f
of 2-Methoxy-6-alkyl-1,4-

benzoquinones, 231, 232f
of N-benzyl-N-arylcyanamides, 220, 220f
of new pyridinium ionic liquids, 227, 227f
of α-oximinoketones, 226, 226f
of Pyrazolo[1,5-a]pyrimidines, 217, 217f
of pyridinium ionic liquids, 233, 233f
of pyrido[2,3-d:6,5- d]dipyrimidines, 

219, 219f
of pyrrolizidines, 229
of spiro[indoline-3,4′-pyrano[2,3-c]

pyrazole] derivatives, 218, 218f

of substituted coumarins, 216, 217f
of 3-substituted coumarins, 220, 220f
of substituted phenanthrene-1,4-

quinones, 227, 228f
of 2-substituted-3-(phenylamino)-

dihydroquinazolin-4(1H)-ones, 
219, 220f

of 1-substituted tetrazoles, 219, 219f
of sulfonamides, 217, 218f
of 3-(Thiophen-2-yl)–4,5-dihydro-

1H-pyrazole-1-carboximidamides, 
221, 221f

synthetic organic chemistry, 178–179
of 2-(alkylamino)benzoic acids, 191, 191f
of 1-amidoalkyl-2-naphthols, 192, 193f
of 2-amino-4-aryl-3-carbalkoxy-7,7-

dimethyl- 5,6,7,8-tetrahydrobenzo[b] 
pyran derivatives, 191, 192f

of 2-amino-2-chromenes & 2H-chromen-
2-ones, 184–185, 184f–185f

of β-aminoketones, 190, 191f
of aminopyrazoles, 183, 183f
of aryl-hydrazones, 188, 189f
of arylmethylenemalononitriles, 191, 191f
of benzo[b]furans/nitro benzo[b]furans, 

187, 187f
of 1,5-benzodiazepinic heterocyclic 

rings, 181, 181f
of benzotriazoles and 

1-Acylbenzotriazoles, 181, 181f
of α,α’-bis(SubstitutedBenzylidene) 

cycloalkanones, 192
of α,α’-bis(SubstitutedBenzylidene) 

cycloalkanones, 192f
of chalconoids, 189, 189f–190f
of 1,5-diaryl-1,4-pentadien-3-ones, 189
of 1,4-dihydropyridines, 182, 182f
of 3,4-dihydropyrimidin-2-(1H)-ones, 

182, 183f
of 1,8-dioxo-octahydroxanthene 

derivatives, 185, 185f
of 5,5-disubstituted hydantoins, 184, 184f
of ferrocenyl substituted 

3-cyanopyridine derivatives, 187
of β-hydroxyl ketones, 187, 187f
of 5-hydroxy-5-trihalomethyl-4,5-

dihydroisoxazoles and β-enamino 
trihalomethyl ketone, 185–186, 
185f-186f

Ultrasound assisted reactions (Continued)
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of imidazolines, 180, 180f–181f
of imines, 187, 188f
of ketoximes, 193, 193f
of 4-Oxo-2-

thioxohexahydropyrimidines, 192, 
192f

of pyrazoline derivatives, 179
of pyrido[2,3-d]pyrimidine derivatives, 

193, 193f
of pyrroles, 186, 186f
of vitamins, 184, 184f

thiocyanation of aromatic and 
heteroaromatic compounds, 226, 226f

V

Valance band (VB), 920
Vanadium, 544
Vanillylmandelic acid (VMA), 69
Van Leusen reaction, 523, 525t
Vascular endothelial growth factor 

(VEGF), 879
Vegetable oils, 504
Viral-mediated reduction, 800f
Virus-mediated synthesis, 78
Viscosity, 903
Viscosity (Pas) parameters, 904t
Volatile organic compounds (VOCs), 419
Vulcan carbon (VC), 259

W

Water, pressure-Temperature phase diagram 
of, 899f

Water-soluble polyaniline, 71
Wet nanotechnology, 615

Y

Yeasts, 702

Z

Zeaxanthin dipalmitate (ZDP), 255
Zeolites, 424, 427f

acid, 426, 429
dehydrated, 426

Zeolitic imidazolate framework (ZIF) family 
of MOF, 70

Zerovalent organometallic carbonyl 
compounds, synthesis of, 545f

Zinc, 601
complexes, synthesis of, 568f
luminol derivative, synthesis of, 569f

Zirconium, 602
ZnAl2O4 spinels, 67
ZnO nanoparticles, biosynthesis of, 632

microbes, 647
plant leaf extracts, 632, 642f,  

644f, 646f




