

RESEARCH ARTICLE

Inventi Impact: Structure & Design Vol. 2012, Issue 1
[E- ISSN 2230-8164, P- ISSN 2249-1341]

www

2012esd030, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

INTRODUCTION
Combinatorial interaction testing (CIT) has
been an active research area in the recent
years. CIT [1-7] is based on generating subset
of exhaustive set according to the degree of
interaction (t) amongst parameter values
such that each combination of t parameter
values is covered at least one. As such, CIT is
considered as a black box technique. In
contrast, mutation testing is a white box
testing, that is, depends on injection faults in
the system under test (SUT) to determine the
quality of the test suite, such that, the desired
test suite is found that detects all faults
already have been injected in SUT. Each
strategy has its wide spectrum of
applications in both hardware and software
domains [8-19].

Younis and Zamli proposed a novel
strategy that combines both CIT and
mutation testing in order to derive optimized
test suite for combinational ICs testing [20].
Herewith, the concept of the saving efforts
factor is introduced as an evaluation factor.
In this case, the saving efforts factor is
defined as the size of exhaustive test suite
minus optimized test suite to the size of
exhaustive test suite. Empirical results
demonstrated the effectiveness of such
approach into a 4-bits magnitude
comparator IC, where saving efforts factor of
256-9/256=96.48% has been obtained.
Given such a result, the research question
now is that can the strategy be extended and
improve such a strategy for testing
sequential circuits. The challenge here is that
unlike combinatorial circuits, sequential

1Computer Engineering Department, College of
Engineering, University of Baghdad, Baghdad,
Iraq.
E-mail: younismi@gmail.com
*Corresponding author

2School of Electrical and Electronics
Engineering, Universiti Sains Malaysia, Penang,
Malaysia.

circuits have the notion of states and
memory.

In order to understand how
improvement can be made to support
sequential circuits, there is a need to revisit
the aforementioned strategy. Briefly, the
strategy consists for two processes, namely:
Test Quality Signing (TQS) process and Test
Verification process (TV). Briefly, the TQS
process deals with optimizing the selection
of test suite; obtained from CIT, for fault
injection as well as performs the actual
injection whilst the TV process analyzes for
conformance as illustrated in Figure 1.

Complementing and building from the
earlier work, this paper suggests to modify
the both the TQS and TV processes to assist
sequential circuit testing. Unlike
combinational circuit testing, the sequential
circuit testing considers another sub-
research question: Is there a need to test all
states of interaction? Answering these
questions is the focus of this paper.

The rest of this paper is organized as
follows. Section 2 discusses the modification
for both TQS and TV processes. Section 3
gives a step-by-step example as prove of
concept involving the 12-bit LFSR. Section 4
demonstrates the requirements for putting
CIT in cumulative mode. Finally, Section 5
describes the conclusion and suggestion for
future work.

Generalized the Quality Signing and
Verification Processes
This section describes the generalization of
the TQS and TV processes to include the
sequential circuit testing.

The TQS process aims to derive an
effective and optimum test suite (includes
the sequential circuit testing) and works as
follows.
 Start with an empty Optimized Test Suite

(OTS), and empty Signing Vector (SV).
 Select the desired software class (for

software testing). Alternatively, build an
equivalent software class for the Circuit
Under Test (CUT) (for hardware testing).

 Store these faults in fault list (FL).
 Inject the class with all possible faults.
 Let N be maximum number of parameters.
 Initialize CIT strategy with strength of

coverage (t) equal one (i.e., t = 1).
 Let CIT strategy partition the exhaustive

test space. The portioning involves
generating one test case at a time for t
coverage. If t coverage criteria are
satisfied, then t = t + 1. Here, the system
parameter values are considered both the
input and the state of the system, that is,
the initial (previous) state of the system in
the case of sequential circuit.

 CIT strategy generates one Test Case (TC).
Here, the test case is a combination of the
input or previous state or both.

 Execute TC. The execution involves:
o Load the system to initial state from TC

part including the state field.
o Apply the input from TC part including

the input field.
o Record the output(s).

 If TC detects any fault in FL, remove the
detected fault(s) from FL, and add TC and
its specification output(s) to OTS and SV,
respectively.

 If FL is not empty or t <= N, go to 7.
 The desired optimized test suite and its

corresponding output(s) are stored in OTS
and SV, respectively.
The TV process involves the verification

of fault free for each unit. The TV process for
a single unit works as follows.
 for i = 1..Size(OTS) each TC in OTS do:
o Subject the SUT to TC[i] (involve:

loading the state in the case of
sequential circuit, followed by applying
the inputs), store the output in
Verification Vector VV[i].

o If VV[i] = SV [i], continue. Else, go to 3.
 Report that the CUT has been passing in

the test. Go to 4.
 Report that the CUT has failed the test.
 The verification process ends.

Note that the highlighted steps (7-9) and
the first step in signing and verification
process are addressed loading the state of the
system. Hence, the new version is addressing
the sequential circuit issue. By removing these
highlighted lines the signing and verification
processes are degraded to the previous
version in [20] that is limited to software and
combinational circuits. In short, the new
version involves two folds. First, it deals with
the states of the SUT as well as the input
parameter values. Thus, the input for CIT is
considered the combination of both. Second,
the TQS and TV processes involve the load of
the state of SUT before faults detection (in the
case of TQS process) and determining the
outputs (in the case of TV process).

As noted in the second step of the TQS
process, the rationale for taking equivalent
software class for the CUT is to ensure that
the cost and control of the fault injection be
more practical and manageable as opposed
to performing it directly to a real hardware
circuit. Furthermore, the derivation of OTS is

Adopting Systematic Quality Signing and Verification
Processes for Sequential Hardware Testing

Mohammed I Younis1*, Kamal Z Zamli2, Nor Ashidi Mat Isa2

Abstracts: This paper discusses an improvement of the strategy for Quality Signing and
Verification Processes. Earlier studies demonstrate that the strategy relies on two processes:
Quality Signing Process and Quality Verification Process, respectively. The Quality Signing
Process is based on integration of black box (i.e. Combinatorial Interaction Testing) and white
box (i.e. Mutation Testing) techniques in order to derive an optimum test suite for the Quality
Verification Process. In this case, the generated test suite significantly improves the Quality
Verification Process. Unlike the previous work, which deals only with combinatorial logic, an
improvement of the strategy now addresses sequential logic, that is, by incorporating both the
state of the system as well as the input parameter values as input in both processes. As a case
study, this paper describes the step-by-step application of the strategy for testing a 12-bit
Linear Feedback Shift Register in a hardware production line. The result demonstrates that the
proposed strategy gives saving effort factor of 99.7%. Additionally, the result also
demonstrates the need to consider Combinatorial Interaction Testing in both cumulative and
normal mode of operation.

Key Words: Combinatorial interaction testing; t-way testing; multi-way testing; mutation
testing, software testing; hardware testing.

1

RESEARCH ARTICLE

Inventi Impact: Structure & Design Vol. 2012, Issue 1
[E- ISSN 2230-8164, P- ISSN 2249-1341]

www

2012esd030, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

faster in software than in hardware. Despite
using equivalent class for the CUT, this
verification process should work for both
software and hardware systems including
the sequential circuit.

Case Study
As a proof of concept, MC_MIPOG [7] has
adopted as the CIT strategy implementation,
and MuJava version 3 (described in [21, 22])
as a fault injection strategy implementation.

Using both tools (i.e., MC_MIPOG and
MuJava), a case study problem involving a
12-bit linear feedback shift registe (LFSR) will
be discussed here in order to evaluate the
proposed generalization of the Quality
Signing and Verification Processes discussed
in section 2.

A 12-bit LFSR has 12 asynchronous
inputs (to load the initial state, namely:
I1..I12, enabled by “load” command), 12 D-
type flip-flops connected as sequence
generator (in this case, as an implementation
of the polynomial: x12 + x11 + x10 + x4 + 1), and
finally, a zero avoidance circuit is “ORed”
with the tapping polynomial as an input to
the first flip-flop as illustrated in Figure 2.

Here, it should be noted that this version
of the circuit is a realization of the LFSR in
[23]. The equivalent class of the LFSR is
given in Figure 3 (using the Java-
programming language). Here, it is important
to ensure that the software implementation
obeys the hardware implementation strictly.
By doing so, it can be undertaken the fault
injection and produce the OTS in the
software domain without affecting the logical
of relation and parameter interactions of the
hardware implementation.

Now, the TQS process can be applied as
illustrated in Section2. Here, there are 74 faults
injected in the system. To assist this work,
MC_MIPOG [7] is used to produce the TC.

Following the steps in TQS process, Table
1 demonstrates the derivation of OTS. Here,
it should be noted that the first 811 test cases
could remove all the faults. Furthermore,
only the first 164 test cases when t = 8 are
needed to catch that last two live mutants.
The efficiency of integration MC_MIPOG with
MuJava can be observed (by taken only the
effective TC) in the last column in Table 1.

Table 2 gives the desired OTS and SV,
where T and F represent true and false,

respectively. In this case, TQS process
reduces the test size to twelve test cases
only, which significantly improves the TV
process.

To illustrate how the verification process
is done (see Figure 2), assume that the
second output (i.e., S2) is out-of-order (i.e.,
malfunction). Suppose that S2 output is
always off (i.e., short circuit to “Ground”).
This fault cannot be detected in TC1
(according to Table 2). Nevertheless, when
TC2, the output vector (“VV”) of faulty IC, is
FFTTTTTTTTTT, and the SV is
FTTTTTTTTTTT, the TV process can
straightforwardly detects that the IC is
malfunctioning (i.e., cut fails). Now, the
saving efforts factor is 4096 − 12/4096 =
99.70 %.

Normal vs. Cumulative Mode of Operation
for CIT
This section repeats the experiment for LFSR
by recording the mutant score for each
degree of interaction independently, that is,
by putting CIT in normal mode of operation
during TQS process and fix t (i.e., non-
cumulative process) as given in Table 3.

Table 1: Derivation of OTS for 12-bit LFSR
t= Cumulative Test Size Live Mutant Killed Mutant % Mutant Score Effective test size
1 2 22 52 70.27 2
2 11 17 57 77.03 4
3 34 10 64 86.49 7
4 73 6 68 91.89 8
5 142 6 68 91.89 8
6 317 2 72 97.30 10
7 647 1 73 98.65 11
8 811 0 74 100.00 12

Table 2: OTS and SV for the 12-bit LFSR

#TC OTS TC (I1..I12) SV Outputs(S1..S12) Accumulative faults detected /74
1 FFFFFFFFFFFF TFFFFFFFFFFF 38
2 TTTTTTTTTTTT FTTTTTTTTTTT 52
3 TFTFTFTFTFTF TTFTFTFTFTFT 55
4 TFTTFTFFTTFF FTFTTFTFFTTF 57
5 TFTFFTTFFTTF FTFTFFTTFFTT 59
6 FFFFTTTTFFTT FFFFFTTTTFFT 61
7 FFTFTTFTTFFF FFFTFTTFTTFF 64
8 FFFFFFTTFFFF FFFFFFFTTFFF 68
9 FFTFFFTFFFFF FFFTFFFTFFFF 70

10 FTFFTFFFFFFF FFTFFTFFFFFF 72
11 TTFFFFFFFFFF FTTFFFFFFFFF 73
12 TFTFFFFFFFFF FTFTFFFFFFFF 74

Table 3: Derivation of OTS for 12-bit LFSR with CIT in Normal Mode

t= Test Size Live Mutant Killed Mutant % Mutant Score Effective test size
1 2 22 52 70.27 2
2 10 17 57 77.03 5
3 21 11 63 85.14 8
4 47 6 68 91.89 9
5 110 6 68 91.89 9
6 225 4 70 94.60 9
7 449 2 72 97.30 10
8 825 1 73 98.65 11
9 1398 0 74 100.00 14

10 1951 0 74 100.00 15
11 2048 0 74 100.00 17
12 4096 0 74 100.00 20

2

RESEARCH ARTICLE

Inventi Impact: Structure & Design Vol. 2012, Issue 1
[E- ISSN 2230-8164, P- ISSN 2249-1341]

www

2012esd030, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

By considering the size of test suite from
different points of view, it can be discussed
the evaluation of CIT and mutation testing
for optimization purpose. Referring to Table
3, it is noted that using exhaustive testing
requires 4096 test cases. By taking the
effective test size (i.e., by examine the
effectiveness of the test suite) reduces the
test cases to merely 20 test cases. Next,
when relaxing t yields smaller test size (both
the overall generated and the effective) and
gives the 100% mutant score (for t=9, 10,
and 11 where the test size=14, 15, and 17
respectively). Moreover, must of mutants are
killed using low t. As such, considering the
CIT approach can assist in reduction of test
suite without going to exhaustive testing. On
the other hand, to select suitable t is more
questionable, that is, how the tester can
predict suitable t? Here, it is required a more
systematic manner, as this paper proposed to
overcome these obstacles; this paper
suggests the use of CIT in cumulative mode
(starting from t=1). By comparing Tables 1
and 3, it is noted that the effective test size
considering the CIT cumulative mode is less
than that of normal mode. Moreover, 100%

mutant score is achieved by considering
cumulative mode up to t=8. In contrast, it is
not until t=12 can the mutant score of 100%
be achieved during normal mode. As such, it
is more practical and systematic to consider
the cumulative mode of operation for CIT.
Finally, it is clear that combining both black
and white boxes strategies is significantly
required.

CONCLUSION
This paper has generalized the Quality Signing
and Verification Processes to involve the
sequential circuit hardware testing. The case
study in hardware production line
demonstrated that the proposed strategy could
improve the saving efforts factor significantly.
In addition, the justification for the requirement
of the cumulative mode of operation for CIT has
been discussed. Finally, as a part of future work,
it is desired to investigate the application of the
proposed strategy for computer-aided
hardware design tool.

REFERENCES AND NOTES
1. Jenny tool, August 2011,

http://www.burtleburtle. Net/bob/math/.

2. TVG tool, August 2011, http://sourceforge.net/
projects/tvg/.

3. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.
Lawrence, “IPOG: a general strategy for T-way
software testing,” in Proceedings of the
International Symposium and Workshop on
Engineering of Computer Based Systems, pp.
549–556, Tucson, Ariz, USA, March 2007.

4. Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.
Lawrence, “IPOG-IPOG-D: efficient test
generation for multi-way combinatorial
testing,” Software Testing Verification and
Reliability, vol. 18, no. 3, pp. 125–148, 2008.

5. M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and
D. R. Kuhn, “Refining the in-parameter-order
strategy for constructing covering arrays,”
Journal of Research of the National Institute of
Standards and Technology, vol. 113, no. 5, pp.
287–297, 2008.

6. R. C. Bryce and C. J. Colbourn, “A density-based
greedy algorithm for higher strength covering
arrays,” Software Testing Verification and
Reliability, vol. 19, no. 1, pp. 37–53, 2009.

7. M. I. Younis, and K. Z. Zamli, “MC-MIPOG: A
Parallel t-Way Test Generation Strategy for
Multicore Systems,” ETRI Journal, vol.32, no.1,
pp. 73-83, 2010.

8. D. R. Wallace and D. R. Kuhn, “Failure modes in
medical device software: an analysis of 15 years
of recall data,” International Journal of

OTS System

Specification
SV

a. Quality Signing Process

OTS SUT VV

SV

=

b. Quality Verification Process

 Test

Passed

 Test

 Failed

√

X

Figure 1: The Quality Signing and Verification Processes [20]

Figure 2: Schematic diagram for 12-bit LFSR Circuit Diagram

public class LFSR {

private static boolean s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12;

staic load (boolean i1,boolean i2,

 boolean i3,

 boolean i4,boolean i5,boolean i6, boolean i7,

 boolean i8,boolean i9,boolean i10, boolean i11, boolean i12)

{

s1=i1;s2=i2;s3=i3;s4=i4;s5=i5;s6=i6;s7=i7;s8=i8;s9=i9;s10=i10;s11=i11;s12=i12;

}

public static String getnext(boolean i1,boolean i2,

 boolean i3,

 boolean i4,boolean i5,boolean i6, boolean i7,

 boolean i8,boolean i9,boolean i10, boolean i11, boolean i12){

 load(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12);

 String output=null;

 boolean c;

 c=!(s1|s2|s3|s4|s5|s6|s7|s8|s9|s10|s11|s12);

 boolean xsr;

 xsr=s12^s11^s10^s4;

 s2=s1;

 s3=s2;

 s4=s3;

 s5=s4;

 s6=s5;

 s7=s6;

 s8=s7;

 s9=s8;

 s10=s9;

 s11=s10;

 s12=s11;

 s1=c|xsr;

 output=""+s1+s2+s3+s4+s5+s6+s7+s8+s9+s10+s11+s12;

 return output;

}

}

Figure 3: Equivalent class Java program for 12-bit LFSR

3

RESEARCH ARTICLE

Inventi Impact: Structure & Design Vol. 2012, Issue 1
[E- ISSN 2230-8164, P- ISSN 2249-1341]

www

2012esd030, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

Reliability, Quality, and Safety Engineering, vol.
8, no. 4, pp. 351–371, 2001.

9. D. R. Kuhn and M. J. Reilly, “An investigation of
the applicability of design of experiments to
software testing,” in Proceedings of the 27th
NASA/IEEE Software Engineering Workshop,
pp. 91–95, IEEE Computer Society, December
2002.

10. D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr.,
“Software fault interactions and implications for
software testing,” IEEE Transactions on
Software Engineering, vol. 30, no. 6, pp. 418–
421, 2004.

11. D. R. Kuhn and V. Okun, “Pseudo-exhaustive
testing for software,” in Proceedings of the
30th Annual IEEE/NASA Software
Engineering Workshop (SEW ’06), pp. 153–
158, April 2006.

12. R. Kuhn, Y. Lei, and R. Kacker, “Practical
combinatorial testing: beyond pairwise,” IT
Professional, vol. 10, no. 3, pp.19–23, 2008.

13. D. T. Tang and C. L. Chen, “Iterative exhaustive
pattern generation for logic testing,” IBM

Journal of Research and Development, vol. 28,
no. 2, pp. 212–219, 1984.

14. S. Y. Boroday, “Determining essential arguments
of Boolean functions,” in Proceedings of the
International Conference on Industrial
Mathematics (ICIM ’98), pp. 59–61, Taganrog,
Russia, 1998.

15. A. K. Chandra, L. T. Kou, G.Markowsky, and S.
Zaks, “On sets of Boolean n-vectors with all k-
projections surjective,” Acta Informatica, vol.
20, no. 1, pp. 103–111, 1983.

16. G. Seroussi and N. H. Bshouty, “Vector sets for
exhaustive testing of logic circuits,” IEEE
Transactions on Information Theory, vol. 34, no.
3, pp. 513–522, 1988.

17. I. I. Dumer, “Asymptotically optimal codes
correcting memory defects of fixed
multiplicity,” Problemy Peredachi Informatskii,
vol. 25, pp. 3–20, 1989.

18. S. Ghosh and J. L. Kelly, “Bytecode fault
injection for Java software,” Journal of
Systems and Software, vol. 81, no. 11,
pp.2034–2043, 2008.

19. A. A. Avizienis, the Methodology of N-Version
Programming, Software Fault Tolerance, John
Wiley & Sons, New York, NY, USA, 1995.

20. M. I. Younis, and K. Z. Zamli, “A Strategy for
Automatic Quality Signing and Verification
Processes for Hardware and Software Testing,”
Inventi Impact: Tech Research & Reviews Vol.
2011, Issue 3, pp. 97-101, 2011.

21. Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an
automated class mutation system,” Software
Testing Verification and Reliability, vol. 15, no. 2,
pp. 97–133, 2005.

22. MuJava Version 3, August 2011,
http://cs.gmu.edu/∼offutt/mujava/.

23. Linear Feedback Shift Register, January 2012,
http://www.altera.com/products/ip/dsp/signa
l_generation/m-nov-linear.html.

Acknowledgments: The authors acknowledge the
help of Jeff Offutt, Jeff Lei, Raghu Kacker, Rick Kuhn,
Myra B. Cohen, and Sudipto Ghosh for providing
them with useful comments and the background
materials.

4

