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INTRODUCTION 
Combinatorial interaction testing (CIT) has 
been an active research area in the recent 
years. CIT [1-7] is based on generating subset 
of exhaustive set according to the degree of 
interaction (t) amongst parameter values 
such that each combination of t parameter 
values is covered at least one. As such, CIT is 
considered as a black box technique. In 
contrast, mutation testing is a white box 
testing, that is, depends on injection faults in 
the system under test (SUT) to determine the 
quality of the test suite, such that, the desired 
test suite is found that detects all faults 
already have been injected in SUT. Each 
strategy has its wide spectrum of 
applications in both hardware and software 
domains [8-19].   

Younis and Zamli proposed a novel 
strategy that combines both CIT and 
mutation testing in order to derive optimized 
test suite for combinational ICs testing [20]. 
Herewith, the concept of the saving efforts 
factor is introduced as an evaluation factor.  
In this case, the saving efforts factor is 
defined as the size of exhaustive test suite 
minus optimized test suite to the size of 
exhaustive test suite.  Empirical results 
demonstrated the effectiveness of such 
approach into a 4-bits magnitude 
comparator IC, where saving efforts factor of 
256-9/256=96.48% has been obtained.  
Given such a result, the research question 
now is that can the strategy be extended and 
improve such a strategy for testing 
sequential circuits. The challenge here is that 
unlike combinatorial circuits, sequential 
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circuits have the notion of states and 
memory. 

In order to understand how 
improvement can be made to support 
sequential circuits, there is a need to revisit 
the aforementioned strategy. Briefly, the 
strategy consists for two processes, namely: 
Test Quality Signing (TQS) process and Test 
Verification process (TV).  Briefly, the TQS 
process deals with optimizing the selection 
of test suite; obtained from CIT, for fault 
injection as well as performs the actual 
injection whilst the TV process analyzes for 
conformance as illustrated in Figure 1.  

Complementing and building from the 
earlier work, this paper suggests to modify 
the both the TQS and TV processes to assist 
sequential circuit testing. Unlike 
combinational circuit testing, the sequential 
circuit testing considers another sub-
research question: Is there a need to test all 
states of interaction? Answering these 
questions is the focus of this paper. 

The rest of this paper is organized as 
follows. Section 2 discusses the modification 
for both TQS and TV processes. Section 3 
gives a step-by-step example as prove of 
concept involving the 12-bit LFSR. Section 4 
demonstrates the requirements for putting 
CIT in cumulative mode. Finally, Section 5 
describes the conclusion and suggestion for 
future work. 
 
Generalized the Quality Signing and 
Verification Processes  
This section describes the generalization of 
the TQS and TV processes to include the 
sequential circuit testing. 

The TQS process aims to derive an 
effective and optimum test suite (includes 
the sequential circuit testing) and works as 
follows. 
 Start with an empty Optimized Test Suite 

(OTS), and empty Signing Vector (SV). 
 Select the desired software class (for 

software testing). Alternatively, build an 
equivalent software class for the Circuit 
Under Test (CUT) (for hardware testing). 

 Store these faults in fault list (FL). 
 Inject the class with all possible faults. 
 Let N be maximum number of parameters. 
 Initialize CIT strategy with strength of 

coverage (t) equal one (i.e., t = 1). 
 Let CIT strategy partition the exhaustive 

test space. The portioning involves 
generating one test case at a time for t 
coverage. If t coverage criteria are 
satisfied, then t = t + 1. Here, the system 
parameter values are considered both the 
input and the state of the system, that is, 
the initial (previous) state of the system in 
the case of sequential circuit.  

 CIT strategy generates one Test Case (TC). 
Here, the test case is a combination of the 
input or previous state or both. 

 Execute TC. The execution involves: 
o Load the system to initial state from TC 

part including the state field.  
o Apply the input from TC part including 

the input field. 
o Record the output(s). 

 If TC detects any fault in FL, remove the 
detected fault(s) from FL, and add TC and 
its specification output(s) to OTS and SV, 
respectively. 

 If FL is not empty or t <= N, go to 7. 
 The desired optimized test suite and its 

corresponding output(s) are stored in OTS 
and SV, respectively. 
The TV process involves the verification 

of fault free for each unit. The TV process for 
a single unit works as follows. 
 for i = 1..Size(OTS) each TC in OTS do: 
o Subject the SUT to TC[i] (involve: 

loading the state in the case of 
sequential circuit, followed by applying 
the inputs), store the output in 
Verification Vector VV[i]. 

o If VV[i] = SV [i], continue. Else, go to 3. 
 Report that the CUT has been passing in 

the test. Go to 4. 
 Report that the CUT has failed the test. 
 The verification process ends. 

Note that the highlighted steps (7-9) and 
the first step in signing and verification 
process are addressed loading the state of the 
system. Hence, the new version is addressing 
the sequential circuit issue. By removing these 
highlighted lines the signing and verification 
processes are degraded to the previous 
version in [20] that is limited to software and 
combinational circuits. In short, the new 
version involves two folds. First, it deals with 
the states of the SUT as well as the input 
parameter values. Thus, the input for CIT is 
considered the combination of both. Second, 
the TQS and TV processes involve the load of 
the state of SUT before faults detection (in the 
case of TQS process) and determining the 
outputs (in the case of TV process). 

As noted in the second step of the TQS 
process, the rationale for taking equivalent 
software class for the CUT is to ensure that 
the cost and control of the fault injection be 
more practical and manageable as opposed 
to performing it directly to a real hardware 
circuit. Furthermore, the derivation of OTS is 
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faster in software than in hardware. Despite 
using equivalent class for the CUT, this 
verification process should work for both 
software and hardware systems including 
the sequential circuit. 
 
Case Study 
As a proof of concept, MC_MIPOG [7] has 
adopted as the CIT strategy implementation, 
and MuJava version 3 (described in [21, 22]) 
as a fault injection strategy implementation. 

Using both tools (i.e., MC_MIPOG and 
MuJava), a case study problem involving a 
12-bit linear feedback shift registe (LFSR) will 
be discussed here in order to evaluate the 
proposed generalization of the Quality 
Signing and Verification Processes discussed 
in section 2. 

A 12-bit LFSR has 12 asynchronous 
inputs (to load the initial state, namely: 
I1..I12, enabled by “load” command), 12 D-
type flip-flops connected as sequence 
generator (in this case, as an implementation 
of the polynomial: x12 + x11 + x10 + x4 + 1), and 
finally, a zero avoidance circuit is “ORed” 
with the tapping polynomial as an input to 
the first flip-flop as illustrated in Figure 2.  

Here, it should be noted that this version 
of the circuit is a realization of the LFSR in 
[23]. The equivalent class of the LFSR is 
given in Figure 3 (using the Java-
programming language). Here, it is important 
to ensure that the software implementation 
obeys the hardware implementation strictly. 
By doing so, it can be undertaken the fault 
injection and produce the OTS in the 
software domain without affecting the logical 
of relation and parameter interactions of the 
hardware implementation. 

Now, the TQS process can be applied as 
illustrated in Section2. Here, there are 74 faults 
injected in the system. To assist this work, 
MC_MIPOG [7] is used to produce the TC. 

Following the steps in TQS process, Table 
1 demonstrates the derivation of OTS. Here, 
it should be noted that the first 811 test cases 
could remove all the faults. Furthermore, 
only the first 164 test cases when t = 8 are 
needed to catch that last two live mutants. 
The efficiency of integration MC_MIPOG with 
MuJava can be observed (by taken only the 
effective TC) in the last column in Table 1. 

Table 2 gives the desired OTS and SV, 
where T and F represent true and false, 

respectively. In this case, TQS process 
reduces the test size to twelve test cases 
only, which significantly improves the TV 
process. 

To illustrate how the verification process 
is done (see Figure 2), assume that the 
second output (i.e., S2) is out-of-order (i.e., 
malfunction). Suppose that S2 output is 
always off (i.e., short circuit to “Ground”). 
This fault cannot be detected in TC1 
(according to Table 2). Nevertheless, when 
TC2, the output vector (“VV”) of faulty IC, is 
FFTTTTTTTTTT, and the SV is 
FTTTTTTTTTTT, the TV process can 
straightforwardly detects that the IC is 
malfunctioning (i.e., cut fails). Now, the 
saving efforts factor is 4096 − 12/4096 = 
99.70 %. 
 
Normal vs. Cumulative Mode of Operation 
for CIT 
This section  repeats the experiment for LFSR 
by recording the mutant score for each 
degree of interaction independently, that is, 
by putting CIT in normal mode of operation 
during TQS process and fix t (i.e., non-
cumulative process) as given in Table 3. 

Table 1: Derivation of OTS for 12-bit LFSR 
t= Cumulative Test Size Live Mutant Killed Mutant % Mutant Score Effective test size 
1 2 22 52 70.27 2 
2 11 17 57 77.03 4 
3 34 10 64 86.49 7 
4 73 6 68 91.89 8 
5 142 6 68 91.89 8 
6 317 2 72 97.30 10 
7 647 1 73 98.65 11 
8 811 0 74 100.00 12 

 
Table 2: OTS and SV for the 12-bit LFSR 

#TC OTS TC (I1..I12) SV Outputs(S1..S12) Accumulative faults detected /74 
1 FFFFFFFFFFFF TFFFFFFFFFFF 38 
2 TTTTTTTTTTTT FTTTTTTTTTTT 52 
3 TFTFTFTFTFTF TTFTFTFTFTFT 55 
4 TFTTFTFFTTFF FTFTTFTFFTTF 57 
5 TFTFFTTFFTTF FTFTFFTTFFTT 59 
6 FFFFTTTTFFTT FFFFFTTTTFFT 61 
7 FFTFTTFTTFFF FFFTFTTFTTFF 64 
8 FFFFFFTTFFFF FFFFFFFTTFFF 68 
9 FFTFFFTFFFFF FFFTFFFTFFFF 70 

10 FTFFTFFFFFFF FFTFFTFFFFFF 72 
11 TTFFFFFFFFFF FTTFFFFFFFFF 73 
12 TFTFFFFFFFFF FTFTFFFFFFFF 74 

 
Table 3: Derivation of OTS for 12-bit LFSR with CIT in Normal Mode 

t= Test Size Live Mutant Killed Mutant % Mutant Score Effective test size 
1 2 22 52 70.27 2 
2 10 17 57 77.03 5 
3 21 11 63 85.14 8 
4 47 6 68 91.89 9 
5 110 6 68 91.89 9 
6 225 4 70 94.60 9 
7 449 2 72 97.30 10 
8 825 1 73 98.65 11 
9 1398 0 74 100.00 14 

10 1951 0 74 100.00 15 
11 2048 0 74 100.00 17 
12 4096 0 74 100.00 20 
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By considering the size of test suite from 
different points of view, it can be discussed 
the evaluation of CIT and mutation testing 
for optimization purpose. Referring to Table 
3, it is noted that using exhaustive testing 
requires 4096 test cases. By taking the 
effective test size (i.e., by examine the 
effectiveness of the test suite) reduces the 
test cases to merely 20 test cases.  Next, 
when relaxing t yields smaller test size (both 
the overall generated and the effective) and 
gives the 100% mutant score (for t=9, 10, 
and 11 where the test size=14, 15, and 17 
respectively). Moreover, must of mutants are 
killed using low t. As such, considering the 
CIT approach can assist in reduction of test 
suite without going to exhaustive testing. On 
the other hand, to select suitable t is more 
questionable, that is, how the tester can 
predict suitable t? Here, it is required a more 
systematic manner, as this paper proposed to 
overcome these obstacles; this paper 
suggests the use of CIT in cumulative mode 
(starting from t=1). By comparing Tables 1 
and 3, it is noted that the effective test size 
considering the CIT cumulative mode is less 
than that of normal mode. Moreover, 100% 

mutant score is achieved by considering 
cumulative mode up to t=8. In contrast, it is 
not until t=12 can the mutant score of 100% 
be achieved during normal mode. As such, it 
is more practical and systematic to consider 
the cumulative mode of operation for CIT.  
Finally, it is clear that combining both black 
and white boxes strategies is significantly 
required. 
 
CONCLUSION 
This paper has generalized the Quality Signing 
and Verification Processes to involve the 
sequential circuit hardware testing. The case 
study in hardware production line 
demonstrated that the proposed strategy could 
improve the saving efforts factor significantly. 
In addition, the justification for the requirement 
of the cumulative mode of operation for CIT has 
been discussed. Finally, as a part of future work, 
it is desired to investigate the application of the 
proposed strategy for computer-aided 
hardware design tool. 
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Figure 1: The Quality Signing and Verification Processes [20] 
 

 
Figure 2: Schematic diagram for 12-bit LFSR Circuit Diagram 
 

public class LFSR {

private static boolean s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12;

staic load (boolean i1,boolean i2,

          boolean i3,

          boolean i4,boolean i5,boolean i6, boolean i7,

          boolean i8,boolean i9,boolean i10, boolean i11, boolean i12)

{

s1=i1;s2=i2;s3=i3;s4=i4;s5=i5;s6=i6;s7=i7;s8=i8;s9=i9;s10=i10;s11=i11;s12=i12;

}

public static String getnext( boolean i1,boolean i2,

          boolean i3,

          boolean i4,boolean i5,boolean i6, boolean i7,

          boolean i8,boolean i9,boolean i10, boolean i11, boolean i12  ){

 

     load(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12);

     String output=null;

        boolean  c;

        c=!(s1|s2|s3|s4|s5|s6|s7|s8|s9|s10|s11|s12);

        boolean xsr;

       xsr=s12^s11^s10^s4;

       s2=s1;

       s3=s2;

       s4=s3;

       s5=s4;

       s6=s5;

       s7=s6;

       s8=s7;

       s9=s8;

       s10=s9;

       s11=s10;

       s12=s11;

       s1=c|xsr;

       output=""+s1+s2+s3+s4+s5+s6+s7+s8+s9+s10+s11+s12;

        return output;

}

}

 
Figure 3: Equivalent class Java program for 12-bit LFSR 
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