
3D Modelling Using Partial Differential
Equations (PDEs)

Abdusslam Osman

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

October 2014

Table of Contents

List of Figures v

chapterList of Tablesvii

Abstract xi

chapter Acknowledgementsxii

1 Introduction 1

section1.1 Scope of the Research1

1.2 Background and Motivation . 3

section1.3 Aims and Objectives8

1.4 Contributions to Knowledge . 9

section1.5 Thesis Organisation9

2 The Related Work 11

section2.1 Introduction11

2.2 3D Representation . 11

section2.3 Compression13

2.4 PDE-based Approaches . 15

section2.5 Discussion19

i

3 Partial Differential Equations and their Solutions 21

section3.1 Introduction to Partial Differential Equations21

3.2 Boundary Value Problem . 24

section3.3 Classic Fourier Series25

3.4 Dirichlet Boundary for Laplace’s Equation 27

subsection3.4.1The solution by separation of variables27

3.4.2 The solution by the method of lines 30

section3.5 Signal Representation33

3.5.1 The Discrete Fourier Transform (DFT) 34

subsection3.5.2The Discrete Cosine Transform (DCT)36

3.5.3 The Discrete Wavelet Transform (DWT) 36

subsection3.5.4The PDE-based Approach38

3.6 Interpolation and Compression 39

section3.7 3D Geometry Formats40

3.8 Discussion . 43

chapter4 Data Modelling and Pre-Processing45

4.1 Introduction . 45

section4.2 Data Representation46

4.3 Creating Scattered Interpolation Points 48

section4.4 Modelling51

4.5 Method . 53

subsection4.5.1Polygon Reduction by Explicit Structured Vertices53

4.5.2 Data Sampling . 55

section4.6 Discussion61

ii

5 Efficient 3D Data Compression Through Parameterization of Free-
Form Surface Patches 66

section5.1 Introduction66

5.2 Polynomial Interpolation . 67

section5.3 Results72

5.3.1 Data Compression by Polynomial 72

subsection5.3.23D Reconstruction74

5.3.3 Evaluating the Fit . 76

section5.4 Discussion78

6 Partial Differential Equations for 3D Data Compression and Recon-
struction 80

section6.1 Introduction80

6.2 Method . 81

subsection6.2.1Data Preparation81

6.2.2 Fourier Series Approximation 82

subsection6.2.3PDE Modelling86

6.3 Experimental Results . 90

section6.4 Assessing the Quality of 3D Reconstruction92

6.5 Discussion . 95

chapter7 3D Data Compression with Comparative Analysis via the Fourier

Transform, Discrete Cosine Transform, Discrete Wavelet Transform and Partial

Differential Equations97

7.1 Introduction . 97

section7.2 Method98

7.2.1 The DFT Method . 98

iii

subsection7.2.2The DCT Method99

7.2.3 The DWT Method . 101

section7.3 Experimental Data104

7.4 Results . 111

subsection7.4.1DFT, DCT and DWT Applied to Vertices Lying in a Single

Plane111

7.4.2 Extending DFT, DCT and DWT to Multiple Planes 114

section7.5 Discussion124

8 Conclusions and Further Work 126

section8.1 Summary126

8.2 Conclusions . 129

section8.3 Future Work131

References 133

chapterAppendix A Published papers152

iv

List of Figures

3.1 Defining Laplace’s equation over a rectangular domain. 28

figure3.2 The given boundary condition31

4.1 The GMPR scanner maps light planes hitting the target to surface

points (x,y,z). 48

figure4.2 The implicit triangulation method between two planes k1,k2.49

4.3 Connected path of triangulation mesh. 50

figure4.4 Textured and shaded 3D model53

4.5 Sampling points on a regular grid 54

figure4.6 The bounding box and structured cutting planes.56

4.7 Original 3D mesh . 58

figure4.8 Horizontal planes58

4.9 Vertical planes . 59

figure4.10The intersection points of each horizontal and vertical plane59

5.1 Polygonal mesh detail . 67

figure5.2 Polynomial interpolation along cutting planes70

5.3 Polynomial interpolation of degree 3 72

figure5.4 Polynomial interpolation degrees 3 to 15.74

5.5 Polynomial interpolation degree 20 to 40 75

v

figure5.6 Polynomial interpolation degree 8075

5.7 Scatter plot of Predicted Values against Residuals 77

figure5.8 The normal-probability plot of the residuals78

6.1 The illustration of PDEs compression and reconstruction. 82

figure6.2 Rectangular domain for solving Laplace’s equation.87

6.3 The effects of iteration steps on convergence 89

figure6.4 Left: original superfine meshes; right: PDE reconstructed91

6.5 Visualisation of the error surface 94

figure6.6 Scatter plot of Predicted Values against Residuals94

7.1 Example of a textured and colour map 3D model 104

figure7.2 The 3D model used for illustration of compression techniques.111

7.3 DFT and DCT reconstruction . 112

figure7.4 DWT 3-level decomposition and reconstruction113

7.5 Reconstructed models quality Q = 100 115

figure7.6 Reconstructed models quality Q = 50116

7.7 PDE based reconstruction quality Q = 100 117

figure7.8 PDE based reconstruction quality Q = 50118

7.9 Average RMSE errors . 118

figure7.10Average compression rates120

vi

List of Tables

4.1 Initial compression by re-meshing operation 62

table4.2 Initial compression by re-meshing operation63

4.3 Initial compression by re-meshing operation 64

10

5.1 Compression rates in percentage. 74

table5.2 Trend of increasing R278

6.1 Text file format for 3D compression using DFT 85

10

7.1 Text file format for 3D compression using DCT 100

table7.2 Text file format for 3D compression using DWT103

7.3 Data files experiments 1 . 105

table7.4 Data files experiments 2106

7.5 Data files experiments 3 . 107

table7.6 Load and display PDE data 1108

7.7 Load and display PDE data 2 . 109

table7.8 Load and display PDE data 3110

7.9 Compressed data files and CPU time 121

table7.10Compressed data files and CPU time122

vii

7.11 Compressed data files and CPU time 123

10

Acronyms & Abbreviations

API Application programming interface

ASCII American Standard Code for Information Interchange

B-spline Basis spline

CAD Computer aided design

CAM Computer Aided Manufacturing

COLLADA COLLAborative Design Activity

CPU Central Processing Unit

DCT Discrete Cosine Transform

DE Differential Equation

DFT Discreate Fourier Transform

DWT Discrete Wavelet Transform

DirectX A collection of application programming interfaces (APIs)

EB Exabytes

EBCDIC Extended Binary Coded Decimal Interchange Code

FDM Finite Difference Method

FEM Finite Element Method

FFT Fast Fourier Transform

viii

FWT Fast Wavelet Transform

GMPR Geometric Modelling and Pattern Recognition Group

HPF High pass filtration

HTML HyperText Markup Language

JPEG Joint Photographic Expert Group

JSON Java Script Object Notation

Java3D 3D application programming interface for the Java platform

LPF Low pass filtration

MLS The moving least squares

MOL The method of lines

MPEG-4 Moving Picture Experts Group

Matlab Matrix laboratory

NURBS Non-uniform rational basis spline

OBJ An object file

ODE Ordinary Differential Equation

OpenGL ARB The OpenGL Architecture Review Board

PB Petabytes

PC Personal Computer

PDE Partial Differential Equation

QoS Quality of Service

R2 Coefficient of determination

ix

RAM Random access Memory

RMSE Root Mean Square Error

SSE Sum of Squared Errors of Prediction

SST Total Sum of Squares

VRML Virtual Reality Modeling Language

XML Extensible Markup Language

iDCT Inverse Discrete Cosine Transform

iDWT Inverse Discrete Wavelet Transform

iFFT Inverse Fast Fourier Transform

x

Abstract

Partial differential equations (PDEs) are used in a wide variety of contexts in

computer science ranging from object geometric modelling to simulation of natu-

ral phenomena such as solar flares, and generation of realistic dynamic behaviour

in virtual environments including variables such as motion, velocity and acceler-

ation. A major challenge that has occupied many players in geometric modelling

and computer graphics is the accurate representation of human facial geometry in

3D. The acquisition, representation and reconstruction of such geometries are cru-

cial for an extensive range of uses, such as in 3D face recognition, virtual realism

presentations, facial appearance simulations and computer-based plastic surgery

applications among others. The principle aim of this thesis should be to tackle

methods for the representation and reconstruction of 3D geometry of human faces

depending on the use of partial differential equations and to enable the compres-

sion of such 3D data for faster transmission over the Internet. The actual suggested

techniques are based on sampling surface points at the intersection of horizontal

and vertical mesh cutting planes. The set of sampled points contains the explicit

structure of the cutting planes with three important consequences: 1) points in the

plane can be defined as a one dimensional signal and are thus, subject to a number

of compression techniques; 2) any two mesh cutting planes can be used as PDE

boundary conditions in a rectangular domain; and 3) no connectivity information

needs to be coded as the explicit structure of the vertices in 3D renders surface

triangulation a straightforward task. This dissertation proposes and demonstrates

novel algorithms for compression and uncompression of 3D meshes using a va-

riety of techniques namely polynomial interpolation, Discrete Cosine Transform,

Discrete Fourier Transform, and Discrete Wavelet Transform in connection with

partial differential equations. In particular, the effectiveness of the partial differ-

ential equations based method for 3D surface reconstruction is shown to reduce

the mesh over 98.2% making it an appropriate technique to represent complex

geometries for transmission over the network.

xi

Acknowledgements

The successful completion of this study would not have been possible without the

involvement of a number of people and institutions. First, I wish to acknowledge

my sincere gratitude to my supervisor, Professor Marcos Rodrigues. His keen

enthusiasms for work and constant good humoured spirits have been a source of

encouragement to me. His comments and criticisms have been appreciated as

much as his learned guidance and advice during the past three years of study and

preparation of this thesis.

Second, I would like to sincerely thank my examiners, Dr. Leonardo Bottaci

and Dr. David Cooper, for their valuable comments, and for raising interesting

points in their report, leading to improvements in this thesis.

Third, I gratefully acknowledge the financial support provided by the Libyan

higher education, and Sheffield Hallam University for granting me the opportunity

to pursue the Doctor of Philosophy Degree in this institution.

Forth, there is a long list of people who provided help and support. It is impos-

sible to mention all of them, but my special thanks go to my second supervisor Dr

Alan Robinson, Prof Ann Macaskill, Tracey Holmes, and all colleagues from the

GMPR research group for their guidance and support. To all those who supported

me in one way or another but have not been mentioned individually, please accept

my gratitude.

Finally, I would like to thank my wife Huda, my son Eecam and daughters

Elham, Hala, and all my family for their continuous support and encouragement

over the years of my studies, and for always believing in me.

xii

Chapter 1

Introduction

1.1 Scope of the Research

Within three dimensional computer graphics, 3D modelling is the process of cre-

ating the numerical rendering from the three-dimensional surface or volumetric/-

solid representation of the object via specialised software. Models could be shown

like a two-dimensional image via a course of action referred to as 3d render or

even used in your personal computer simulation associated with actual phenom-

ena. Such graphical models (a surface or volumetric) are normally designed and

constructed using CAD-Computer Aided Design software or acquired through 3D

scanners. Once defined in an appropriate format, any 3D model can be printed out

using specialised 3D printing devices. This thesis is only concerned with 3D sur-

face data; in particular, surface patches defined on a regular xy-grid where the

depth of each point is defined in the z-axis. Such surface patches are typical of

data acquired using conventional 3D scanners based on stereo system perspective,

structured light or time-of-flight techniques.

This thesis addresses the issue associated with three dimensional data com-

pression as well as uncompressing applied to closed surface patches. Compres-

sion means to represent the data with fewer bits than the original representation

and can be lossy or lossless. In lossy compression, some information is lost,

1

while lossless means no loss of information. This research only describes lossy

compression. Data uncompressing is the process of recovering the original data

from the compressed data and normally this is achieved by reversing each step

of the process of the compression algorithm. When one refers to compression

it normally means both the process of compression and uncompressing. Unless

specifically stated otherwise, this thesis uses the word ‘compression’ in this con-

text.

The research approach to 3D compression described in this thesis follows four

steps:

1. To investigate a method to define structured geometric information;

2. To investigate polynomial interpolation techniques;

3. To investigate the use of partial differential equations; and

4. To perform comparative analyses with related data compression techniques

applied to the 3D case, such as Discrete Fourier, Wavelet, and Cosine trans-

forms.

In the techniques proposed in this dissertation, first, a polygon reduction described

in Chapter 4 is applied to the mesh resulting in a set of vertices lying in structured

planes of a sparse, regular grid. The data defined on such grids with their prac-

tical implementation issues and incorporation into compression techniques are

discussed in Chapters 5–7.

The first approach to compression described in Chapter 5 is by using polyno-

mial interpolation. The technique is applied to surface patches and it is shown to

be capable of decreasing the mesh by more than 99%. However, there are some

limitations such as lack of precision, and for polynomials of higher degree the 3D

surface becomes unstable and with smaller compression rates.

The second approach, considered in Chapter 6, is to perform 3D compression

based on partial differential equations (PDEs). Compression and 3D surface re-

construction using PDEs have never been solved before in this way. These new

2

methods are tested in various experimental setups and their effectiveness is evalu-

ated and discussed.

In Chapter 7 new methods for 3D data compression and reconstruction are

proposed and demonstrated. Upon applying a method of polygon reduction, the

vectors describing the data are parametrically defined and a comparative analysis

is presented via the Discrete Fourier Transform (DFT), Discrete Cosine Trans-

form (DCT) and Discrete Wavelet Transform (DWT). The transform coefficients

are further processed according to a quality factor, which substantially decreases

the amount of data. The file formats are defined with the necessary parameters

for a full reconstruction of the sparse mesh. Finally, in order to recover the vertex

density of the original mesh, the reconstructed data are represented by elliptic Par-

tial Differential Equations (PDE) and iteratively solved between adjacent planes

in connection with the Laplace equation. Experiments demonstrate the effective-

ness of the methods allowing compression rates of over 98% compared to the OBJ

file format and over 91% compared to a list of vertices in ASCII format.

1.2 Background and Motivation

Current improvements in three dimensional modelling have led to a common num-

ber of applications in most areas of science and engineering. Three dimensional

objects are now widely used in applications such as games, mechanical and archi-

tectural design, archaeology, as well as medical engineering among others. The

actual common integration associated with 3D models in different fields motivates

the need to be able to store, list, classify, and recover 3D objects automatically and

efficiently.

While computer-aided geometric design and computer-aided manufacturing

systems tend to be widely used for the design and development of physical objects

from digital models, the reverse problem, that of inferring a digital description

of an existing physical object, has received much less attention. In addition, in

several programs, it will be important to transfer 3D image types over the web

3

to share CAD/CAM models with e-commerce clients, to upgrade material with

regard to entertainment applications, or to support collaborative design, research,

and show of technological innovation as well as scientific data sets. Bandwidth

limitations and storage space restrict the transmission and use of 3D data over the

network.

Data compression techniques tend to be centred on representing the actual

geometry and connectivity of the vertices in the triangulated mesh. There has

been no systematic approach to the geometric parameterization associated with

arbitrary 3D objects aiming at efficient representation and compression. As a

result, a major concern of this research is to define the possibilities associated

with the compression of 3D data for fast transmission over the Internet, without

lack of precision and performance.

To achieve this, the thesis involves both theoretical and practical work. The

main theoretical work involves the development of mathematical methods for effi-

cient representation and parameterization of PDE-based models as well as geom-

etry optimisation methods for efficient fitting of PDE models to data and efficient

encoding of the residuals. This really is achieved by solving a second order, ellip-

tic PDE uses the method of lines to generate a surface from the solution to those

equations. Practical work involves the implementation of the methods within the

software; what is addressed here is 3D compression by a number of methods and

techniques, which is subject to experimentation regarding overall performance

and stability.

Within the GMPR Research Group we have developed methods for fast 3D

reconstruction using line projection [Robinson et al., 2004; Rodrigues et al., 2007,

2008, 2006]. The method is based on projecting a pattern of lines on the target

surface and processing the captured 2D image from a single shot into a point

cloud of vertices in 3D space. The reconstructed models are realistic and capture

the real Euclidean measurements of the object, and are useful for a large number

of applications including, among others, biometric facial recognition, industrial

inspection, reverse engineering and multimedia applications. A realistic scenario

4

which is explored in this study involves 3D facial biometric verification at airports.

The method is non-intrusive and aims at minimal disruption. It is based on our

past experience with 3D biometrics at Heathrow Airport (London, UK) in 2005. In

this scenario, an enrolment shot is taken and reconstructed in 3D at an automated

check-in desk, where a new database is created for each flight. At the gate before

boarding the plane another 3D shot is taken for verification.

The created databases are transmitted to the local Police who perform a search

against their records. If the Police find no information to warrant keeping the

data for longer, all data must be erased after a time lapse, normally within 24

hours. For international flights and where no mechanisms for sharing information

between Police Forces are available, the data can be transmitted to the destination

Police authorities before the flight actually arrives at the destination. A significant

constraint of this scenario is that 3D files are very large; a high definition 3D model

of a person’s face is around 20MB. For a flight with 400 passengers, this would

mean dispatching 8GB of data. If one considers the number of daily flights in a

medium sized airport, it can be concluded that this may be unworkable. It is clear

that methods to compress 3D data would be beneficial to the scenario considered

here but, more importantly, would represent an enabling technology for a large

number of other potential applications. For instance, the application of simple

texture mapping would lead to the creation of naturally-looking facial images, but

on the other hand, conceal the individuality of the subject in the 3D face geometry.

Apart from the aspects of privacy, confidentiality, and security concerns, the point

being made here is that without data compression it is impossible to make such

a scheme work. About 70 million passengers go through London Heathrow per

year, almost 200,000 per day. Each high density facial scan takes about 20MB

of disk space, so one would be contemplating about 4TB (terabytes) of data per

day and 1.4PB (petabytes) per year. To dispatch such a vast amount of data over

the network to the local police station and potentially to the origin and destination

police authorities is unworkable with current technologies.

Although some standards exist for 3D compression, such as Java 3D and

MPEG4, the compression rates are still low for general sharing of files over the

5

Internet. In general, there are three methods one can use to share 3D data. The

first method is based on image compression where each snapshot of a 3D scene

is compressed as a 2D image. The second method is based on hierarchical im-

provement of a 3D structure with regard to transmission, where a coarse mesh

is followed by increasing refinements until the original, full 3D model is recon-

structed in the other end. The third method is based on mesh compression where

algorithms traverse the mesh for a local compression of polygonal relationships.

The principle of compression proposed here is inspired by the GMPR scanning

method and its resulting mesh properties. The first step described in Chapter

4 is to cut an arbitrary triangulated mesh with a suitable number of horizontal

and vertical cutting planes and detect the intersection point of such planes on

the mesh. In order to code the mesh, the (x,y) coordinates are directly given by

the distances between the planes, so there is no need to code any (x,y) values

explicitly. Only the z-values are subject to compression schemes. The method is

not lossless and this research investigates compression techniques for the z-values

based on polynomial interpolation and also using PDEs for surface reconstruction.

Therefore, for a generic surface path the method involves cutting a number of

planes parallel to the Y -axis (or X-axis) of the 3D unconstrained point cloud;

then for each plane, finding the points in the structure intercepted by each plane

(within a threshold). In this way, an equivalent scan line structure as in the GMPR

scanning method is obtained.

This thesis investigates new methodologies on geometric coding of single-

value functions where the connectivity is explicitly derived from geometry. Meth-

ods for single-value functions are demonstrated in Chapter 5 where connectivity is

not coded at all. Once the geometry is coded, compressions over 99% are achieved

through the method of re-meshing the structure and representing the (x,y,z), in

parametric form using polynomial interpolation.

In Chapter 5 this thesis investigates the use of PDE mesh surfaces for com-

pression and reconstruction of large data files without loss of accuracy, extending

the work described in [Rodrigues et al. 2010].The parameterization of PDE-based

6

models are proposed in a way rather different from the previous work on polyno-

mial interpolation highlighted above. Here it is proposed to represent the geome-

try and connectivity of the mesh by means of solving an elliptic PDE. A perceived

advantage of the PDE-based approach is that it defines shapes by means of data

distributed around the shape boundaries and feature points only. This approach

contrasts with mesh models and spline surfaces, which often require hundreds of

control points in order to represent a realistic object. However, it is noted that to

date there has been no systematic approach to the geometric parameterization of

arbitrary 3D objects aiming at efficient representation and compression.

The main idea is to compress the geometry of each (sparse) cutting plane sep-

arately using either Fourier, Discrete Cosine or Discrete Wavelet transforms. And

then on the uncompressing stage, use each pair of such planes in turn as boundary

conditions for an elliptic PDE and iteratively solve the Laplace equation between

the boundaries by the method of lines. The connectivity of the mesh is directly de-

rived from solutions to the Laplace equations and the boundary planes. Therefore,

information on the number of vertices as well as a scale of the surface together

with the set of points lying in each cutting plane are integral components of the

PDE parameters. Cutting planes are used as boundary conditions and there is no

dependency on time.

The validation of the proposed method is a demanding task. In general, for

each 3D model is not known what is a structure and what is noise in the data.

While the PDE method can in theory model the original data set within a pre-

scribed error, it may not be possible to make a strong statement on the validity

of the method given the discrete nature of the 3D data, which is in itself an ap-

proximation of the real world. It is anticipated that the set of 3D data would be

defined parametrically. The thesis describes methods and compression algorithms

with experimental results and discusses the suitability of the techniques to a num-

ber of applications and general issues in 3D compression and reconstruction. In

particular, for each 3D data structure the same tests are performed using the fol-

lowing methods: Fourier, Discrete Cosine and Discrete Wavelet Transforms. The

comparative analysis of the techniques is presented by illustrating the Gaussian

7

approximation error distance of different methods.

1.3 Aims and Objectives

The aims of research are to demonstrate that PDE based modelling with geometry

re-meshing operations can effectively be used for 3D data compression of mesh

geometry and connectivity. The approach is different from current methods that

are based on coding, connectivity having geometry as a dependent property; the

proposed methods are based on geometry coding with connectivity derived from

geometry.

The objectives are identified as follows for arbitrary surface patches:

• To define a re-meshing method for efficient geometry coding through mesh

cutting planes in XY -directions.

• To define the possibilities associated with the compression of 3D data for

fast transmission over the Internet. Assuming that effective compression

can be achieved, would the proposed scheme yield satisfactory results?

• To collect statistics on the bit rate of such representation and compare with

existing polynomial as defined in [Rodrigues et al., 2010], and related work

in the literature.

• To investigate and define methods for PDE representation of plane intersec-

tions using Laplace and Fourier spaces and alternative representations.

• To define an optimal method for PDE representation from the results of the

investigation.

Given an arbitrary surface patch, the proposed method is based on determining the

mesh intersection of structured cutting planes in horizontal and vertical directions.

Each intersection point is a vertex defined on a regular xy-grid where the z-value

is the depth of each vertex. To compress and decompress 3D data, what is first

8

proposed is an interpolation of the z-values by high degree polynomials. Second,

a method is proposed for Fourier based data compression and PDE based data

uncompression. Finally, a comparative analysis of the PDE method is presented

via the DFT, DCT and DWT methods.

1.4 Contributions to Knowledge

This thesis presents a novel approach to accurate, efficient representation and

compression of 3D data compression centred on the parameterization of surface

patches. The major contributions made by this work are as follows:

• In the first approach using interpolation of polynomials of high degree from

30 to 80 degrees, the result shows a mesh reduction of over 99% compared

to the OBJ file format.

• A new approach was taken for 3D compression and reconstruction using the

method of lines to solve elliptic PDE, achieving a compression rate of over

98% compared to the OBJ file format. The methods are based on DFT to

reconstruct the original data from the vertices lying in each plane. Theoret-

ical results, in addition to numerical illustrations indicate the superiority of

this method, compared to the previous approaches used so far.

• The thesis provides a comparative analysis of DFT, DCT, and DWT in con-

nection with PDEs to recover the full vertex density of the original mesh.

Results indicate that both DCT and DWT are more robust than DFT for

compressing the data mesh.

1.5 Thesis Organisation

The thesis is organised as follows:

9

1. Chapter 2 presents an overview of related work, with the history of the

numerical analysis using different methods of solving the PDEs.

2. Chapter 3 introduces the basic concepts of Partial Differential Equations

and their solution. Direct methods and iterative methods are formulated,

and their feasibility is considered.

3. Chapter 4 presents the data modelling and the pre-processing to be used

in all experiments in the thesis. This is the first step of the compression

method.

4. Chapter 5 presents a polynomial interpolation method for efficient 3D data

compression through parameterization of free-form surface patches.

5. Chapter 6 introduces Partial Differential Equations for 3D data compression

and reconstruction. The focus of this cFhapter is on data interpolation using

the Fourier Transform.

6. Chapter 7 describes a comparative analysis of data compression via the

Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform

and Partial Differential Equations.

7. Finally, Chapter 8 discusses the conclusions of the study, and gives some

recommendations for possible future work.

10

Chapter 2

The Related Work

2.1 Introduction

In this chapter, an overview is provided of research work with the relevant back-

ground related to the work presented in the thesis. It is beyond the scope of this

thesis to give a comprehensive overview of all related work. Thus, this chapter

will concentrate mainly on research closely related to the work presented later,

categorised in groups according to the method used. The first category is 3D rep-

resentation, the second is compression and the third is PDE-based approaches.

2.2 3D Representation

There have been many different schemes used to represent the shape of 3D objects,

and their associated properties. The particular improvement of the techniques used

to represent the 3D models started out of necessity in the computer aided the geo-

metric design community. Since then, many of the techniques have been adopted

and extended in the more general computer graphics field. The representation of

3D objects can be separated into two primary categories; surface modelling and

solid modelling. Thus, surface modelling deals with the problem of representing

2D surfaces embedded in the 3D space. These types of surfaces might or even

11

may not define a volume degree. Solid modelling extends the actual techniques

of surface modelling to deal with the representation as well as manipulation of

volumes, totally surrounded by surfaces, say, for example a cube, buildings, and

the human body.

There are three well-known methods to represent a model:

1. Polygonal meshes: Points in 3D space, known as vertices, are connected

through a line segments to form the polygonal mesh. Most of 3D models

today are built as textured polygonal models, as they are flexible and com-

puters can render them so rapidly. Furthermore, polygons are planar and

can only estimate rounded surfaces that use many polygons [Foley, 1996;

King et al., 2000]. A triangular mesh is a mesh in which all the faces are

triangles. Any polygonal mesh can be transformed into a triangular mesh

by triangulating each polygonal face. Even though polygonal meshes can

precisely approximate any objects with planar surfaces, this approximation

can be made arbitrarily close to the curved surface being modelled by using

small enough polygons.

2. Curve modelling: Surfaces are defined as a curve blending control point.

Curve types include splines, non-uniform rational B-splines (NURBS), pat-

ches and geometric primitives. These types can be given either within the

implicit or parametric form. The implicit form makes it simple to deter-

mine if a point is actually on the surface, and if not, which side it is located.

However, the implicit form will not lend itself to computing the points on

the surface within a simple way, when sketching for instance and even less

to local modifications of the shape. Furthermore, it is very difficult to model

free-form objects using the implicit form [Akkouche and Galin, 2001; Bloo-

menthal, 1988; Witkin and Heckbert, 1994].

3. Subdivision surface: As an alternative to B-spline and NURBS, it starts

with a 2-manifold polygonal mesh and iteratively applies a refinement, or

subdivision, procedure [Chaikin, 1974; Cohen et al., 1980]. In geomet-

ric modelling subdivision, the processes were extended to general topology

12

[Catmull and Clark, 1978]. The algorithms produce a surface, which is a

B-spline surface everywhere, except at a limited number of extraordinary

points [Doo and Sabin, 1978].

An algorithm with one refinement step and no corner cutting was proposed

in which the refinement step is used to isolate the irregularities of the mesh

[Loop, 1994]. In addition, a modified Butterfly subdivision scheme, which

is smooth on irregular meshes, is presented in [Zorin et al., 1996]. Subdivi-

sion schemes lend themselves to the representation of surfaces of arbitrary

topology in addition to surfaces represented by bivariate functions [Dyn and

Levin, 2002].

This dissertation is focused on polygonal meshes.

2.3 Compression

The compression schemes for geometric data models have recently been the sub-

ject of intensive research. Data compressions are crucial with regard to decreasing

space for storage or transfer over the network. There are two types associated with

compression, the first lossy data compression, which is not guaranteed to get the

same output bit for a bit for example, JPEG. Second is the lossless compression,

which is guaranteed to get the same output bit for a bit at decompression example

PNG, ZIP and TGZ.

Compression methods for 3D polygonal data are focused on representing the

connectivity of the vertices in the triangulated mesh. Examples include the Edge-

breaker algorithm [Szymczak et al., 2001] and [Szymczak et al., 2002]. Products

also exist in the market that claim 95% lossless file reduction such as from 3D

Compression Technologies Inc. [3DCT, 2010] for regular geometric shapes. In

addition, the generalisation of the Edgebreaker’s formula with regard to data com-

pression as well as decompression would be to divide every quad into triangles

based on the guideline that triangles made from every quad tend to be surrounded

within Edgebreaker’s traversal series (a triangle spanning tree). It leads to an en-

13

coding of 30-80% which is smaller than an approach based on randomly splitting

quads into triangles [King et al., 2000; Rossignac, 2001],

Other techniques for triangulated models include the work of [Shikhare et al.,

2002] and vector quantization based methods [Qian et al., 1998] where rates of

over 98.75% have been achieved. However, a significant drawback to this tech-

nique in the use of vector quantization, which adds to computation and throws

valuable information away. A new compression algorithm that encodes the con-

nectivity of surface meshes directly into their polygonal representation, by im-

proving the triangulated mesh prior to data compression, is able to recover the

polygons by marking the edges along with 70% compression rate [Isenburg and

Snoeyink, 2000]. Some other local compression and decompression algorithms,

which are sufficiently fast for real time applications, accomplished compression

rates of more than 60% [Gumhold and Straßer, 1998]. Regarding geometry en-

coding, recently reported data compression methods for the vertex coordinates

(geometry) have used vertex quantization, and geometric predictors, as well as

adjustable duration encodings associated with corrective vectors in order to shrink

the actual vertex coordinates [Deering, 1995; Kronrod and Gotsman, 2000; Li and

Kuo, 1998; Taubin and Rossignac, 1998; Touma and Gotsman, 1998].

The current state of the art in 3D compression is reasonably well developed

concerning connectivity representation, but it is in need of improvement concern-

ing geometric coding [Dodgson et al., 2006; Peng and Kuo, 2005]. The Java3D

API and MPEG-4 standards, address issues of compression. Because Java3D is

a collection of high-level constructs to create and manipulate graphics objects on

top of OpenGL or DirectX, it depends on how geometries are defined in under-

lying environments. Geometric compression in Java3D is possible using a binary

format based on the topological surgery algorithm [Taubin and Rossignac, 1998],

normally to one order of magnitude [Davidson and Hanson, 2004]. The MPEG-

4 multimedia standard also includes 3D mesh coding. MPEG-4 Part 20 contains

specifications for scene representation, manipulation and encoding in binary com-

pression format [Smolic et al., 2006] also based on the topological surgery algo-

rithm. While such initiatives provide a reference for research in 3D data com-

14

pression, current compression rates are still too low for general sharing of 3D

geometry files over the internet. The GMPR research group has developed and

demonstrated original methods and algorithms for fast 3D scanning for a number

of applications with a particular focus on security [Brink et al., 2008; Robinson

et al., 2004; Rodrigues and Robinson, 2010, 2011; Rodrigues et al., 2008]. The

algorithms can perform 3D reconstruction in 40 milliseconds and recognition in

near real-time, but saving such 3D facial models has resulted in a severe bottle-

neck due to the size of the data files. All data used in this research have been

previously acquired using the GMPR scanner.

2.4 PDE-based Approaches

Recently, several approaches for solving PDE-based modelling have been de-

veloped. In particular, various methods were discussed in [Bloor and Wilson,

1997, 1989; Jain and Jain, 1978; Malcolm Bloor and Wilson, 1996; Mathews and

Fink, 1994]. However, surface modelling techniques tend to be fundamental for

many visual processing applications including interactive graphics, CAD/CAM,

animation, and digital environments. Frequently-used representation schemes for

free-form surface modelling such as spline-based approaches take advantage of

simple polynomial functions in collaboration with control points [Böhm et al.,

1984; de Boor, 2001; Farin, 1996; Forsey and Bartels, 1988; Piegl, 1991; Piegl

and Tiller, 1987; Ugail et al., 1999]. Nevertheless, an over-all way of establish-

ing distinction strategies in order to determine the numerically particular quasi-

linear PDE through Levenberg-Marquardt kind algorithms with regard to elliptic

as well as parabolic problems may be referred to [Wiegmann and Bube, 1998].

Consequently, the problem of regularisation of the Cauchy problem for Laplace’s

equation is considered to be close to the exact solution [Ang et al., 1998].

The design and data framework software for solving PDEs is reported in the

literature where sequences of finite-element problems could be constructed in the

self-adaptive or even quasi-interactive mode. The software includes linear, trian-

15

gular, finite element areas, a posteriori error estimate, adaptivity of the mesh, con-

forming mesh-refinement algorithms for triangulations, along with a full multi-

grid method for resolving linear systems [Bartels et al., 2006; Grebennikov, 2005;

Rivara, 1984; Van Schijndel, 2003]. This research favours the method of lines

(MOL) which is a convenient method for the numerical integration of PDEs; for

example, the Korteweg-de Vries equations have been formulated to model shallow

water flow [Saucez et al., 1998; Schiesser, 1994] and are solved by the method of

lines.

Point datasets routinely generated via optical and photometric variety finders

are usually corrupted through the noise. In order to remove these kind of deficien-

cies from scanned stage, clouds, a large variety of denoising approaches based

on low-pass filtering are used [Linsen, 2001]. Typically, the moving least squares

(MLS) surface, used for modelling and also rendering with point clouds fitting

[Adamson and Alexa, 2003; Alexa et al., 2003; Amenta and Kil, 2004; Bremer

and Hart, 2005; Dey and Sun, 2005] and partial differential equations (PDEs)

[Lange and Polthier, 2005; Shu et al., 2003] has been proposed.

The Trefftz method along with the method of particular solutions provides an

attractive mesh-free alternative for solving non-linear Poisson equations in two

and three dimensions [Balakrishnan and Ramachandran, 1999]. Moreover, for

finding the approximate solution of a second order, non-linear PDE by transform-

ing the problem into an optimisation problem and considering it as a distributed

parameter control system [Gachpazan et al., 2000; Mai-Duy and Tran-Cong, 2001;

Sharan et al., 1997]. Furthermore, the new multi resolution scheme has been pro-

posed based on an image transform by a discretized elliptic partial differential

operator and use of a multi grid operator, leading to a pyramidal representation

[de Zeeuw, 2005].

Applying PDE-based methodology for image sequences, restoration and mo-

tion segmentation by a convergent stable algorithm and approximate a unique

solution of the initial minimisation is described in [Kornprobst et al., 1999]. The

actual factorisation associated with fourth order PDEs into a set of two nested or-

16

der problems to generate free surfaces that fulfil artistic requirements that close

triangle mesh is described in [Golbabai and Javidi, 2007; Qian et al., 2006; Schnei-

der and Kobbelt, 2001; You et al., 2008]. Solving a fourth order PDEs with three

vector valued shape parameters to generate complex free form surfaces has been

described in [Zhang and You, 2002]. It has been shown that solving a fourth order

PDE with boundary conditions divided into a closed and non-closed form solu-

tions lead to a mixed PDE solution that can be applied to a number of surface

modelling types [Du and Qin, 2005; Duan et al., 2004; Zhang and You, 2004b].

On the other hand, second order PDEs can be improved by introducing fourth

order PDEs for one of the components leading to mixed order PDEs, which have

many more degrees of freedom, and hence are able to generate a family of surfaces

with sophisticated geometric features [Zhang and You, 2001].

An additional approach for optimisation is based on a PDE formulation en-

abling efficient shape definition and shape parameterization. It has been showed

how the choice of an elliptic PDE enables surfaces to be created that correspond

to complex shapes [Ugail, 2003; Ugail and Wilson, 2003]. In particular, an ac-

curate numerical solution of nonlinear PDEs can be obtained by using high order

approximation in space and time by solving the fourth order Runge-Kutta method

[Kassam and Trefethen, 2005]. The closed form solution associated with PDE

has often been either non-existent or not obtainable, depending on the boundary

conditions and the coefficients of the PDE; only a small proportion of them result

in a closed form solution [Zhang and You, 2004a], whereas solving the C2 con-

tinuous surface blending by a sixth-order PDE satisfies the boundary conditions

and minimises the overall PDE errors [You et al., 2004]. However, it is possible to

solve higher order PDEs and accommodate general boundary conditions in, say,

a sixth-order PDE solution. Evaluating higher order PDEs provides a very good

capability to make a broader selection of areas whilst sustaining the actual flexi-

bility from the PDE technique through concentrating on areas that are regular, to

ensure that topologically they’re just like a closed band [Kubiesa et al., 2004]. In

addition, solving PDEs with high order boundary continuity conditions produces

very fair and desirable solution surfaces [Xu et al., 2006].

17

The actual formulation associated with 3D surface reconstruction utilizing

spectral active surfaces with edge fines could be put in place within spherical ge-

ometry. The spectral method uses the dual Fourier sequence being an orthogonal

base to resolve the series associated with elliptic PDEs within the unit sphere [Li

and Hero, 2004]. Discrete surface patches obtained by solving various geometric

PDEs to model geometric shapes can be used to choose suitable PDEs for each

problem shape [Qing, 2005]. Accurate modelling results are obtained by solv-

ing Laplace’s equation for anisotropic 3D magnetic resonance imaging (MRI). A

fast and accurate algorithm for generating the thickness map from the potential

function is shown to yield better results compared to other methods [Haidar et al.,

2005]. Mikhlin’s method for solving Laplace’s formula in increase linked exte-

rior websites with Dirichlet boundary data obtained highly accurate alternatives

in exterior domains [Helsing and Wadbro, 2005].

The reconstruction of the 3D geometry of human faces based on the use of

elliptic PDEs using a set of boundary conditions to generate surface patches from

the original scanned data is described in [Elyan and Ugail, 2007]. Therefore, the

fourth order PDE method is inherently capable of generating smooth facial anima-

tions with a complicated face design, by modifying only a relatively small number

of boundary curves. The solution of nine various PDEs along with twenty-eight

boundary curves was required to generate an entire face model. The continu-

ity within the model is actually assured through prescribing at least one typical

boundary condition for surrounding patches [Sheng et al., 2008; Ugail and Sourin,

2008].

In addition, a new technique for quantifying the uncertainty associated with

the solution of a PDE involving stochastic parameters is described in [Mathelin

and Gallivan, 2010]. The application of the PDE means of designing a paramet-

ric representation, and the parameterization and reconstruction of 3D face images

have been achieved in [Ahmat et al., 2011; Wang et al., 2012]; their studies show

that the simulation may be used to represent the powder compaction process and

predict the actual elasticity and plasticity associated with pharmaceutical materi-

als.

18

Furthermore, a solution to PDE models in 3D provides an ideal platform on

which researchers from various fields can communicate with each other. With

regard to most cancers modelling, particularly, 3 as well as 4 dimensional visu-

alisation can be handy with regard to doctors in order to localise the actual be-

lieved tumour placement inside the site with regard to surgical treatment as well

as preparing the remedy. [Enderling et al., 2006].

2.5 Discussion

This Chapter has reviewed various popular schemes for the representation of a

complex shape. The most typical techniques tend to be polygonal works, paramet-

ric areas as well as subdivision methods, which appear to be better solutions for

free form surfaces. The other reviewed techniques Spline and B-spline (NURBS)

can only describe a limited set of shapes or are not adequate for modelling pur-

poses. While simple and flexible, polygonal meshes are not capable of accurately

representing smooth surfaces. The early compression methods were mainly fo-

cused on speeding up the transfer of model data from the CPU to the graphics

board, for rendering purposes, across a bus of limited bandwidth. Such methods

have to be of low complexity so as to be easily executed by the hardware on the

graphics board and therefore they only obtain modest compression ratios.

With regard to compression, most of the recent techniques for “lossless” pro-

gressive coding associated with carefully designed meshes use the independent

set concept to drive the mesh refinement operations to be organised into a set of

patches or along a chain of edges optimised for efficient rendering. Vertex posi-

tions are coded using various prediction schemes. Moreover, less work has been

done concerning geometry coding than for connectivity coding, since they are

lossy and it is difficult to analyse their performance. It is noted from the literature

review above that Laplace’s equation has not been used for surface reconstruction

in connection with PDEs as proposed in this research and demonstrated later on

in Chapters 5–7. In this research, each PDE patch is calculated independently

19

using the boundaries defined by the cutting planes and given that the patches are

adjacent to one another, they use the same boundaries, so the issue of smoothing

between the boundaries will not occur. Laplace’s equation has been used in a

number of mesh post-processing methods, notably in hole filling, with similar re-

sults (that is, no smoothing issues between mesh boundary and inserted vertices)

[Rodrigues and Robinson, 2010].

The results presented thus far in the literature are quality deficient for the in-

tended application of 3D data compression, so alternative ways of defining and

solving PDEs over surface patches need to be investigated. In the next Chapter,

the numerical solution of PDEs is presented and the background is provided on

the method that will be used later in this thesis.

20

Chapter 3

Partial Differential Equations and
their Solutions

This chapter features some numerical concepts, that is to be needed during the

entire thesis. The partial differential equation (PDE) discretization methods con-

sidered here are the method of lines for solving Laplace’s equation.

Definition 3.0.1. Any equation involving an unknown function along with some

or all of its derivatives is called a differential equation (DE) [Hale and Lunel,

1993; Zill, 2012; Zwillinger, 1998].

Differential equations break down into two major kinds: ordinary differential

equations (ODEs) and partial differential equations (PDEs).

3.1 Introduction to Partial Differential Equations

Definition 3.1.1. Partial differential equations (PDEs) are equations containing

an unknown function of two or more variables and its partial derivatives with

respects to these variables [Evans, 2010; Hadamard, 2003; Jeffrey, 2003; Renardy

and Rogers, 2004].

21

Partial differential equations (PDEs) provide a quantitative description for

many primary models in physical, biological, and the social sciences. Typically

the description is furnished in terms of unknown functions of two or more in-

dependent variables, and the relation between partial derivatives with respect to

those variables. A PDE is said to be nonlinear if the relations between the un-

known functions and their partial derivatives involved in the equation are nonlin-

ear. Regardless of the apparent simplicity of the fundamental differential relations,

nonlinear PDEs governs a vast array of complex phenomena of motion, response,

diffusion, equilibrium, conservation, and more. Because of their pivotal role in

technology and engineering, PDEs tends to be studied extensively by experts and

practitioners. Indeed, these studies have found their method into many entries

throughout scientific literature. They reflect a rich development of mathematical

theories and analytical techniques to solve PDEs and illuminate the phenomena

they govern. Nonetheless analytical theories provides simply a limited account

for the selection of complex phenomena governed by simply non-linear PDEs

[Babuska, 1995; Griffiths and Schiesser, 2010; Hamdi et al., 2007; Ritger and

Rose, 1968; Schiesser, 1991].

The general linear partial differential equations (PDEs) of order two in two

independent variables has, the form [Bhamra, 2010; Farlow, 2012; Pinsky, 2011;

Sapiro, 2006; Trèves, 1975]

A(x,y)Uxx +B(x,y)Uxy +C(x,y)Uyy +D(x,y)Ux +E(x,y)Uy +F(x,y)U = G(x,y)

(3.1)

where A,B,C,D,E,F,G, may depend on x and y but not on U . Ux is the first partial

derivative of U with respect to x, ∂U/∂x, and Uy is the first partial derivative of U

with respect to y, ∂U/∂y, Uxx is the second partial derivative of U with respect to x,

∂2U/∂x2, and Uyy is the second partial derivative of U with respect to y ∂2U/∂y2,

and Uxy is the second partial derivative of U with respect to y then with respect to x,

∂2U/∂y∂x, and Uyx is the second partial derivative of U with respect to x then with

respect to y, ∂2U/∂x∂y. A second order equation with independent variables x and

y which does not have the form 3.1 is called nonlinear. A linear PDEs is called

22

homogeneous if G(x,y) = 0, while if G(x,y) ̸= 0 it is called non-homogeneous.

Equation 3.1 is often classified as:

• if B2 −4AC < 0 the equation is elliptic (Laplace’s equation)

• if B2 −4AC > 0 the equation is hyperbolic (wave equation)

• if B2 −4AC = 0 the equation is parabolic (heat or diffusion equation).

This thesis focuses on Laplace’s equation, which is a classical Elliptic PDE.

There are several ways to solve Laplace’s equation, in the experiments of this the-

sis the focus on two methods, first using a separation of variables which involves

the fast Fourier Transform, and second solved by the method of lines on a grid.

The method of lines is regarded to be a unique finite difference method, however,

is more effective with respect to accuracy as well as computational time than the

normal finite difference method. Furthermore, the method of lines is not just a sin-

gle, straightforward, clearly defined approach to PDE problems, but alternatively,

is a general concept that could need a specification of information for each new

PDE issue [Schiesser, 1994]. The technique associated with the method of lines

has got the subsequent qualities:

• Replace the spatial derivatives in the PDE with algebraic approximations.

• Needs approximately ten times less storage than conventional finite differ-

ence methods.

• Mathematical stability: by splitting the difference, it is easy to set up stabil-

ity and convergence for a variety of problems.

• Decreased programming effort: by a approximating system of ODEs.

• Decreased computational time: since only some discretisation lines are nec-

essary in the calculations, there is no need to fix a large system of equations.

Therefore, the method of lines is a technique where we discretised all the inde-

pendent variables except one. This leads to a large set of coupled ODEs, this

23

system of ODEs are solved analytically. Any method can be used to discretised

the independent variables. This includes Fourier Transform or the finite differ-

ence method. The technique being used in this thesis was to replace all the partial

derivatives with the central finite difference approximation that gives a system of

ODEs. Although this formulation may differ from other approaches, it is clearly

advocated by [Liu et al., 2004; Lord et al., 2014; Trefethen, 2000] as an alternative

approach, as the fundamental principles are the same. The method of lines which

is used in the thesis involves solving the elliptic PDEs over a rectangular domain.

The domain is defined by mesh cutting planes yielding vertices on a regular grid

that define the top and bottom boundaries of the domain. All vertices on the top

boundary can be paired to their corresponding vertices on the opposite bottom

boundary. The left and right boundaries are defined by interpolating between the

first top and first bottom vertices and last top and last bottom vertices using the

finite difference method. The number of interpolated vertices is user defined. All

interior vertices to the rectangular domain are initialised to zero and are interpo-

lated by iteratively solving Laplace’s equation over the domain. Therefore, we

approximate Laplace’s equation at each grid point, and the resulting equations are

solved by iteration through implementing the Matlab function ‘gmprLaplace.m’.

Further description is given in Section 6.2.3.

3.2 Boundary Value Problem

Boundary conditions need to be carefully defined to create a design that performs

efficiently and is a good approximation of the phenomenon being modelled. There

are three significant kinds of boundary value problems that occur in most applica-

tions:

1. Dirichlet boundary condition: “The solution has some value at the endpoint

or along the boundary.” [Duffy, 2008]

2. Neumann boundary condition: “The derivative of the solution equals a par-

ticular value at the endpoint or in the normal direction along a boundary.”

24

[Duffy, 2008]

3. Mixed boundary condition (Robin): “A mixture of the values of the func-

tion and its normal derivative is specified on the boundary of the bounded

domain.” [Duffy, 2008; Koch and Segev, 1998]

3.3 Classic Fourier Series

Fourier sine and cosine series are consistently known as half range series since

only half of a symmetrical period is applied in the integrals interpreting the coef-

ficients. To obtain these series one symbolizes that the function f is an even or

an odd function [Edwards, 1979; Grafakos, 2004; Tolstov, 2012; Walker, 1996;

Young, 2001].

One can observe that if f is even, then f (x)cos(nπx/L) are also even. The coef-

ficient an has an even integrand on (−L,L). We write twice the integral over half

the interval and obtain

an =
2
L

∫ L

0
f (x)cos

(nπx
L

)
dx (3.2)

Since f (x)sin(nπx/L) is odd and bn has an odd integrand over a symmetric inter-

val, we have

bn = 0

With f (x) even, to obtain

f (x)≈ a0

2
+

∞

∑
n=1

an cos
(nπx

L

)
, (3.3)

where

an =
2
L

∫ L

0
f (x)cos

(nπx
L

)
dx (3.4)

The interval in this case is (0,L), but the even periodic extension of f (x) presumes

a period of 2L. This series is known as the Fourier cosine series or the half range

Fourier cosine series.

25

If f (x) is an odd function, then f (x)sin(nπx/L) is an even function. Just in

case such as this

bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)
dx (3.5)

The product f (x)cos(nπx/L) are odd, and

an = 0

As a result, we may write

f (x)≈ b0

2
+

∞

∑
n=1

an sin
(nπx

L

)
, (3.6)

where

bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)
dx (3.7)

Again the interval is (0,L) and a period of 2L is assumed when the odd periodic

extension of f (x) is considered. This is a Fourier sine series.

Definition 3.3.1. A Fourier series is an infinite series of the form

φ(x) =
1
2

a0 +
∞

∑
n=1

(
an cos(

nπx
L

)+bn sin(
nπx
L

)
)
. (3.8)

Assuming the series converges, the function defined by the series is periodic on

the interval [−L,L] but it may not be continuous. The coefficients {an}n,{bn}n

are generally known as the Fourier coefficients of the function φ [Brown and

Churchill, 2012a; Edwards, 1979; Tolstov, 2012].

Joseph Fourier (1768-1830) applied this particular concept of writing a func-

tion as a sum of trigonometric functions within his research from the numerical

concept associated with heat conduction [Grattan-Guinness and Ravetz, 2003].

Definition 3.3.2. A function f (x) is said to be periodic with a period L if f (x+

L) = f (x) for all x in the domain of f [Brown and Churchill, 2012a; Harding,

1985].

26

3.4 Dirichlet Boundary for Laplace’s Equation

In this section solutions to Laplace’s equation with Dirichlet boundary problems

are discussed. The first solution is through the method of separation of variables

which involves the fast Fourier Transform, and the second solution involves the

method of lines on a grid.

3.4.1 The solution by separation of variables

To solve the Dirichlet boundary value problem of Laplace’s equation in a rectan-

gular domain by separation of variables (see Figure 3.1) [Babuska, 1995; Gakhov,

1990; Haberman, 1983; Ritger and Rose, 1968; Wazwaz, 2002]:

Uxx +Uyy = 0 (3.9)

where u(x,y) satisfies the homogeneous boundary conditions, and

u(0,y) = u(x,b) = u(x,0) = 0 (3.10)

u(a,y) = f (y)

where u(x,y) satisfies the non-homogeneous boundary condition, and f is a given

function.

By using the technique of separation of variables (a solution can be expressed as

a product of unknown functions each of which depends only on one of the inde-

pendent variables), assume the solution to Laplace’s equation is separable form,

u(x,y) = X(x)Y (y). To compute the partial derivatives that we require within the

equation, we note that

uy(x,y) =
∂

∂y

(
X(x)Y (y)

)
= X(x)Y ′(y) (3.11)

ux(x,y) =
∂

∂x

(
X(x)Y (y)

)
= X ′(x)Y (y) (3.12)

27

Figure 3.1: Defining Laplace’s equation over a rectangular domain.

thus,

uyy(x,y) =
∂2

∂y2

(
X(x)Y (y)

)
= X(x)Y ′′(y) (3.13)

uxx(x,y) =
∂2

∂x2

(
X(x)Y (y)

)
= X ′′(x)Y (y) (3.14)

Then Laplace’s equation 3.9 can be written as:

X ′′(x)Y (y)+X(x)Y ′′(y) = 0 (3.15)

That can be rearranged to form

X ′′(x)
X(x)

=−Y ′′(y)
Y (y)

= λ, (3.16)

where λ is a separation constant. The left hand side depends only on x, while the

right hand side depends only on y. Thus Eqs.3.16 is partitioned into two ODEs as

X ′′(x) = λX(x), (3.17)

and

Y ′′(y) =−λY (y). (3.18)

28

Let Y (y) satisfy the Dirichlet boundary condition

Y (0) = Y (b) = 0. (3.19)

Eqs. 3.17 and 3.18 are ODE and can be solved with basic techniques. There

are three different cases, depending on the sign of λ, each will give four different

solutions to Laplace’s equation. Then, solving for Y in Eq. 3.18 with the boundary

condition in Eq.3.19, the nontrivial solution is

Y = csin
(nπy

b

)
with λ = (

nπ

b
)2, (3.20)

where n = 1,2, For the λ in Eq.3.20, it is found that the general solution to

Eq. 3.17 is

X(x) = Ae
nπ

b x +Be−
nπ

b x. (3.21)

or

X(x) = c1 cosh
[nπ

b
(x−L)

]
+ c2 sinh

[nπ

b
(x−L)

]
. (3.22)

The shift in x by L is selected to satisfy the boundary condition at x = L. It is

assumed that X(L) = 0, which implies c1 = 0. Thus

X(x) = c2 sinh
[nπ

b
(x−L)

]
. (3.23)

Thus, it is found that the nontrivial product solutions to Laplace’s equation to-

gether with the homogeneous boundary conditions are constant multiples of

u(x,y) = c2 sinh
[nπ

b
(x−L)

]
sin(nπy/b). (3.24)

By the superposition principle theorem, we obtain

u(x,y) =
∞

∑
n=1

cn sinh
[nπ

b
(x−L)

]
sin(nπy/b).. (3.25)

29

The coefficients cn are identified by the boundary condition

u(a,y) =
∞

∑
n=1

cn sin(nπa/b)sinh(nπy/b) = f (y). (3.26)

Therefore the quantities cn sinh(nπa/b) must be the coefficients in the Fourier sine

series of period 2b for f and are given by

An =
2
b

∫ b

0
f (y)sin

nπy
b

dy. (3.27)

Thus, it can be written:

cn =
An

sinh
[
− nπL

b

] (3.28)

Thus the solution to the partial differential Equation 3.9 satisfying the boundary

condition 3.10 as given by Eq 3.25 with the coefficients cn computed from Eq.

3.27. From Eqs.3.25 and 3.27 it can be seen that the solution contains the factor

sinh(nπx/b)/sinh(nπa/b).

To estimate this quantity for large n one can use the approximation sinhξ ∼= eξ/2,

and thereby obtain

sinh(nπx/b)
sinh(nπa/b)

∼=
1
2exp(nπx/b)
1
2exp(nπa/b)

= exp[−nπ(a− x)/b]. (3.29)

Thus, this factor has the character of a negative exponential; consequently, the

series 3.25 converges quite rapidly unless a− x is very small.

3.4.2 The solution by the method of lines

In the previous section, the solution to Laplace’s equation by the method of sepa-

ration of variables was discussed. However, making use of this technique could be

formally complicated given it will involve the particular calculation of the Fourier

coefficients. Furthermore, this Fourier series may only converge gradually on the

boundary.

30

Therefore, another alternative method is to solve Laplace’s equation on a grid by

the method of lines [Lord et al., 2014; Strang and Aarikka, 1986],

Uxx +Uyy = 0 (3.30)

In Figure 3.2 divided the interval into N and M sub-intervals with ∆x = a
(N−1) ,

and ∆y = b
(M−1) such that (xi,y j) = (i∆x, j∆y) where i = 0,1, . . . ,N − 1, and j =

0,1, . . . ,M−1

Figure 3.2: The value in green is given by the boundary condition, the only un-
knowns are Ui, j marked in red.

The domain has four boundaries;

Ui,0 ≡ g(xi,0), Ui,M−1 ≡ g(xi,b) i = 0,1, . . . ,N −1 (3.31)

U0, j ≡ g(0,y j), UN−1, j ≡ g(a,y j) j = 0,1, . . . ,M−1.

The boundary conditions are simplified along the boundary (green), and the inte-

rior points (red) are unknowns.

Finite difference approximations must now be used to replace Uxx and Uyy in the

31

Laplace’s equation. Focusing on an interior point (xi,y j), the simplest approxima-

tions to replace the second derivatives with it is a central finite difference approx-

imation as follow,

Uxx(xi,y j)≈
U(xi−1,y j)−2U(xi,y j)+U(xi+1,y j)

(∆x)2 , (3.32)

and

Uyy(xi,y j)≈
U(xi,y j−1)−2U(xi,y j)+U(xi,y j+1)

(∆y)2 (3.33)

Eqs 3.32 and 3.33 tend to be just like individuals for that regular second deriva-

tives, d2u/dx2 and d2u/dy2, only that in Eqs. 3.32 y is held constant (all terms in

Eqs. 3.32 have the same j) and in Eqs. 3.33 x is held constant (all terms have the

same i). Eqs. 3.32 and 3.33 are equivalent to

Uxx(x,y)≈
U(x−∆x,y)−2U(x,y)+U(x+∆x,y)

(∆x)2 , (3.34)

Uyy(x,y)≈
U(x,y−∆y)−2U(x,y)+U(x,y+∆y)

(∆y)2 (3.35)

Connecting Eqs. 3.32 and 3.33 into the unique Laplace equation and by the used

of the method of lines approximation, to obtain a system of ODEs

Ui−1, j −2Ui, j +Ui+1, j

(∆x)2 +
Ui, j−1 −2i, j +Ui, j+1

(∆y)2 = 0 at the grid point(i, j).

(3.36)

or

Ui−1, j +Ui+1, j −4Ui, j +Ui, j−1 +Ui, j+1 = 0 (3.37)

Assuming that ∆x = ∆y, where Ui, j =U(i∆x, j∆y). That gives

Ui, j =
Ui−1, j +Ui+1, j +Ui, j−1 +Ui, j+1

4
. (3.38)

Thus, Ui, j should be the average of its nearest neighbours. When the average

is higher than some numbers in the neighbouring, those neighbours below the

32

average have the potential to reach higher values after some iterations. Therefore,

when U reaches a highest on a few internal levels, then a similar highest can also

be achieved by each neighbour within this level. We can continue iterating this

technique right up until we cover all the points in the rectangle, and we get the

vector U⃗ .

U⃗ =



U11

U12

U13

U21
...
...

UMN


, (3.39)

Moreover, Eq. 3.38 is an approximation of Laplace’s equation, and it is an M×N

matrix that can be solved as Jacobi iteration

U (N+1)
i, j =

1
4

[
U (N)

i−1, j +U (N)
i+1, j +U (N)

i, j−1 +U (N)
i, j+1

]
(3.40)

where the superscript denote the iteration number and Ui, j is the solution at the i, j

grid point,

lim
N→∞

U (N+1)
i, j =Ui, j. (3.41)

Therefore, Ui, j is an excellent approximation to the exact solution to Laplace’s

equation.

3.5 Signal Representation

Lately considerable effort has been dedicated to finding sparse representations

with regard to target signals aiming in enhancing processing speeds upon large-

scale data. Sparse representation indicates that a signal can be decomposed into a

direct linear combination of a few main signals. In this thesis, we are focusing on

33

one-dimensional signals that can be represented by the following:

1. The Discrete Fourier Transform (DFT).

2. The Discrete Cosine Transform (DCT).

3. The Discrete Wavelet Transform (DWT).

4. The PDE-based Approach.

3.5.1 The Discrete Fourier Transform (DFT)

The discrete Fourier transform is a numerical approximation to the Fourier trans-

form, which is very useful in data compression, because a few coefficients of

the Fourier expansion may be sufficient for the reconstructed signal to be close

enough to the original function. It has already been found that the use of the FFT

techniques has considerably enhanced the strength of digital techniques for a very

wide range of problems such as spectral research, sign managing, graphic con-

trols, and also the solution of differential equations [Cooley et al., 1969; Hanna

and Rowland, 2008]. The fast Fourier transform is an efficient algorithm for com-

puting the discrete Fourier transform DFT and its inverse, which takes a regularly

spaced data value, then returns the value of the Fourier transform for a set of

values in frequency space. Moreover, the FFT algorithm can decrease the pro-

cessing time of a standard Discrete Fourier Transform from several minutes to a

few milliseconds, and it is global problem solving technique. The significance of

Fourier Transform comes from allowing the evaluation of particular relationships

in a problem domain from an entirely different viewpoint. Studying the behaviour

of a function and its Fourier Transform is often the key to efficient problem solv-

ing [Weinberger, 2012].

The Fourier Transform allows approaching PDE’s by modifying them into a sim-

pler differential equation. Once this is done, the facts about the transform must

then be used, in order to find its inverse. The continuous Fourier Transform is

34

defined as

f (v) = Ft [f (t)](v) (3.42)

=
∫ −∞

∞

f (t)e−i2πvtdt. (3.43)

If the integral exists for each value of the parameter f then Eqs 3.43 defines f (v),

the Fourier Transform of f (tk).

Now consider the generalisation to the situation of a discrete function, f (t) →
f (tk) by letting fk ≡ f (tk) , where tk ≡ k∆ , with k = 0,1,N − 1. Writing this

out gives the Discrete Fourier Transform Fn = Fk

[
{ fk}N−1

k=0

]
(n) as

Fn =
N−1

∑
k=0

fke−i2πnk/N . (3.44)

The inverse transform fk = F −1
n

[
{Fn}N−1

n=0

]
(k) is then

fk =
1
N

N−1

∑
n=0

Fnei2πkn/N . (3.45)

Discrete Fourier Transforms are useful because they reveal periodicities in data

views as well as the relative importance of regularity elements. There are a few

details on the interpretation of Discrete Fourier Transforms, however. Typically,

the Fourier Transform of an actual series will be a series of an actual and complex

variant of the same duration. Particularly, if fk are real, then FN−n and Fn are

approximated by:

FN−n = F̄n, (3.46)

for n = 0,1,,N − 1, where z̄ signifies the actual complex conjugate. Exactly

what this particular means is that the factor F0 is always real for real details. Due

to the above, a frequency function will contain peaks within not one, but two

locations. This happens because the periods become separated into “positive” and

“negative” frequency complex components.

35

3.5.2 The Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) are important to numerous types of lossy

compression of audio and image, to solve PDE by spectral techniques where the

different version of the DCT matches to slightly different even/odd border circum-

stances at the two ends of the range. The use of cosine rather than sine features is

crucial in these applications: for compression, it can be seen that cosine functions

are much more effective.

In particular, the DCT is equivalent to a DFT, but with only real values: the DCT

is comparable to a DFT of approximately twice the length since the FFT of a real

and even function is real and even, where in some versions the output is shifted

by half a sample.

The most common DCT definition applied to 2D image compression is the fol-

lowing [Halpern et al., 2002]:

C(u,v) = α(u)α(v)
N−1

∑
x=0

N−1

∑
y=0

f (x,y)cos
[

π(2x+1)u
2N

]
cos

[
π(2y+1)v

2N

]
(3.47)

for u,v = 0,1,2, . . . ,N −1. The inverse transform is defined as

f (x,y) =
N−1

∑
u=0

N−1

∑
v=0

α(u)α(v)C(u,v)cos
[

π(2x+1)u
2N

]
cos

[
π(2y+1)v

2N

]
(3.48)

for u,v = 0,1,2, . . . ,N −1.

3.5.3 The Discrete Wavelet Transform (DWT)

The term ‘wavelet’ is used to describe a spatially localized function. ‘Localized’

means that the wavelet has compact support or it almost has compact support in

the sense that outside some interval the amplitude of the wavelet decays expo-

nentially [Jameson, 1993]. Just like the Fourier sequence, wavelets are statistical

features that are used to signify information or other features, by analysing the

36

data according to scale. This function has developed mostly over the last 15 years

and has generated tremendous interest in many areas of research in mathematics,

physics, computer science, as well as architectural. However, most applications

of wavelets have focused on analysing data and using wavelets as a tool for data

compression.

Wavelet methods combine the advantages of both spectral (Fourier) and finite dif-

ference methods and allow both space and time dependent coefficients [Beylkin,

1993; Dahmen et al., 1999; Schneider and Vasilyev, 2009; Vasilyev and Kevlahan,

2005; Vasilyev et al., 1997; Xu and Shann, 1992]. Wavelets allow decomposition

of a signal or an image into its components with respect to a whole cascade of

levels. This decomposition is done by the fast wavelet transform (FWT) which

is of linear complexity as long as the wavelet is compactly supported [Meyer,

1990]. Decomposition and reconstruction allow a signal or an image to be trans-

formed from one representation to a different one; namely, from a single scale to

a multi-scale representation. However, successive application of these two opera-

tions, gives back the original signal or image as long as the corresponding filters

are chosen appropriately. The reason why wavelets are so successful in signal

and image processing lies in the fact that the multi-scale representation allows the

modification of the signal or image for different purposes.

Firstly, it has been found that reasonable signals or images have a sparse multi-

scale representation in the sense that many coefficients in this representation are

zero, or at least small. Consequently, it is possible to neglect these small coef-

ficients. This can be the key point of compression. However, just to compress

a signal or image is only half of the story. Certainly, one would like to change

the original information as little as possible when compressing the data. Since

wavelets (no matter whether they are orthogonal or bi-orthogonal) allow the esti-

mation of the error arising in terms of the neglected coefficients, it is quite easy

to control the error. The reason for this is that wavelet bases give rise to so-called

norm equivalences. Because of this norm of a function (for instance, a signal) is

equivalent to the norm of the wavelet coefficients. Finally, such an equivalence

not only holds for one single type of norm, but for a whole range [Urban, 2009].

37

3.5.4 The PDE-based Approach

The PDE-based approach to global sensitivity analysis gives access to a profound

theory and broad methodology. Methods of lines are generally simple to imple-

ment due to the possibility of using standard ODE solvers. Concerning error

control, adaptive ODE solvers straightforwardly allow for temporal adaptivity.

However, spatially adaptable methods of lines commonly rely on a posteriori er-

ror estimates, that require a complete solution of the system, before the spatial

discretization can be adapted [see for instance [Adjerid et al., 1999]]. In that re-

spect, both methods offer a substantial advantage, since the temporal and spatial

discretization can be adjusted in each integration step.

The method of lines is a technique that transforms a PDE into a set of ODEs

with a single variable. The transformation is done by discretizing the PDE in

space, leaving a number of unknowns and their time derivatives. For the space

discretization, the techniques referred to previously may be used. For instance,

when the finite difference technique can be used, the area discretization results in

one unknown and its time derivative at each grid point in the domain, that is a

set of ODEs. One advantage of the method of lines is that advanced numerical

solution techniques can be found with regard to resolving common ODEs which

not necessarily nevertheless are available regarding PDEs. There are, for instance,

solvers with automatic step adjustment to find a solution with needed precision.

An additional benefit is actually which combined techniques containing both ODE

and PDE based models become much easier to solve since the space discretiza-

tion of the actual PDEs outcomes in ODEs that may be resolved with the already

existing ODEs.

Consequently, solve the PDEs by the method of lines [Hamdi et al., 2007; Schiesser,

1991], tend to be of broad interest in science and engineering. The General Ray

(Gr) method is applied for the solution of direct boundary value problems, and

uses explicit formulas with the fast inversion of the Radon transform. This leads

to fast algorithms realised in Matlab [Grebennikov, 2005]. The 2D case has been

attempted by works such as those of [Galić et al., 2005; Mainberger and We-

38

ickert, 2009; Peloquin, 2009; Stürmer et al., 2008] with promising results in 2D

images that can be seen as single-value functions from pixel intensities. How-

ever, such methods have not attempted to encode arbitrary 3D geometries. Hence,

the method of lines (MOL) given in Section 3.4.2 will be implemented in Sec-

tion 6.2.3.

3.6 Interpolation and Compression

Definition 3.6.1. Interpolation is the term used for methods that construct new

data points from a discrete set of data points. Usually this means to construct a

continuous function from a discrete set of function values.

Approximation (a curve fitting in 1D) is similar to interpolation, but it does not

necessarily pass through all data points. The advantage of this particular technique

is that it frequently leads to a smoother reconstruction. The drawback is generally

a reduction in accuracy, image resolution or maybe precision. Moreover, with

interpolation a function is sought that allows to approximate f (x) such that func-

tional values between the original data set values may be determined. With the

curve fitting, one simply requires a function that is a good fit to the original data

points.

Definition 3.6.2. Compression is the process of encoding data by using as few

information-bearing units (usually bits) as possible, such that the inverse process,

called decoding, will return the original information [Pennebaker and Mitchell,

1993].

The new three dimensional object is a polygonal fine mesh consisting of various

entities such as vertices, edges, and faces that are associated to some numerical

quantity or attributes such as vertex locations, normal vectors, texture coordinates,

in addition to reflectance. Geometric data, specify vertex locations; connectivity

data, describe the relationship between vertices, and property data specify the

various other attributes that are normally attached to vertices. The real issue of

39

compressing a 3D object is to deal with geometry and connectivity (since prop-

erties can be dealt with in the same way as geometry) and a number of methods

have been proposed since the early 1990s.

In general, there are three methods one can use to compress 3D data:

1. Image-based compression: where each snapshot of a 3D scene is com-

pressed as a 2D image. This is a palliative solution (for instance, flash

animation of the three dimensional picture) and the shortcomings are that

this is not fully interactive and not immersive.

2. Single-rate mesh compression: algorithms traverse the mesh searching for

areas susceptible to local compression of polygonal relationships.

3. Progressive mesh compression: hierarchical refinement of a 3D structure

for transmission, where a coarse mesh is increasingly refined with richer

details until a full 3D model is reconstructed at the receiving end.

In this study, the interest is compression methods 2 and 3, which are focused on

representing the vertex, geometry and connectivity information in the triangulated

mesh.

3.7 3D Geometry Formats

In spite rapid progress in mass-storage density, processor rates of speed, and dig-

ital interaction system performance, the demand for data storage space capac-

ity and “data-transmission” data transfer usage continues to outstrip the abilities

of available technologies. The recent growth of information intense multimedia

based web applications has not only increased the need for finding better ways to

represent data, but also made this central storage space and interaction technology.

Here only some preferred open standard formats are highlighted, such as COL-

LADA, OpenGL and OBJ for file interchange of uncompressed 3D data. COL-

LADA is an interchanging file format for 3D applications developed by the Khronos

40

Group [Arnaud and Parisi, 2007; Kessenich et al., 2004]. It uses an XML schema

designed to interchange digital assets across software applications. It can store

information like vertices, edges, faces, texture maps, and also physical properties

like weight, the centre of mass and others. The same COLLADA file can store

information about multiple models. To describe the model, it first defines all the

vertices in the form of an array of coordinates and then the normal direction for

each face. However, the problem of loading COLLADA files directly using We-

bGL (also defined by the Khronos Group, WebGL is usually an instance of the

canvas HTML class that provides a 3D design API implemented in a web browser

without the need for plug-ins) will be that programming rapidly will become ex-

tremely intricate, as the developer needs to adapt to the file format and to what

COLLADA supports. A simpler, more useful and faster the solution is to load

data that have been defined in JSON (JavaScript Object Notation) format. JSON

is really a textual content document that contains sets associated with ideals inside

a specific order.

OBJ (or .OBJ) is a geometry based information framework first developed by

Wavefront Technology for its Impressive Visualizer activity package [Kato and

Ohno, 2009]. The data structure has been implemented by other 3D design pro-

gram providers. In most aspects, it is a globally approved structure. The OBJ ba-

sic format is straightforward, containing geometry information only, namely the

(x,y,z) position of each vertex, the (u,v) texture coordinates of each vertex, and

a list of triangulated faces. The list of vertices is defined in a counter-clockwise

order negating the need for explicit declaration of face normals.[Min et al., 2003].

Furthermore, object data files can be interchanged with a variety of applications.

As an illustration, a 3D model can be defined in OBJ format by specifying the po-

sition of vertices in space. An example is shown below containing 8 vertices (lines

starting with v) and their faces (lines starting with f specifying which vertices are

connected which):

1 %Simple example f o r OBJ f i l e

2 % Number o f v e r t i c e s =8

3 %Number o f p o i n t s =0

41

4 %Number o f l i n e s =0

5 %Number o f f a c e s =6

6 %Number o f m a t e r i a l s =1

7 % # V er t e x l i s t

8 v −0.5 −0.5 0 . 5

9 v −0.5 −0.5 −0.5

10 v −0.5 0 . 5 −0.5

11 v −0.5 0 . 5 0 . 5

12 v 0 . 5 −0.5 0 . 5

13 v 0 . 5 −0.5 −0.5

14 v 0 . 5 0 . 5 −0.5

15 v 0 . 5 0 . 5 0 . 5

16 %# P o i n t / L ine / Face l i s t use mt l D e f a u l t

17 f 4 3 2 1

18 f 2 6 5 1

19 f 3 7 6 2

20 f 8 7 3 4

21 f 5 8 4 1

22 f 6 7 8 5

23 %End of f i l e

Since this thesis uses the Matlab program for all experiments, all 3D data can be

saved in *.mat format. However, in order to ensure data interchange with other

applications and environments, it is proposed to save all original, uncompressed

data in .OBJ format. An OBJ exporter has been written and it is included in

the Appendix to this thesis that converts 3D data from the Matlab internal rep-

resentation of a list of vertices and a list of faces to OBJ format. The function

‘gmprWriteOBJ’ accepts four arguments: path, which is a string representing

the file name to be saved; points3D, which is an n-by-3 matrix representing a

list of vertices; faces, which is an m-by- 3 matrixes representing the list of tri-

angular faces in the 3D structure; and vertexcolour which is a p-by-3 matrix

representing the vertex colour. What it does is to save to the filename provided

42

the list of vertices, faces, and so on as specified by Wavefront’s OBJ file format.

Please see the Matlab function on the page (170-171).

For compressed 3D data a special representation of the data is required and this is

provided in Chapters 5–7. The approach in this thesis is to define the file format

as an open standard, and save all data in plain ASCII. In this way, applications can

be written to both compressed and uncompressed data following the procedures

that will be described in subsequent chapters.

3.8 Discussion

This Chapter discussed elliptic PDEs, the boundary value problem and solutions

to boundary conditions. Moreover, the importance of the Fourier sine and co-

sine series has been emphasized. A note is made here that different and alter-

native notations will be used in subsequent chapters. The numerical solution of

elliptic PDEs can be presented as the Dirichlet boundary for Laplace’s equation.

Moreover, the Discrete Fourier Transforms, DCT and Wavelet methods are also

discussed in this chapter. The general approaches to the solution of a linear sys-

tem of equations are presented. It has been shown that the Dirichlet problem for

Laplace’s equation obtains the exact solution in a finite number of operations, but

is not suitable for very large sparse matrices, especially 3-dimensional problems.

Therefore, iterative methods will be considered in this research, in particular the

method of lines (MOL) as it is regarded as a special finite difference method,

but are more effective with regard to precision and computational time than the

regular finite difference technique. This essentially involves discretizing a given

differential equation in one or two dimensions while using the analytical solution

in the remaining direction.

The method of lines has got the value associated with both the finite difference

method and analytical process; it does not provide spurious modes, nor does it

have the problem of “relative convergence”. The 3D data file is also discussed

and the preferred file format for uncompressed data is OBJ and for compressed

43

data is plain ASCII whose specific information on the 3D data parameters to be

saved will be described in subsequent chapters.

44

Chapter 4

Data Modelling and Pre-Processing

4.1 Introduction

The representation of geometric entities, such as shapes and surfaces, has been

a central problem in 3D modelling. In practice, the majority of these entities

are represented by triangular meshes specifying both points and connectivity. The

digital representation of a real, physical object is described by point clouds, which

are sampled on or near the object’s surface. The 3D data used in this thesis are

acquired by the GMPR scanner, which is a multiple stripe, structured light scan-

ner. On the application of the methods proposed in this thesis it is important to

understand and analyse the intrinsic geometry of point clouds in 3D to determine

geometric quantities on shapes and surfaces.

The method proposed here was devised from previous research on fast 3D acqui-

sition using structured light methods [Rodrigues et al., 2010], [Rodrigues et al.,

2008], [Brink et al., 2008],[Robinson et al., 2004]. The actual 3D scanning method

is dependent on splitting the projection pattern into light planes. Every plane hits

the target object as a straight line and also the apparent bending of the light due

to the position of the digital camera in relation to the projection allows us to cal-

culate the depth associated with any point along the projected light plane. Taking

complete advantage of such properties, the proposed method is closer to polygo-

45

nal mesh compression [Peng et al., 2005; Touma and Gotsman, 1998], but with

significant differences, as it does not depend on searching for local relationships

that are most susceptible to compression.

In this Chapter we develop new data representation techniques, allowing 3D point

cloud data to be defined as single valued functions which are then suitable for

compression. We start with a 3D model that is normally represented as a point

cloud or polygonal mesh that can be displayed as a smooth surface aided by sur-

face rendering algorithms. The source data model typically uses a connected mesh

of vertices with triangular faces. Our proposed technique involves a re-meshing

operation over the mesh through structured cutting planes, resulting in a new set

of structured vertices. This new set of vertices should not change the geometry of

the mesh, providing that the cutting planes are defined as a fine grid. In this way,

the sequence of points lying in each cutting plane can be described as points on a

curve, and can be parametrically described by a variety of techniques.

This Chapter is organized as follows: Section 4.2 Data representation, Section 4.3

describes the connectivity of the mesh, Section 4.4 the modelling, Section 4.5

presents the method and the data sampling. Finally, a discussion in Section 4.6.

4.2 Data Representation

Without loss of generality, surfaces are described by using certain special curves,

and representations for curves generalise to representations of surfaces. Further-

more, shape representation is based on the boundaries of three dimensional ob-

jects, which are generally shown as the boundaries (surfaces) of 3D objects. 3D

image surfaces can be represented mathematically in various types. The most

common types are implicit, explicit, and also parametric. The implicit forms are

usually identified with a system regarding algebraic equations, and parametric

forms are usually identified through rational polynomials, and they are known as

rational curves or surfaces.

46

A surface can be represented in parametric form as;

x = x(u,v), y = y(u,v), z = z(u,v), u1 ≤ u ≤ u2,v1 ≤ v ≤ v2 (4.1)

where the coordinates of a point (x,y,z) are expressed as a function of u and v

in a closed domain. The function is assumed to be continuous with a sufficient

number of continuous derivatives.

The implicit form of a point (x,y,z) satisfies an equation

f (x,y,z) = 0. (4.2)

However, the explicit form is a special case of the implicit equation. In fact, all

surfaces in the implicit form can be transformed into an explicit form but not vice

versa. For a successful geometric modelling in this thesis, both techniques (the

implicit and parametric forms) are used.

Each 3D model acquired by the GMPR scanner is reconstructed from equally

spaced light planes hitting the surface of the object as illustrated in Figure 4.1 left.

On the right, the reconstructed point cloud is visualised. Any point s = (x,y,z)

on the point cloud corresponds to a surface point illuminated by plane n. The

position of s is given by the scanning function S(u,v,n) = (x,y,z), where (u,v) is

the position of the point s′ in a plane, and n is the index number of the plane. The

index array is one-to-one mapping which takes all the points and labels them with

the index of the plane. Not all vertices defined over this grid contain valid data,

vertices with data are marked as valid otherwise invalid. In other words, every

index array element [c][r] which does not contain valid data will have a value of

NULL.

The structure of the data means that the connectivity of the vertices is a derived

property, and triangulation of the surface is thus a straightforward task without

the need for complex triangulation algorithms. The techniques are described in

the following sections.

47

Figure 4.1: The GMPR scanner maps light planes hitting the target to surface
points (x,y,z).

4.3 Creating Scattered Interpolation Points

The coding process of polygonal meshes can usually be divided into two compo-

nents: connectivity and geometry. Connectivity coding works with the topology

of the mesh, or quite simply the adjacency relationships between the polygons. On

the other hand, geometry coding works with the position within place, or coordi-

nates, of each and every vertex along with optionally the standard, colourings or

other model properties. Generally speaking, geometry coding will probably take

advantage of the connection details to increase the data compression efficiency.

Compression methods are, thus, focused on representing the geometry and con-

nectivity of the vertices in the triangulated mesh. Geometrical approaches aim to

reduce the size of the mesh by simplifying its geometry and approaches include

geometry coding [Taubin et al., 1998].

A 3D source data model typically uses a connected mesh of vertices with triangu-

lar faces, which is the standard data type in many 3D computer generated models,

such as Wavefront OBJ, Java 3D, VRML and COLLADA formats [Ames et al.,

48

1997; Arnaud and Barnes, 2006; Chen and Chen, 2008]. In the GMPR 3D scan-

ning system [Brink et al., 2008; Robinson et al., 2004], the model is a constrained

version of this mesh, with rows and columns of vertices connected in a rectan-

gular pattern (see Figure 4.1), conforming to the stripes in the original-projected

pattern. The Figure clearly suggests that in mapping to 3D space one can sim-

ply save the 3-part vector for each vertex, without the need for a separate list of

faces and vertex connections, as required in the 3D file formats mentioned above.

This explicit arrangement of 3D points makes mesh triangulation a simpler and

more reliable process than with an arbitrarily connected mesh, gives a more com-

pact data representation, and allows smaller file sizes when compared with OBJ,

VRML and COLLADA formats. Some similarities to the use of triangle strips to

encode mesh connectivity can be found in the literature, and a distant resemblance

to the method developed by [Auerbach et al., 1997] is acknowledged.

The actual proposed data compression and decompression scheme relies on an

adaptive sparsification of the data by means of triangulation coding. In this cod-

ing, data are decomposed into a number of triangular regions such that within each

region, it can be recovered in sufficient quality by interpolation from the vertices.

Figure 4.2: The implicit triangulation method between two planes k1,k2.

Mesh triangulation is performed between each pair of cutting planes. The idea

49

is that what is required is the sequence of vertices in each plane. Each vertex in

one sequence would be paired to their counterpart in the other sequence, within a

specified sequence of vertex indices.This is shown in Figure 4.2 for two sequential

planes k1 and k2 where the neighbouring vertices have been assigned sequential

indices. Triangulation then proceeds as follows: using vertices labelled as 1,2,3,4

create the first triangle by connecting vertices 1-2-3 then create the second triangle

by connecting vertices 2-3-4 to close the first block. Then move one vertex to

the right on planes k1 and k2 and relabel them as 1,2,3,4. The same sequence

is repeated by moving to the second block taking vertices 1-2-3 then 2-3-4,and

then repeat the triangulation process until reaching the end of planes k1 and k2.

Furthermore, the same will be done in the second and third planes and so on until

the whole mesh is triangulated.

In this way, the triangulation (or connectivity of the mesh) is not coded at all,

as it can be a derived property of two adjacent planes. The Figure 4.3 shows a

number of cutting planes whose triangulation is obtained following the procedure

described above.

Figure 4.3: Connected path of triangulation mesh.

It is clear from the above discussion that what are subject to compression are the

50

sequences of vertices in each cutting plane, as triangulation for 3D reconstruction

and visualisation becomes a straightforward task. To specify reasonable inter-

polation when interpolating between function values, a function is required that

smoothly connects function values. Natural options for differential operators are

thus smoothing operators. When used for compression there is also another very

important factor that needs consideration: performance. The discrete operator

must be as easily computable as possible, otherwise the technique will be very

impractical.

In certain applications, it is appropriate to be able to make both three- and four-

sided polygons, as most rendering hardware support only three- or four-sided

faces. If a renderer supports only three-sided faces, then polygons may be con-

structed out of triangular strips as illustrated in Figure 4.2. However, many render-

ers support quads along with larger sided polygons, or are able to turn polygons

into triangles on the fly. In any case, following the procedure of defining poly-

gons from the sequence of points in each plane as described above, causes it to

become unnecessary to store a new fine mesh in a triangulated form as a sequence

of vertices in the plane will suffice for correct triangulation.

4.4 Modelling

Whilst reconstruction specifications may force the decision associated with re-

gardless of whether the data compression plan will be lossy or even lossless, the

precise data compression plan utilized is determined by a variety of elements.

Probably the most important elements would be the characteristics of the data that

need to be compressed. Modelling is a process of setting up an environment to

allow the variables of interest to be observed or certain behaviour of a system to

be explored. It is a formalisation and extension to the description of a problem.

Rules and relationships are often set in mathematical formulae.

Modelling is to extract the information about any redundancy that exists in the

data and describe the redundancy in mathematical terms. Typically, the coding

51

is a description of the model and a “description” showing how the data differ

from the model. Each tends to be encoded, usually utilizing a binary alphabet.

The variation involving the data and the model is often referred to as the resid-

ual. Modelling is a critical stage of algorithm design. The model can sometimes

define immediately the approaches of the algorithm [Pu, 2005]. In addition, the

modelling stage consists of identifying the very best rendering for just about any

type of the reconstructed model. Also, there are various ways associated with

modelling an object based on the input data, the rendering algorithm and the final

uses of the model.

At a high level of description, in this thesis, the proposed model representation

and compression techniques used are as follows.

• Source data. The source data model typically uses a connected mesh of

vertices with triangular faces.

• Sampling points. The method defines a large number of horizontal and

vertical mesh cutting planes and the intersection of all planes on the mesh

defines a set of sampling points. The sampling method by structured cutting

planes operating on the source data is described in Section 4.5. The con-

nectivity of the mesh is derived directly from the vertices in each cutting

plane. The explicit structure of the sampled vertices allows the definition of

the x and y coordinates on a regular grid while the z-values will be subject

to interpolation and compression by several methods.

• Sampling of data points are compressed using FFT, DCT and DWT, and

PDEs are used at the decompression stage to interpolate data between cut-

ting planes after the inverse transformations iFFT, iDCT and iDWT are ap-

plied.

52

4.5 Method

4.5.1 Polygon Reduction by Explicit Structured Vertices

One of the many requirements with regard to geometric design systems is the

ability to parameterize the shape of objects. A simple tactic would be to create a

general description of an object or class of objects, in which the shape is managed

through the values involving a set of design variables or parameters. Moreover,

the function of a boundary representation is to describe an object in terms of its

boundary surfaces: vertices, edges and faces. In the simplest case, the faces are

restricted to planar polygons and the representation is thus a polygonal mesh.

The method presented in this Chapter applies to the manner in which re-sampling

converts a mesh model or a patch of the model into a regular grid of z-values. An

example of such data captured with the GMPR structured light scanning technique

[Robinson et al., 2004], is depicted in the Figure 4.4 below.

Figure 4.4: Example of a textured and shaded 3D model acquired by the GMPR
structured light technique.

The measured surface of the 3D image was represented as a point cloud or polyg-

onal mesh that displayed as a smooth picture aided by the surface rendering algo-

rithms. Figure 4.5 shows a regular grid for sampling data points at the intersection

of vertical and horizontal planes. It is important to stress that although the GMPR

53

data have a structure defined by each light plane, the method regarding sampling

by cutting planes described here assumes an arbitrary mesh with an arbitrary poly-

gon structure. The purpose of the method is to guarantee that an arbitrary mesh

is given the desired structure for compression and reconstruction. In this way, a

simpler and the more reliable triangulation process is obtained than with an arbi-

trarily connected mesh that may require demanding triangulation algorithms such

as Delaunay [Weatherill and Hassan, 1994].

Figure 4.5: Sampling points on a regular grid

In a surface patch, the height of a point is represented by its z-value and it can be

stated that the height of a function (x,y) is some function f (x,y).

P(u,v) = (u,v, f (u,v)) (4.3)

with normal vector n(u,v) = (−δ f/δu,−δ f/δv,1). Both u and v are the de-

pendent variables for the function; u-contours lie in planes of constant x, and

v-contours lie in planes of constant y. Whenever such a patch is visualized within

three dimensional, utilizing quads, for instance, each single edge of the polygon

is a trace of the surface cut by a plane with x = k1 and y = k2 for some values

54

associated with k1 and k2.

4.5.2 Data Sampling

Sampling will reduce the number of polygons in a mesh. Our method involves

polygon reduction through cutting planes defined on a regular grid, resulting in an

arrangement of explicit-structured vertices. The mesh to be sampled is a randomly

oriented surface patch described in relation to a global coordinate system. The

bounding box (or minimum bounding box) of the patch in 3D can be estimated by

geometric algorithms (see, for example, [Geng et al., 2013; Lahanas et al., 2000;

Lee et al., 2002; Quinn et al., 2007]). The patch must be rotated until its bounding

box edges are aligned with the x-, y-, and z-axes of the global coordinate system.

The characteristic feature of the bounding box is the ratio between the edges.

Moreover, the discrete grid coordinates are gci = (u,v)T of all cells ci belonging

to the respective connected component. For the face models used to demonstrate

the concepts in this thesis, the smallest dimension of the bounding box is aligned

with the z-axis, as this will guarantee that the face models are oriented correctly.

The correct orientation of the bounding box depends on the actual characteristics

of the data, however, the general principle is that the z-axis is normal to the image

sensor in standard 3D scanners.

The bounding box is defined by the minimum and maximum values (xmin, xmax,

ymin, ymax, zmin, zmax) of the data. Because of the characteristics of the scanning

method, the 3D data are defined as a matrix where the values in it are the z depth

of each vertex. Theoretically (because of the characteristics of the surface and

possible, missing points at the boundaries, when 3D scanning), it is possible to

find a smaller bounding box in some models by rotating the mesh around its x

and y-axes in very small steps. However, by simply taking the minimum and

maximum (x,y,z) from the scanned model is very near to the optimal minimum

bounding box. Therefore, due to the characteristics of the GMPR 3D data, it is

not necessary to determine the optimal minimum bounding box in this dissertation

and this does not adversely affect compression algorithms. Please see the Matlab

55

function for bounding box ‘gmprDrawBox3d.m’ in Appendix B, pages (171-172).

Figure 4.6: The bounding box and structured cutting planes.

A number of structured cutting planes are defined within the boundaries of the

bounding box; let us call these ‘horizontal’ and ‘vertical’ cutting planes as illus-

trated in Figure 4.6 where, for clarity, only a few planes are shown. These planes

are, thus, defined as parallel to one of the x or y-axes with normal vectors (1,0,0)

and (0,1,0) respectively.

Thus the intersection of any two planes defines a line and the point where such

line intersects the mesh is defined as a structured vertex. Thus, the number or

the density of structured vertices can be controlled by the number of planes in

either direction. An issue here is that one cannot guarantee that the intersection

of two planes on the mesh will rest on a vertex. More likely, it will intersect

somewhere on the face of a polygon. A reasonable approximation would be to

move all vertices such that they lie in the cutting planes.

Therefore, in practice it is more convenient to define the cutting planes, then

56

search for each vertex and find the nearest plane to that vertex and move the ver-

tex to the plane. In addition, for convenience, this particular stage is performed

at the three dimensional reconstruction stage, such that the data provided already

contain vertices within their respective planes. The set of all points belonging to a

particular plane is a subset of structured vertices. Based on the characteristics of

the surface patch, the set of vertices lying in either horizontal or vertical planes can

be selected. If the selected points lie in a plane with a normal vector (0,1,0), the

distance between structured vertices in that plane is the distance between planes

with a normal (1,0,0) and vice-versa. Calling D1 as distances between structured

vertices in the horizontal plane with normal vector (0,1,0) and D2 between planes

with normal vector (1,0,0), the x and y coordinates of any structured vertex can

be recovered for all planes k:

xr = rD1, where r = 1,2, . . . ,k1 (4.4)

yc = cD2, where c = 1,2, . . . ,k2 (4.5)

zrc = zi, where i = 1,2, . . . ,k1k2 (4.6)

where (r,c) are the indices of planes. This is significant as, in a stroke, 2/3 of

the 3D data can safely be discarded in the sense that it is not necessary to save

the actual values (x,y) of each vertex; instead, only D1,D2,k1 and k2 are kept for

each plane. The number of cutting planes is controlled bearing in mind that the

resulting structured vertices should still be representative of the original mesh.

The z-values can be expressed by Eqs 4.3 as a single valued function and mapped

to each combination of (xr,yc). If one chooses to represent these as the set of

structured vertices belonging to planes with normal (0,1,0), this is reduced to a

2D case in which on the horizontal axis there are exactly k2 points with a con-

stant step of D2 and on the vertical axis their corresponding z-values. The above

operations mean that, starting from a surface patch with a complex polygonal

arrangement, one obtains a structured mesh where the number of polygons is re-

duced and triangulation becomes an unimportant procedure, as it is only necessary

to connect vertices from adjacent planes. In other words, the mesh now contains

57

an underlying explicit structure for triangulation.

Figure 4.7: Original 3D mesh with 48,672 vertices and 78,043 faces. The size of
the file (OBJ format) is 4.83MB with texture mapping and 4.0MB with no texture.

Figure 4.8: Horizontal planes with normal n = (1,0,0) are cut through the mesh,
from top to bottom (only 3 planes are shown here).

The proposed steps and parameters for data compression are summarised as fol-

lows:

1. A given triangulated surface patch acquired using a structured light scanner

is aligned to the global coordinate system where the smallest dimension of

its bounding box is aligned with the z-axis (Figure 4.7).

2. A number k1 of horizontal planes with normal n = (1,0,0)T cut the mesh

58

Figure 4.9: Vertical planes with normal n = (0,1,0) are cut through the mesh,
from left to right (only 3 planes are shown here).

Figure 4.10: The intersection points of each horizontal and vertical planes on the
mesh are estimated and marked with a point in red. The model shown has 39,743
valid vertices or intersection points.

as shown in Figure 4.8 (only 3 planes are shown for clarity). These planes

are parallel to the Y −Z plane of the coordinate system in Figure 4.7.

59

3. A number k2 of vertical planes with normal n = (0,1,0)T cut the mesh as

shown in Figure 4.9 (only 3 planes are shown for clarity). These planes are

parallel to the X −Z plane of the coordinate system.

4. The intersection of each plane kr with plane kc defines a line. For each

line, determine the point of intersection, by finding the nearest point on the

mesh to this line. These are the heights of the single-valued function. In

practice the nearest vertex to the intersection line is found as this introduces

negligible error.

5. For each plane kr,kc make a list of the intersection points.

6. The distance between each horizontal plane is defined as a constant D1 and

the distance between vertical planes is defined as a constant D2. This is a

form of quantization that allows the recovery of (x,y) and the z value is the

only variable under compression.

The Matlab methods and data structures developed to load the scanned GMPR 3D

data, check for valid and invalid data, visualize, and manipulate and prepare data

for compression as required are listed in Appendix B, namely functions

‘gmprCalculatePlane.m’ page(173-174)

‘gmprDrawEdge3d.m’,‘gmprDrawPlane.m’page(174-177)

‘gmprLoadData.m’ page(203-205) ‘gmprSurfaceView.m’ page(205-239).

Since the original superfine mesh is a (potentially) dense mesh, and the cutting

planes technique will yield a sparse mesh, there are two stages of data compres-

sion. First, an initial data compression with re-meshing, then a final data compres-

sion with a transformation which is compressed and reconstructed using several

methods shown in Chapter 5–7. The polygonal reduction by cutting planes or re-

meshing, technique is, in itself, a compressed representation of the original data.

In order to demonstrate just how much reduction in data is acquired through re-

meshing procedures, Tables 4.1, 4.2 and 4.3 depict reduction rates for all tested

data files. It is shown that the re-meshing operation by cutting planes, compared

60

with the OBJ files, for all 86 models yields an average initial compression rate of

52%.

4.6 Discussion

The work presented in this chapter has focused on detailing the proposed method

for data modelling and pre-processing, with an example of using the cutting plane

technique being discussed.

The original idea is to define a re-meshing operation by the proposed technique of

structured cutting planes, resulting in a new set of structured vertices. This new set

of vertices should not change the geometry of the mesh, provided that the cutting

planes are defined as a fine grid. In this way, the sequence of points lying in each

cutting plane can be described as points on a curve, and can be parametrically de-

fined by a number of techniques. In this way, only the parameters of such curves

are subject to compression. Therefore, to reconstruct the 3D data it is a matter

of reconstructing each curve and recovering the original data points. There are

a number of immediate improvements possible, at different stages of processing,

such as, for example, computing minimum bounding boxes to improve segmenta-

tion of the 3D point cloud.

Since the original 3D data are represented as a point cloud or as a triangulated

mesh, to recover the original data after compression, it is necessary to clearly

define the structure of the cutting planes. These are normally ‘horizontal’ and

‘vertical’ planes operating within the boundaries of the bounding box. Moreover,

the mesh cutting planes can be oriented with a global coordinate system with a

constant step. The choice of step size depends on the characteristics of the data

and the desired quality of the compression. For the face data used to demonstrate

the method in the next few chapters, vertical planes are chosen 8 to 10 times more

than horizontal ones, as the former are found to reconstruct the mesh with good

quality.

In the following chapters, a polynomial interpolation will be formulated and im-

61

Table 4.1: Initial compression by re-meshing operation

File Initial compress Original superfine Reduction
number size in KB mesh size in KB Rates

1 1,846 3,514 53%
2 1,434 2,711 53%
3 2,138 4,100 52%
4 1,868 3,548 53%
5 1,423 2,972 48%
6 1,587 2,956 54%
7 1,583 2,980 53%
8 1,063 1,963 54%
9 1,077 2,116 51%
10 2,297 4,415 52%
11 1,873 3,674 51%
12 1,703 3,202 53%
13 2,223 4,255 52%
14 1,587 3,059 52%
15 1,912 3,675 52%
16 1,139 2,223 51%
17 1,550 2,933 53%
18 881 1,683 52%
19 1,541 2,915 53%
20 1,332 2,658 50%
21 1,532 2,895 53%
22 975 1,965 50%
23 1,377 2,617 53%
24 1,127 2,100 54%
25 1,044 1,970 53%
26 860 1,717 50%
27 1,169 2,393 49%
28 882 1,770 50%
29 2,285 4,794 48%
30 1,255 2,401 52%
31 1,289 2,630 49%
32 1,688 3,262 52%
33 898 1,799 50%
34 950 1,923 49%
35 1,534 3,063 50%
36 1,611 3,022 53%

62

Table 4.2: Initial compression by re-meshing operation

File Initial compress Original superfine Reduction
number size in KB mesh size in KB Rates

37 1,304 2,459 53%
38 1,276 2,389 53%
39 1,376 2,568 54%
40 1,244 2,360 53%
41 1,256 2,346 54%
42 1,327 2,512 53%
43 975 1,995 49%
44 1,896 3,522 54%
45 2,160 4,311 50%
46 2,549 5,329 48%
47 1,620 3,067 53%
48 1,207 2,419 50%
49 2,153 4,123 52%
50 2,003 3,821 52%
51 1,583 3,049 52%
52 1,849 3,547 52%
53 2,106 3,998 53%
54 1,821 3,421 53%
55 1,356 2,300 59%
56 1,935 3,613 54%
57 1,857 3,652 51%
58 1,937 3,644 53%
59 2,271 4,328 52%
60 1,655 3,214 51%
61 1,863 3,563 52%
62 1,538 3,072 50%
63 3,150 6,311 50%
64 955 1,896 50%
65 1,716 3,427 50%
66 2,020 4,114 49%
67 2,335 4,670 50%
68 1,666 3,274 51%
69 2,054 4,006 51%

63

Table 4.3: Initial compression by re-meshing operation

File Initial compress Original superfine Reduction
number size in KB mesh size in KB Rates

70 1,434 2,838 51%
71 1,464 2,819 52%
72 1,696 3,235 52%
73 1,311 2,545 52%
74 1,527 2,917 52%
75 1,846 3,504 53%
76 1,656 3,278 51%
77 2,276 4,564 50%
78 1,348 2,636 51%
79 1,621 3,117 52%
80 2,209 4,310 51%
81 2,136 4,006 53%
82 1,265 2,395 53%
83 1,825 3,664 50%
84 1,589 3,119 51%
85 1,847 3,523 52%
86 1,865 3,642 51%

64

plemented for surface patches, and several reconfigurable computing approaches

based on the implementation of spectral methods will be presented and evaluated.

65

Chapter 5

Efficient 3D Data Compression
Through Parameterization of
Free-Form Surface Patches

5.1 Introduction

This study seeks to present a new technique for 3D data compression centred on

the parameterization of surface patches. The data pre-processing has been defined

in Chapter 4. A significant feature of this technique is that, it defines the number

of cutting planes on the mesh, while the connection or intersections of the planes

on the mesh define a set of sampling points. An explicit structure that allows for

the parametric definition of both x and y coordinates is contained in these points

and the z-values are interpolated using a high degree polynomials. Reconstruc-

tion is then achieved by evaluating the polynomials from the saved information,

once each plane is recovered by the uncompressing method, and triangulation is

achieved given the explicit structure and pairing of the planes and data points

as described in Section 4.5. The desired outcome is a polynomial interpolation

through most of the control points.

This chapter is structured as follows. Section 5.2 introduces polynomial interpo-

66

lation, and Section 5.3 describe the instantiation of the method for reconstructing

surface patches. Finally, a discussion is given in Section 5.4.

Figure 5.1: Polygonal mesh detail

5.2 Polynomial Interpolation

The process of reconstructing a curve, the surface, or other geometric objects from

certain known data can be achieved by interpolation, a word that is derived from

the Latin word “interpolate” which means “to refurbish” or “to patch” [Bergh and

Löfström, 1976; Davis, 1975; Shepard, 1968; Triebel, 1999]. Portions of curved

graph surfaces can be represented as surface patches modelled using polynomials

of two variables. For example, a plane can be represented as

z = a0 +a1x+a2y, (5.1)

and curved surface patches can be modelled using higher-order polynomials. In

67

general, if we have two points (x1,y1) and (x2,y2) on a plane with x1 ̸= x2, the

first degree polynomial in x is a straight line. Then given n points in the plane,

(xk,yk),k = 1,2,3,,n, there is a polynomial in x of degree less that n whose

graph passes through or close to the points.

The polynomial of n-th degree in z has the form:

P(z) = a0 +a1z+a2z2 +a3z3 + · · ·+anzn (5.2)

where a0,a1,a2, · · · ,an are the coefficients and n is the degree of the polynomial.

Using the data described in Section 4.5, a useful approach to compression would

be to represent the data in each plane through fitting a polynomial of a high degree

that best fits the data. In this way, only the polynomial coefficients and their

boundaries need to be kept allowing reconstruction of the original data within the

specified boundaries. To implement the polynomial method on our data, we have

to do the following:

1. In the rectangular grid of 3D data (which is defined from a 2D image by the

GMPR scanner), valid vertices are defined by the intersection of horizontal

and vertical planes with the mesh; any missing vertex is marked as invalid.

The polynomial is evaluated over the valid vertices in each plane. The 3D

data can then be represented and recovered by the polynomial’s vector of

coefficients.

2. First, for each plane perform a polynomial fit of a given degree n to get

the n+1 set of coefficients that best describe the data, by using the Matlab

built-in function polyfit as:

P1 = polyfit(y,z,n); (5.3)

where P1 is a vector of n+1 coefficients, y,z are vertex points and n is the

polynomial degree.

3. Second, the coefficients of the polynomial are saved for each curve together

68

with the indices of the k planes for the first and last valid vertices. Then, for

each model we get a matrix corresponding to the cutting planes, this matrix

is built row by row, where each row of the matrix corresponds to a cutting

plane as follows:

P2 =
[
coefficients-of-plane-1 bFirst bLast;

coefficients-of-plane-2 bFirst bLast;

coefficients-of-plane-3 bFirst bLast;
... . . .

]
(5.4)

4. Third, the actual uncompressed mesh is acquired by reconstructing each

set associated with z-data curve fitting through the Matlab built-in function

polyval (a substitute for every value into a polynomial and come up with

a corresponding value) as follows:

P = polyval(C,Y); (5.5)

where C is a vector of coefficients from the current plane (from P2 above)

and Y is a vector of equally spaced (by D2) from bFirst and bLast indices

from P2 above. Polynomial fitting is performed in each plane using the

z-values as “control points” to reproduce the measured data on the known

locations. This means that the interpolation will generate data that are close

to the source grid. In this case, it will not recreate the actual information at

the known location; however, it will be fitting a curve (model) to a known

data set on the source grid and estimating the values based on the fitted

curve in the destination grid.

In addition, the coefficients of the polynomial are saved for each curve together

with the indices of the k planes for the first and last valid vertices. This is so

because there may be several plane intersections that do not intersect the mesh

69

and such combination of indices (kr,kc) must be marked as invalid vertices – the

polynomial is only valid between the specified vertices, it cannot be extrapolated.

Figure 5.2: Polynomial interpolation for the first few vertices in a cutting plane,
not to scale. First row: degrees 10, 20, 30; second row: degrees 40, 80, and a full
cutting plane with degree 40. Red: original data, blue: interpolated data.

Figure 5.2 illustrates polynomial interpolation on a first few vertices defined by the

cutting plane data marked in red, while data in blue are the results of interpolation

by degree 10, 20, 30, 40 and 80. It is clear that none of the results are satisfac-

tory with large errors at the extremities. Analysis over the entire meshes will be

described in the next section. Recall that the data are only a sequence of vertex

positions in 3D space and also the objective is to replace the sequence of vertices

by a parametric definition using high order polynomials. For high-density data

as is the case of 3D models, this provides a substantial data reduction. To illus-

trate the compactness of this representation by using data that have been sampled

as defined in Section 4.5.2, assume a mesh with 100,000 vertices. This means

300,000 floating points (one floating point for each of the (x,y,z) values.) Since

both (x,y) are defined as a regular grid with spacing defined by the constant dis-

tance between cutting planes, it is possible to instantly eliminate 200,000 floating

point from representation, replacing these by 4 numbers only: two constant spac-

70

ings between cutting planes, and the number of rows and columns that make the

regular grid.

Therefore, if a mesh is cut with 100 planes, only a set of 100 polynomial coeffi-

cients together with the first and last valid vertex indices for each polynomial are

required to fully reconstruct the mesh. Assuming a polynomial of degree 25, only

28 numbers are needed for each plane: 26 coefficients plus 2 vertex indices. In the

example above, this would be a reduction from 100,000 to 2,800 floating, point

numbers. To reconstruct the original mesh, the polynomials used in Eq. 5.2 are

evaluated for each plane within their boundaries (first and last valid vertices), and

the (x,y) values are evaluated for each combination of (r,c) plane indices through

Eqs. 4.4 and 4.5.

For instance, in order to implement the method above for a polynomial of degree

3:

P(z) = a0 +a1z1 +a2z2
2 +a3z3

3 (5.6)

First, for each plane a polynomial fit of degree 3 is performed to get the 4 coeffi-

cients by using Eq. 5.3 Then save these 4 coefficients of each curve together with

the first and last valid point. Furthermore, the exact same technique will apply

for the second plane by saving the 4 coefficients with the very first and the last

valid point, and repeat the same method to the remaining planes over the model.

Therefore, by using Eq. 5.4 we are building a matrix row by row and each row

corresponds to a cutting plane with 4 coefficients and 2 vertex indices.

Finally, reconstruction is achieved by evaluating the polynomials from the saved

information, by applying Eq. 5.5. Figure 5.3 illustrates that for a polynomial inter-

polation of degree 3, once each plane is recovered by the uncompressing method,

then triangulation is achieved by pairing the planes and data, which produce unsat-

isfactory interpolation as the actual model appears very poor. This is so because

polynomial fitting of degree 3 will not go through most (if any) of the control

points, and thus is unable to reconstruct the face model with a reasonable likeness

to the original.

71

Figure 5.3: Model reconstruction using a polynomial interpolation of degree 3

5.3 Results

In this section, we use the method of mesh sampling described in the Section 4.5

with a comparative analysis of interpolation using various high degree polynomi-

als.

5.3.1 Data Compression by Polynomial

By following the method described in Section 4.5, polynomial interpolation is

performed where the coefficients and the plane indices of the first and last valid

points are saved. Figure 4.10 depicts the intersection of all horizontal and vertical

planes where each intersection is marked with a red point. The structure of the

mesh is k1×k2, whose choice depends on the characteristics of the model and the

accuracy required. For the models used here, normally 8 to 10 times, more ver-

tical planes than horizontal ones are used due to the characteristics of the GMPR

scanner [Robinson et al., 2004]. Ultimately, the number of planes is based on

the characteristics of the data; it was found that approximately 50–80 horizontal

planes across the face provide for good reconstruction. Thus the number of ver-

tical planes was determined at around 10 times the horizontal scale; this provides

72

a large number of data points for polynomial interpolation and results in a grid

72× 676 for the particular face model shown (for different models these dimen-

sions will vary). The horizontal planes are quite noticeable in the Figure 4.10,

while the vertical planes are less so due to their proximity.

A polynomial interpolation of high degree is suggested, as the intention is to find

a polynomial that goes as closely as possible through most of the control points.

In order to be able to reconstruct the set of points later on, the first and last valid

points of each list of points are saved, together with each set of coefficients, the

size k1,k2 of the sampled 3D data structure and the distance between planes D1

and D2. This information is organized in the file header:

k1 72

k2 676

D1 3.3

D2 0.3

8.0960151e-031 ... 6.7726253e+002 382 482

...

1.8712059e-032 ... 1.0464188e+007 143 437

Reconstruction is then achieved by evaluating the polynomials from the saved

information. In the file structure above, the 4 lines of header information are fol-

lowed by 72 lines of polynomial coefficients with their first and last valid points.

The degree of the polynomial is inferred from the data. If each line has, say, 23

numbers, the last two numbers are the indices of the first and last valid points,

leaving the preceding 21 numbers as polynomial coefficients C. The degree of the

polynomial is C− 1. Thus, in this case, the data was interpolated with a polyno-

mial of degree 20.

73

5.3.2 3D Reconstruction

A high-level view of the method is as follows. Given an unstructured mesh, apply

the re-meshing technique of cutting planes, which will result in data within a

structured regular grid. The values of (x,y) are known from the grid and the only

variable to interpolate is the depth value z. Each set of points lying in the plane

are thus subject to interpolation. Below are shown the effects of reconstructing a

face model using polynomials of various degrees. Figures 5.4, 5.5 and 5.6 show

results for polynomials of degrees 3, 10, 15, 20, 30, 40, and 80.

Figure 5.4: Polynomial interpolation degrees 3 to 15. The top row left: original
face model with a file size of 4MB; the top right, with polynomial interpolation
of degree 3 reducing the file size to 8KB. Bottom row left: polynomial degree 10
reducing the file size to 16KB; bottom right, degree 15 reducing to 25KB.

Table 5.1: Compression rates in percentage.

Degree 20 30 40 50 80
Rate 99.35 99.07 98.79 98.53 97.66

74

Figure 5.5: Polynomial interpolation degrees 20 to 40. Top row left: the original
face model with a file size of 4MB; top right, with polynomial interpolation of
degree 20 reducing the file size to 26KB. Bottom row left: polynomial degree 30
reducing the file size to 37.2KB; bottom right, degree 40 reducing to 48.5KB.

Figure 5.6: Left, the original face model; right, interpolation with polynomial
degree 80. It is noted that the model becomes unstable.

Most mesh comparison techniques have been developed to compare a mesh be-

fore and after some process, and we wish to know how the process has affected

the mesh. The trend observed with polynomial compression is clear. Regarding

75

lower polynomial degrees such as degree 3, the compression rate is very high,

but the reconstructed data are useless. As the degree increases, the reconstruction

becomes increasingly better, but there is a break point in which the data becomes

unstable for very high degrees. This is observed in the Figure 5.6 which shows

the original face model on the left together with the reconstructed one with a poly-

nomial of degree 80. It is demonstrated that for the kind of 3D used here, poly-

nomial compression obviously has an optimal point and this seems to be around

degree 30. Concerning compression rates, the technique is very efficient as for

a polynomial interpolation of degrees 20, for instance, the file size in OBJ for-

mat has been reduced from 4MB to 26KB. This is a reduction of 99.35%, and

similar reductions were achieved for other polynomials, also; a summary is pre-

sented in Table 5.1 showing various compression rates including around the opti-

mal point. To compress data using polynomials of any degree the Matlab function

‘gmprCompressPolynomials.m’ has been developed and to uncompress the cor-

responding function ‘gmprUncompressPolynomials.m’ must be used. See Ap-

pendix B for page (177-181) details of the functions.

5.3.3 Evaluating the Fit

Determining the quality of a polynomial regression or how well the recovered data

points fit the original data can involve a number of tests including statistical sum-

maries. By far the most meaningful way is by plotting the original and regression

data, sets, and visually assessing the quality. By visually analysing the models

of Figure 5.5, it is suggested that a polynomial interpolation of degrees 20 to 40

describes the data well and can be well suited to most applications.

Another way of assessing quality is to look at the residuals and plot them against

predicted values. Figure 5.7 shows the plot for data interpolated with a polynomial

of degree 30. For a good fit, the plot should display no patterns and no trends. The

scatter plot shows what looks like random noise, which is a good measure of the

quality of the fit. Alternatively, if the fit is good, a normal- probability plot of the

residuals should display a straight line. The plot depicted in Figure 5.8 shows that

76

Figure 5.7: Scatter plot of Predicted Values against Residuals. For a good fit, it
should show no patterns and no trends. The plot shows what looks like random
noise, indicating a good fit.

for most polynomials evaluated at each plane, they do indeed describe a straight

line, thereby indicating a good fit.

There are a number of other statistical measures to assess the quality or the ap-

propriateness of a model such as the coefficient of determination, also known as

R2 , that indicates the percentage of the variation in the data that is explained by

the model. This can be estimated by first calculating the deviation of the original

data set which gives a measure of the spread. While the total variation to be ac-

counted for (SST) is given by the sum of deviation squared, the variation that is

not accounted for is the sum of the residuals squared (SSE).

R2 = 1− SSE
SST

(5.7)

The R2 values for some interpolated models are described in Table 5.2. The ta-

ble shows a trend of increasing R2 as the polynomial degree increases, peaking

at around degree 30, which indicates that this is the optimal interpolation point

77

Figure 5.8: The normal-probability plot of the residuals. A good fit should de-
scribe a straight line for each polynomial curve, which is verified by the plot,
indicating a good fit.

in the data set. For higher degrees, R2 decreases monotonically, and this is also

confirmed by visual inspection of the 3D reconstructed models whose quality de-

teriorates as they become unstable for high degree polynomials.

Table 5.2: The coefficients of determination R2 for polynomial fits of degrees 20
to 80 for the given data.

Degree 20 30 40 50 80
R2 0.9995 0.9996 0.9995 0.9994 0.9909

5.4 Discussion

This chapter has presented and tested a new method for 3D data compression

based on polynomial interpolation of various degrees. The new compression

method is based on the parameterization of surface patches which was discussed

and tested. While the (x,y) values of each vertex are readily determined on a

regular grid, the actual z-values are interpolated using a high degree polynomial

78

and also the results show compression rates of over 99%. While the technique

has been demonstrated to be a viable method for 3D compression, there are issues

of accuracy as shown by the R2 coefficients. In addition, visual inspection may

suggest that such a compression technique may be acceptable for a number of ap-

plications, but quality deficient for others, such as for 3D face recognition. Issues

to consider when assessing whether or not the technique is appropriate include the

required polynomial degree which is dependent on the characteristics of the data,

and the fact that for very high degrees the data becomes unstable, as demonstrated

here. Therefore, iterative techniques will be considered in this research. In the

next Chapter, a method with regard to Fourier-based data compression as well as

PDE-based data uncompressing will be introduced.

79

Chapter 6

Partial Differential Equations for 3D
Data Compression and
Reconstruction

6.1 Introduction

It has been discussed in previous Chapters that a surface patch can be described

as either a point cloud structure or a triangulated mesh. The re-meshing tech-

nique described in Chapter 4 will impose a structure on the data from which the

connectivity of the mesh can be readily derived. From the structured data, a trian-

gulated surface or an implicit representation, such as a level set function, can be

constructed to approximate the point cloud data. Based on these representations,

PDE-based techniques and variational techniques provide highly effective tools to

draw out implicit geometrical data either locally or globally.

As an alternative to compression, using polynomials, it is now intended to create

PDE meshes with high vertex density and to compare the compression efficiency

of the resulting data with the original data. In this work face models from the

GMPR 3D scanner were used, and a mesh with high vertex density was first con-

structed: this is called a “superfine mesh”. A high-density mesh is necessary for

80

specialised applications such as 3D face recognition in order to measure Euclidean

distances on the face more accurately so as to produce the required accuracy and

robustness in the face recognition algorithms [Rodrigues and Robinson, 2010,

2011].

It is clearly also important to ensure that when PDE data are reconstructed as

the superfine mesh, and used in the face recognition process, there is no loss of

accuracy in the reconstructed mesh. Therefore, two questions can be posed:

1. What compression rates can one obtain, using the PDE method?

2. How can one compare the accuracy of the reconstructed PDE, compared

with the original superfine mesh?

This Chapter is organized as follows; Section 6.2 describes the compression, and

reconstruction method, Section 6.3 presents experimental results, and Section 6.4

assesses the quality of the reconstructed mesh. Finally, a discussion is presented

in Section 6.5.

6.2 Method

6.2.1 Data Preparation

The data preparation procedure for the PDE method is the same as for polynomial

interpolation and has been described in Chapter 4. Given a (potentially dense)

generic surface patch defined as a single-valued function, the first step is to per-

form a structured re-meshing aiming at reducing the vertex density. It is attained

by simply finding the bounding box in 3D [Hill and Kelley, 2007] as described in

Chapter 4 and using a number of horizontal and vertical cutting planes for vertex

sampling. Each plane intersection defines a line and where this line intercepts the

mesh defines a sampled vertex in the plane. All points lying in the plane, either

horizontal or vertical, can be treated as a one-dimensional signal and subject to

compression. The result of this procedure is that the mesh is redefined as aligned

81

vertices in the horizontal and vertical directions as depicted in Chapter 4, Figure

4.10. It is important to stress here that such a re-meshing operation will yield a

sparse mesh as it reduces the number of vertices in the original structure. Upon

compression by the Fourier technique described below, it only becomes possible

to reconstruct the sparse mesh. However, the objective is to recover the vertex

density of the original superfine mesh; that is where the PDE technique comes

into play. The number of required horizontal and vertical cutting planes depends

on the mesh complexity.

An illustration of the steps in the method is shown in Figure 6.1. The original

given data are defined as superfine mesh A with a high density of vertices. First,

the cutting plane technique is used, in order to obtain a sparse mesh B. Second,

the data are compressed by FFT obtaining a matrix C. Third data are uncom-

pressed by the inverse FFT (iFFT) and this step will recover the sparse mesh on

D which is equivalent to mesh B. Finally, to recover the original mesh density,

a PDE reconstruction results in mesh E. Then one can compare the quality of

reconstruction of D with B and E with A.

Figure 6.1: The illustration of PDEs compression and reconstruction.

6.2.2 Fourier Series Approximation

The usefulness of the Fourier analysis is that one can break up any arbitrary pe-

riodic function into a set of simple terms that can be solved individually and

82

then recombined to reconstruct the original signal with a high degree of accu-

racy [Bernatz, 2010; Brown and Churchill, 2012b; Hanna and Rowland, 2008].

The Fourier transform defined as a limiting case of Fourier series is concerned

with analysis of non-periodic phenomena, and are a tool which converts a spatial

description of a signal into one in terms of its frequency components, and can

be used to transform a periodic and non-periodic signal from time domain to fre-

quency domain. The fast Fourier transform (FFT) is a mathematical tool by taking

a time domain signal and turn into frequency domain data, so one can look at the

frequency contents of the signal.

In FFT the frequency resolution of the data is inversely proportional to the side

of the chunk of time it takes to compute, so the larger the FFT the finer the fre-

quency resolution of the data. The FFT is an efficient algorithm for computing the

discrete Fourier transform DFT and its inverse, which takes a regular spaced data

values, and returns the value of the Fourier transform for a set of values in fre-

quency space. Moreover, the FFT algorithm can decrease the processing time of

a standard discrete Fourier transform from several minutes to a few milliseconds,

since the FFT splits the calculation of the DFT into computing two DFT’s of half

the size.

DFT is, thus, a numerical approximation to the Fourier transforms, which is very

useful for data compression, because a few coefficients of the Fourier expansion

may be sufficient for the reconstructed signal to be close enough to the origi-

nal function. Furthermore, DFT applies to uniform spaced data when used as a

transform between time and frequency domains. The DFT loses all information

considering the time scale, since the input is simply a vector of real or complex-

valued samples.

Once the data are in the format specified in Section 6.2.1, typically the vertices

lying in each plane can be considered as a one-dimensional signal and subject

to compression by a Fourier series. Thus, the discrete Fourier coefficients are

evaluated for each set of z-values in the plane; and the continuous functions are

generally replaced by discrete functions. Therefore, in this Section we are trying

83

to compress each z-curve in each plane through the use of Discrete Fourier Trans-

form. While using the method of a generalised Fourier series in Section 3.3, often

the Fourier series of a function f (x) is given by:

f (x) =
1
2

a0 +
∞

∑
n=1

(
an cos

(nπx
L

)
+bn sin

(nπx
L

))
(6.1)

where

a0 =
2
L

∫ L

0
f (x)dx (6.2)

an =
2
L

∫ L

0
f (x)cos

(nπx
L

)
dx (6.3)

bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)
dx (6.4)

Thus,
1
2

a2
0 +

∞

∑
n=1

(
a2

n +b2
n
)
=

1
L

∫ L

0
(f (x))2dx. (6.5)

Eqs. 6.2, 6.3 and 6.4 are the Fourier coefficients of experimental data. Each signal

describes a complex function in each plane with its own set of coefficients. An

FFT algorithm requires there to be n = 2p mesh points in directions to be trans-

formed where p is a non-negative integer. This is to split the sequence into two

sequences of length n/2. Moreover, with regards to efficiency the DFT requires

that the signal length be a power of 2 (Matlab pads with zeros when that is not the

case).

The approach adopted in this thesis is to use FFT for estimating polynomial co-

efficients to interpolate a set of regularly spaced data, an approach that has been

described in [Briggs and Henson, 1995]. This approach has been originally de-

scribed by Gauss [Heideman et al., 1985] and [Cooley and Tukey, 1965]. The

Matlab implementation uses a number of built-in functions and, by saving the co-

efficients (real and imaginary) together with the boundaries of each function and

their scale, it is possible to reconstruct faithfully the original data defined by the

84

Fourier series. From Eqs. 6.1 the reconstructed signal would take the form:

y = a0 +
N

∑
n=1

(
an cos(2πnx)+bn sin(2πnx)

)
(6.6)

where an is the vector of real coefficients, bn is the vector of imaginary coeffi-

cients, n are the indices [1,2,,N] where N is the length of vectors an and bn.

Following the approach described in [Briggs and Henson, 1995], given a signal

s of length m, the relevant coefficients in a equation 6.6 can be evaluated (for

example, using Matlab built-in functions) as:

d = fft(s) (6.7)

M = floor((m+1)/2) (6.8)

a0 = d(1)m (6.9)

an = 2∗ real(d(2.....M))/m (6.10)

a6 = d(M+1)/m (6.11)

bn = −2∗ imag(d(2.....M))/m. (6.12)

where d are the coefficients of the fast Fourier Transform for vertices lying in a

single plane, m is the length of the signal or the length of the sequence of vertices

in a cutting plane, a0 is the DC component, an is the vector of real coefficients, bn

is the vector of imaginary coefficients, and a6 is the residual error.

Table 6.1: Text file format for 3D compression using DFT

Line number ASCII data info
1 k1 k2 D1 D2 Q
2 v1 v2 a0 a6 L an bn

.
N v1 v2 a0 a6 L an bn

The complex Fourier series and the sine-cosine series are identical, each repre-

senting the spectrum of a signal. The Fourier coefficients, an and bn, express the

85

real and imaginary parts respectively of the spectrum. The set of Fourier coef-

ficients is estimated for each plane are saved in a plain ASCII format into a file

with N lines of text where the first line contains a header, information followed by

(N −1) lines of data as defined in Table 6.1 where:

1 line 1 contains header info,

2 – N lines 2 to N contain data,

k1, k2 are the scale factors or distance between two consecutive horizontal and two

consecutive vertical planes in mm,

D1, D2 are the dimensions of the data in the number of rows and columns,

v1, v2 are the first and last valid vertices for each row of data,

Q the quality of the compression in percentage from 1 to 100,

a0, a6 are the scalar Fourier coefficients for each row of data,

L the vector length of Fourier coefficients,

an, bn the vector real and imaginary Fourier coefficients for each row of data.

Note that compression of DFT coefficients of the sparse mesh only applies to the

set of imaginary coefficients. By discarding a percentage from the end of the

vector is a simple operation and such percentage can be attached to a notion of

quality of compression which is a user defined.

6.2.3 PDE Modelling

The PDE method to be implemented is to solve Laplace’s equation defined in the

section 3.4.2 over the boundaries defined through the cutting planes. Since the

cutting planes are defined on a regular grid and thus all vertices in one boundary

plane could be paired to their corresponding vertices in the opposite boundary

plane, the problem is then defined as the interpolation of any desired number of

vertices between each pair of vertices. In order to solve Laplace’s equation over

such domain, the method of lines is an appropriate technique to use, by replacing

Laplace’s equation with the algebraic approximation of ODEs.

86

Figure 6.2: Rectangular domain for solving Laplace’s equation.

To be able to implement this method in the 3D data model by solving Laplace’s

equation over a rectangular domain by taking between two consecutive cutting

plane as shown in Figure 6.2 (only four planes are shown). The boundaries of the

first plane k1 and the second plane k2 are defined as follows

• U1,U3 are the first and last valid vertices of k1

• U2,U4 are the first and last valid vertices of k2

Each set of structured vertices lying in the plane can be treated as a one-dimensional

signal with a constant step where each value represents the depth z of the data. We

assume that the independent variable domain in Figure 6.2 will be divided into an

equal sized grid, and taking the four corners as a local Dirichlet boundary condi-

tion, applying the method in Section 3.4.2.

That is obtained by linear interpolation; the data in each plane will contain the

valid vertex with the length of the plane. Subsequently define the four boundary

conditions between two planes and the number of data points in each plane. In

addition, each two planes define a rectangular domain with R rows by C columns,

by setting the vertical grid spacing between planes and set the horizontal grid

spacing along the planes.

To illustrate PDE interpolation between any two planes (these are the top and

bottom boundary conditions in the rectangular domain) assume that we wish to

interpolate N points between two given planes. First a matrix M of dimension

R×C is defined where R=N+2. The top row of M is initialised with the values of

87

the first plane, and the bottom row of M is initialised with the values of the second

plane. The left and right boundaries are solved by the finite difference method by

taking the first valid vertex in each plane and, from the number of planes we wish

to interpolate, find the discrete step in a straight line between those two vertices.

A test is needed to make sure we are pairing the correct vertices by checking their

indices: as in Figure 6.2 if the two first valid vertices are U1 and U2 in planes k1

and k2 respectively, and the two last valid vertices are U3 and U4 in planes k1 and

k2, then the indices to the left and right boundaries of the rectangular domain are

defined as:

Uleft = (U1,U2)max (6.13)

Uright = (U3,U4)min (6.14)

and any valid indices outside these boundaries are ignored. Once the left and right

indices are defined, fill in the missing left and right boundaries by linear interpola-

tion. And all other values internal to M to be approximated by Laplace’s equation

are initialised to zero. This completes the definition of the rectangular domain.

Next, Laplace’s equation will be iterated a number of times until convergence is

achieved. The number of iterations can be fixed (which is the case in the Matlab

code presented in the appendices) or a threshold could be defined. In this case,

if changes between two consecutive iterations is less than the set threshold the

function would exit. The initialised or starting a point of consecutive domains for

N = 3 covering the entire model is illustrated on the top left picture of Figure 6.3.

Setting the number of iterations to 10 provides some convergence as illustrated by

the picture on the top right, but it is still in need of improvement. The bottom row

shows 35 iteration steps (bottom left) and 70 iteration steps (bottom right). It is

clear that convergence is good in the latter case. Because a cut off the threshold

has not been implemented in the Matlab code in the Appendices, we decided to fix

the number of iterations to 100 to guarantee good convergence for all models. The

particular Matlab function that has been developed is ‘gmprLaplace.m’, please

see Appendix B, page (239-243).

88

Figure 6.3: The effects of iteration steps on convergence

The particular PDE method generates surfaces from solutions to elliptic partial

differential equations where boundary conditions are used to control surface shape.

Moreover, the coefficients in the series can be computed by integration or approx-

imate coefficients can be obtained using the FFT as described in Section 6.2.2.

Moreover, the approximation is made at discrete values of the independent vari-

ables and the approximation scheme is implemented via Matlab. The method of

lines replaces all partial derivatives and other terms in the PDE by approximations.

Here one can have Dirichlet, von Neumann or mixed boundary conditions specify

the four boundary conditions of the rectangular domain defined in Section 3.2.

When the value of the solution is given round the boundary of the region, then

the boundary value problem is known as the Dirichlet problem, whereas when the

normal derivative of the solution would be around the boundary, the problem is

89

known as a von Neumann problem. In the experimental results described below,

it is the Dirichlet boundary conditions that are used, by fixing the value of the

vertices in the boundaries of the rectangular domain.

6.3 Experimental Results

All data used in the experiments highlighted in this Section are superfine models.

The high-level steps are described in Figure 6.1: impose a structure on the data

by the re-meshing technique resulting in a sparse mesh. The sparse mesh is then

subject to compression by DFT. On the decompression stage, the inverse DFT is

performed and the sparse mesh is recovered. In order to recover the original su-

perfine mesh, Laplace’s equation is solved by the PDE method. First, the Fourier

coefficients are determined through equations 6.6 for each plane using discrete

versions 6.7 -6.12. The sets of Fourier coefficients are saved in a plain text format

into a file whose structure is defined in Table 6.1.

The processing of the above data and the 3D reconstruction involves solving the

PDE as described in Section 6.2.3 between two consecutive cutting planes S1 and

S2. Concerning specific programming procedures that have been developed to

solve the PDE surface in a robust way, the following observations are made. Each

plane contains a number of vertices; some are valid while some are invalid. Only

the valid vertices from one plane are paired to their valid counterparts with the

same index on the other plane (since the cutting planes are defined on a regular

grid). The PDE surface is solved for each pair of vertices in turn.

Thus, the PDE boundary conditions are set between the two planes; we experi-

mented interpolation with 1,3,5 and 10 planes by using the finite difference method

at the boundary, and all values to be calculated by Laplace’s are initialised to zero.

As it has been illustrated in Section 6.2.3 the Laplace’s equation requires a good

number of iterations for good convergence, and this has been set to 100 to guar-

antee good results for all models used. This can be optimised by changing the

Matlab code and defining a threshold to exit the iteration loop.

90

Figure 6.4: Left: original superfine meshes; right: PDE reconstructed

Typical results from the approach highlighted in this thesis are illustrated in Sec-

tion 6.2.3. Further results from the technique being used in the Chapter is illus-

trated in Figure 6.4 where the left column depicts the original superfine meshes

with 162K and 181K vertices. Each of these files saved as a standard OBJ file

format takes around 20MB of disk space. Both meshes were subject to the same

re-meshing operation, compression via DFT coefficients, load and reconstruction

procedures. Here a detailed account is given of the top mesh: first the mesh was

cut up into horizontal planes 3.3 mm apart and vertical planes 0.5mm apart; this

resulted in 72 horizontal planes on each mesh and 563 vertical planes. Fourier

coefficients were estimated from the z-values of each of the 72 planes and saved

in the prescribed format. These operations, reduced the file size from 20M down

to 668KB, a reduction of over 96.6% (if the file were zipped then the final size

91

would only be 111KB, a reduction of over 99.4%). The pictures on the right col-

umn show the reconstructed meshes using the PDE method as described above.

Due to the Nyquist sampling theorem, the reconstructed meshes are half the size

of the original mesh, that is, the number of vertices along each cutting plane are

half their original numbers; this is shown on the mesh on the top right of Fig-

ure 6.4. On the bottom right, the number of interpolated planes were adjusted to

recover the original mesh density. It can be clearly seen that PDE reconstruction

of compressed files as defined in this thesis does preserve the quality of the mesh.

For compression by FFT, ’gmprCompressFFT.m’ was used see page(181-184), to

uncompress FFT ’gmprUnCompressFFT.m’ was used see page(185-188), and for

Laplace’s equation the Matlab code ‘gmprLaplace.m’ page (239-243) was used

(see Appendix B).

6.4 Assessing the Quality of 3D Reconstruction

The computing time to both compress and uncompress 3D data might be critical

to some applications. A comparison of processing times is deferred until the next

chapter, which provides a comparative analysis of DFT with Discrete Cosine, and

Discrete Wavelet Transforms in connection with PDE reconstruction. Here, qual-

ity assessment focuses on measures to determine the accuracy and the goodness of

fit or how well the 3D reconstructed data points fit the original data. Furthermore,

most 3D data comparison techniques have been developed to compare a mesh be-

fore and after the process, and the aim is to know how the process has affected

the 3D data. For example, will the compression techniques change the 3D data?

Techniques implicitly assume that the two meshes are the same size (the same

number of pixels for images and, for the case presented here, the same number

of vertices) and that they are perfectly aligned. Thus, if we subtract the original

mesh from the other and the result is everywhere zero, they are identical and the

process preserved the 3D data perfectly. In general, though, the difference is not

zero. There is therefore a desire to know how much difference there is between

92

the two meshes in this case, and 3D data comparison methods provide different

ways to answer that question. The assessment described below is the same as the

method described in Chapter 5:

1. Visual assessment of the data and residuals.

2. Residuals plotted against predicted values.

3. A normal-probability plot of the residuals.

4. The coefficient of determination R2.

The visual assessment of the quality can be inferred from examples in Figure 6.4.

Visual inspection suggests that there is a perceived good fit between the PDE re-

constructed data and the original data sets. However, extracting quantitative data

allows a more objective comparison of the goodness of fit to be made. By sub-

tracting the PDE reconstructed from the original mesh, one would expect that, if

the two meshes were exactly the same, then the difference would describe a zero-

plane at origin with normal (0,0,1)T , as all vertex differences would be zero. Fig-

ure 6.5 left shows such a difference surface with vertex values oscillating around

zero. Although there are small errors across the surface, especially around the

nose area and on the boundaries of the mesh, such errors may not be significant

enough to impair recognition algorithms. On the right of Figure 6.5 is shown a

quantification of the error surface – essentially a view of the residuals across the

yz-plane. Note that the nose region is at the center of the plot while the left and

right regions of the plot correspond to the oscillations observed in the error sur-

face. The majority of errors are within a range of ±1mm with the largest error

approaching 2.5mm at the boundaries.

Another way of assessing the quality of the reconstructed mesh is to look at the

residuals and plot them against their predicted values. Figure 6.6 left depicts a

scatter plot reconstructed against the original data. For a good fit, the plot should

display no patterns and no trends, and this is verified in the plot, indicating a good

measure of fit. Similarly, a normal-probability plot of the residuals should display

93

Figure 6.5: On the left, a visualisation of the error surface and, on the right the
quantification of such errors in mm.

Figure 6.6: Left: Scatter plot of Predicted Values against Residuals (a good fit is
indicated by no patterns and no trends). Right, The normal-probability plot of the
residuals (a good fit is indicated by a straight line for each set of data)

a straight line for a good fit. On the right of Figure 6.6, it can be verified that most

data sets evaluated at each plane are in straight lines, indicating a good fit.

The R2 values for the PDE interpolated data are above 0.98 for all data sets de-

scribed in this thesis (more details on the datasets used are described in Chapter 7).

Again, this indicates a good measure of fit and suggests that the technique is ap-

propriate for a wide range of applications.

94

6.5 Discussion

In this chapter the PDE method is exploited aiming at recovering the original

density of unstructured superfine meshes. Initially, the original surface data are

sparsely re-meshed by a number of cutting planes whose intersection points on

the mesh tend to be represented by Fourier coefficients in each plane. The Fourier

compressed data are then reconstructed to the sparse density and Laplace’s equa-

tion is solved by the PDE method using each cutting plane as boundary conditions,

thus recovering the superfine mesh density. Solving this system of ODEs yields a

discrete solution along lines, which is why the method of lines is an appropriate

technique. The derivations of such ODEs with a finite difference approximation

of the spatial derivatives of the PDE are demonstrated. Additionally, the distinct

approximation of a differential structure on the manifold symbolized by point

clouds is based only on the neighbourhood approximation (by solving Laplace’s

equation over paired vertices by the method of lines) which is easy, effective and

precise. This allows the extraction and recovery of the complete neighbourhood

geometry. The method is highly efficient and allows high quality mesh compres-

sion over 96%. Comparing with the polynomial method of the previous Chapter

in which compression rates are of the order of 99%, this is a somewhat less ef-

ficient compression. This is so because here it is necessary to keep both Fourier

coefficients and the Fourier error vector (the imaginary components) while in the

polynomial method only one set of coefficients are kept. The advantage, how-

ever, is that unlike the polynomial method, superfine meshes are recovered with

good accuracy and there are no stability problems in the solution. In addition, in

this thesis all patches being used are closed patches, and the method implemented

within a closed patches, therefore the issue associated with smoothing in between

boundaries does not arise. If two distinct surface patches are to be joined together

(i.e. registered) then the issue would arise. However, this is not the case in this

dissertation as we only deal with one patch at a time. It follows that there is no

smoothing associated with the boundaries of the regions modelled by PDEs within

any closed patch as it can be verified by the reconstructed models discussed in this

95

Chapter. Even though it is confirmed in this dissertation that Laplace’s equation

can certainly be used in this context, additionally it is also accepted that it is an

efficient but rather a blunt tool.

In the next Chapter the use of DFT, DCT and DWT in connection with PDE

reconstruction will be investigated and contrasted.

96

Chapter 7

3D Data Compression with
Comparative Analysis via the
Fourier Transform, Discrete Cosine
Transform, Discrete Wavelet
Transform and Partial Differential
Equations

7.1 Introduction

This Chapter investigates alternative compression methods and the use of PDE

surfaces for reconstruction of large data files. This is an extension of the work

described in Chapters 5 and 6. The source data models are the same as previously

described, which typically are surface patches defined as either a point cloud or a

connected mesh of vertices with triangular faces. These are equivalent to standard

data types in many 3D computer generated models, such as Wavefront OBJ and

Java3D, VRML, and COLLADA formats [Drath et al., 2008; Hase, 1997; Rule,

97

1996]. As before, the methods proposed here rely on structured re-meshing of the

surface by a polygon reduction resulting in an explicit structure of vertices.

The method of polygon reduction by such vertices is described in Section 4.5.1.

Each set of vertices lying in the plane is subject to DFT, DCT, and DWT transform

whose coefficients are then compressed using a quality factor as described in Sec-

tions 7.2.1, 7.2.2 and 7.2.3. The sets of coefficients are saved to ASCII files with

specific structures that contain the necessary information to allow reconstruction

using the inverse transforms of DFT, DCT and DWT padded with zeros where re-

quired. The issue of recovering the original mesh density (before polygon reduc-

tion) is addressed by defining the set of structured vertices as boundary conditions

to elliptic PDEs described in Section 6.2.3. The PDEs are then iteratively solved

through Laplace’s equation.

The experimental data will be presented in Section 7.3, then the results using 86

high-density facial models are described in Section 7.4. Visualization of original

and reconstructed models is provided under various quality parameters allowing

a qualitative assessment of compression and reconstruction. In addition, error

surfaces are estimated with corresponding root mean square errors (RMSE) for

a more objective assessment of quality. Statistics are also presented for average

compression rates for all models for quality parameters varying from 5 to 100.

Finally, a discussion will be presented in Section 7.5.

7.2 Method

7.2.1 The DFT Method

Once experimental data are represented by the z-values of each structured plane as

specified in Section 4.5.1, the vertices lying in each plane are treated as a Fourier

series. The usefulness of the Fourier analysis is that any arbitrary periodic function

can be divided up into a set of easy conditions that can be set individually and then

recombined to reconstruct the original signal to a high degree of accuracy. The

98

continuous Fourier Transform is defined as specified in Section 6.2.2.

The file format for compressed DFT data has been defined in Table 6.1. The

parameter Q is defined as the quality of the compression and is expressed as a

percentage. It refers to the percentage of coefficients to keep and it is applied

slightly differently for DFT, DCT and DWT. A compression of DFT coefficients

only applies to the set of imaginary coefficients. Normally, the most imaginary

coefficients for high frequency signals are zero or close to zero and the most sig-

nificant ones are the first few. Therefore, the options faced here are either to force

any value below a certain threshold to zero or simply discard a percentage from

the end of the vector, which is the chosen option for its simplicity of operation.

In this way, it is guaranteed to keep the most relevant ones even for low values

of quality. A quality Q = 100 means do not discard any coefficient while Q = 30

means discard 70% of them from back to the front.

7.2.2 The DCT Method

The DCT transform and its variants have been used in a variety of contexts, most

notably in image and video compression (for example: [Belkasim, 2011; Gharge

and Krishnan, 2007; Kim and Shin, 2003]). DCT is a close relative to the DFT

transform as it defines a sequence of data in terms of the sum of the cosine func-

tions at different frequencies. It can be seen as the ‘real’ version of the DFT in

which the basic vectors contain only co-sinusoidal patterns. While a DFT contains

real and imaginary components, the DCT operates on data with even symmetry,

which means that a DCT is equivalent to a DFT with about twice the length of the

data. In practice, it would be equivalent to a DFT by doubling the sampling data

and shifting the added data to the end of the signal. There are many variants of

the DCT and the one that is used here is the unitary Discrete Cosine Transform as

defined in Matlab [Briggs et al., 1995]. The DCT transform of one dimensional

signal z representing the depths on each structured plane is expressed as:

y(k) = w(k)
N

∑
n=1

z(n)cos(
π(2n−1)(k−1)

2N
) (7.1)

99

for k = 1,2, . . .N where N is the length of the signal z, y(k) are the DCT coef-

ficients of z and w(k) is a scale factor. For making DCT values orthogonal, we

multiply the terms simply by scale factors

w(k) =

{
1/
√

N for k = 1,√
2/N for 2 ≤ k ≤ N.

The built-in Matlab function dct used as y = dct(z,n) truncates z to a length n

before transforming. The length of the coefficients y is the same as the original

signal z. The advantage here is that only a few coefficients are necessary in order

to reconstruct the signal.

The majority of signals can be reconstructed with more than 99% accuracy by

using just a handful of coefficients. The inverse cosine transform recovers the

initial signal from the set of coefficients y(k):

z(n) =
N

∑
k=1

w(k)y(k)cos(
π(2n−1)(k−1)

2N
) (7.2)

for n = 1,2, . . .N where N is the length of the coefficients in Eq. 7.1.

Table 7.1: Text file format for 3D compression using DCT

Line number ASCII data info
1 k1 k2 D1 D2 Q
2 v1 v2 B

.
N v1 v2 B

where k1 is the number of horizontal planes, k2 is the number of vertical planes,

D1 is the distance between each horizontal plane, D2 is the distance between each

vertical plane, v1,v2 are the first and last valid vertices for each row of data,

and B are the DCT coefficients of each row of data (from each cutting plane).

The DCT thus, is applied to each row of data and the first and last valid ver-

tices together with coefficients B are appended to file from line 2. The param-

eters depicted in Table 7.1 are saved in plain ASCII format. Note that B is the

100

set of DCT coefficients estimated by Equation 7.1 and shortened by parameter

Q. In other words, the number of coefficients (the length of vector B) to be

saved is defined by the floor of (kQ/100). For compression by DCT the func-

tion ’gmprCompressDCT.m’ is used, see page(188-190), and to uncompress DCT

the function ’gmprUnCompressDCT.m’ is used page(191-193). (See Appendix B

for details of the functions).

7.2.3 The DWT Method

The DWT transform [Nicholl et al., 2010; Talukder and Harada, 2011; Vonesch

et al., 2007; Wali et al., 2012] is a time-scale representation of a signal obtained

using digital filtering techniques where the signal to become analysed is autho-

rized via filtration along with various cut-off wavelengths at different gadgets. The

technique is realised by iteration and the resolution of the signal, which usually

decides the amount of details from the signal, can be controlled by sub-sampling

(up and down) operations. For a given signal, two sets of coefficients are com-

puted referred to as the approximation coefficients A and detail coefficients D. The

A coefficients are obtained by convolving the signal with a low-pass filter and the

D ones are obtained by convolving with a high-pass filter.

As the signal is decomposed by the half band filters, these results in signals span-

ning only half the frequency bands. This doubling of frequency resolution reduces

uncertainty in frequency by half. Following the Nyquist’s rule, the signal can now

be down-sampled by removing 50 percent the examples with no lack of informa-

tion. The outcome is that while the 50 percent group, low pass filtering removes

half the frequencies, thus halving the resolution, a decimation by 2 halves the time

resolution and thus doubles the scale.

Convolving the signal z(n) with a half band digital low pass filter with reaction

response h(n) can be defined in discrete time as:

x(n)∗h(n) =
∞

∑
k=−∞

x(k)h(n− k) (7.3)

101

Applying the Nyquist rule by sub-sampling the signal by 2 can be represented as

y(n) =
∞

∑
k=−∞

h(k)x(2n− k) (7.4)

Eqs. 7.4 is used for both high pass and low pass filtering operations. That one

degree decomposition is usually indicated seeing that:

yhigh = ∑
n

x(n)g(2k−n) (7.5)

ylow = ∑
n

x(n)h(2k−n) (7.6)

where yhigh and ylow are the outputs of high and low pass filters after decimation

by 2. In order to reconstruct the original signal, the procedure is straightforward

given that half-band filters form orthonormal bases. At every level of decompo-

sition the signal is up-sampled by two, filtered through a high pass and low pass

synthesis filters g′(n) and h′(n) and then summed over. Thus, for every level of

decomposition the recovered signal is represented as:

x(n) =
∞

∑
k=−∞

(
yhigh(k).g(−n+2k)

)
(ylow(k).h(−n+2k)) (7.7)

It is important to note that if the filters are not an ideal half band, then perfect

reconstruction is not possible. While it is clear that ideal filters are not possible

to realise, some filters under some conditions can provide perfect reconstruction.

The most used and most accurate ones are the Daubechie’s filters, also known

as Daubechies wavelets [Vonesch et al., 2007] and these are the ones used in the

experimental results described in the next section. Furthermore, in order to save

the DWT coefficients to a text file for subsequent reconstruction it is necessary to

decide on the number of levels of decomposition. This thesis is set for 3 levels as

no significant gain is achieved with further levels for tested facial data.

The parameters k1,k2,v1,v2,D1,D2 and Q in Table 7.2 are defined in Section 7.2.1

and the introduced parameters are related to the approximation and detail coeffi-

102

Table 7.2: Text file format for 3D compression using DWT

Line number ASCII data info
1 k1 k2 D1 D2 Q
2 v1 v2 L1 L2 L3 L4 L5 C

.
N v1 v2 L1 L2 L3 L4 L5 C

cients for a 3-level decomposition as follows:

L1 is the length of approximation coefficients level 3 (A3),

L2 is the length of detail coefficient level 3 (D3),

L3 is the length of detail coefficient level 2 (D2),

L4 is the length of detail coefficient level 1 (D1),

L5 is the length of the original signal,

C is the vector of coefficients to save.

Note that the number n of coefficients to save depends on the quality factor and

it is defined as the floor of (length(C) Q/100) as before. For any value of quality

Q < 100 implies discarding some of the detail coefficients D1, D2, and D3 in

that order. Upon reconstruction, these are padded with zeros. The algorithm for

discarding coefficients is as follows:

1. Estimate (d = (length C)−n) as the number of detail coefficients to discard,

2. if d > L4 +L3 discards all from D1 and D2 plus some or all from D3,

3. if d > L4 discards all from D1 plus some or all from D2,

4. if d ≤ L4 discard some or all from D1.

Note that the approximation coefficient level, 3 are not subject to compression. If

they were, the quality of the reconstructed data is largely deteriorated. The method

proposed here uses a 3-level decomposition; if further levels are required, then the

103

saved data and the algorithm above the need to be adjusted accordingly. For com-

pression by DWT, the function ’gmprCompressDWT.m’ is used, see page(193-

199), and to uncompress ’gmprUnCompressDWT.m’ is used see page(199-203).

(See Appendix B for details of the functions).

7.3 Experimental Data

Figure 7.1: On the left is the original data image, on the right a perspective colour
map of the data. The colours merely the threshold the data, helping to visualize
areas with similar values. In this image, signal values range between 0–200mm.

In Figure 7.1, a representative image of a 3D model is shown as a function of two

independent spatial aspects. The colour map used (JET colour map in Matlab) rep-

resents the depth values or z-coordinates of each vertex in space. A set of 86 data

files are used in this dissertation, and some visualisation examples are depicted in

Tables 7.3–7.5. Specific information on all files are summarised in Tables 7.6–7.8.

It is noted that the size of the files varies widely from 24,450 to 103,680 vertices,

and from 37,685 to 111,926 faces. Upon re-meshing by structured Planes, the

number of such planes, both horizontal and vertical also varies widely; the largest

file contains 1,296 vertical planes while the smallest has 431. The images depicted

in Table 7.3, 7.4 and 7.5 were generated by the function ’gmprLoadData.m’ see

page(203-205). See Appendix B for details of the function.

104

Table 7.3: Examples of data files used in this thesis

105

Table 7.4: Examples of data files used in this thesis

106

Table 7.5: Examples of data files used in this thesis

107

Table 7.6: Load and display PDE data 1

File Sampling Vertices per Number of Number of
number cutting planes cutting plane vertices faces

1 71 709 50,339 76,922
2 65 588 38,220 60,655
3 77 764 58,828 88,552
4 65 781 50,765 77,332
5 62 818 50,716 50,382
6 71 563 39,973 69,330
7 71 586 41,606 67,458
8 50 554 27,700 45,048
9 56 547 30,632 47,287

10 77 827 63,679 94,490
11 74 827 58,312 69,578
12 74 599 44,326 73,029
13 77 803 61,831 91,114
14 65 758 49,270 58,743
15 71 759 53,889 77,547
16 50 693 43,650 44,668
17 65 643 41,795 64,750
18 50 489 24,450 37,685
19 71 572 40,612 65,864
20 65 570 37,050 60,997
21 74 550 40,700 64,915
22 53 535 28,355 44,802
23 71 431 30,601 46,886
24 53 516 27,348 45,759
25 50 499 24,950 39,179
26 65 541 35,165 52,243
27 53 481 25,493 40,724
28 71 1148 81,508 81,065
29 65 553 35,945 50,272
30 67 589 39,463 55,972
31 71 651 46,221 72,240
32 56 468 26,208 40,619
33 56 501 28,056 43,213
34 71 601 42,671 70,234
35 65 651 42,315 68,253

108

Table 7.7: Load and display PDE data 2

File Sampling Vertices per Number of Number of
number cutting planes cutting plane vertices faces

36 62 556 34,472 55,480
37 59 569 33,571 54,187
38 62 577 35,774 58,644
39 65 524 34,060 51,644
40 65 489 31,785 55,384
41 65 547 35,555 56,250
42 53 535 28,355 44,802
43 53 535 28,355 44,802
44 73 697 50,881 76,986
45 71 991 70,361 78,476
46 74 1220 90,248 90,153
47 68 636 43,248 68,570
48 65 525 43,125 55,745
49 68 821 58,618 90,735
50 68 821 55,828 82,058
51 68 768 41,736 70,325
52 74 753 52,224 74,443
53 74 753 55,722 90,165
54 65 729 47,385 77,878
55 68 455 30,940 54,901
56 68 713 48,484 84,723
57 71 775 55,025 75,017
58 70 777 54,390 75,724
59 74 825 61,050 95,378
60 71 648 46,008 70,276
61 68 744 50,592 78,423
62 65 686 44,590 66,543
63 80 1296 103,680 111,926
64 53 518 27,454 43,270
65 71 722 51,262 72,172
66 71 905 64,255 79,747
67 73 1019 74,387 88,541
68 68 675 45,900 73,377
69 77 732 56,364 89,036

109

Table 7.8: Load and display PDE data 3

File Sampling Vertices per Number of Number of
number cutting planes cutting plane vertices faces

70 68 586 39,848 64,052
71 65 595 38,675 64,979
72 74 582 43,068 76,752
73 62 591 36,642 55,931
74 65 652 42,380 62,866
75 74 642 47,508 81,360
76 68 729 49,572 67,473
77 71 1052 74,692 82,469
78 68 546 37,128 60,045
79 74 581 42,994 71,233
80 71 934 66,314 84,918
81 77 750 57,750 89,105
82 56 604 33,824 53,931
83 68 888 60,384 65,732
84 71 635 45,085 68,089
85 71 721 51,191 75,735
86 74 711 52,614 78,624

110

7.4 Results

Three sets of experiments were carried out: 1) DFT, DCT and DWT applied to

points lying in a single plane; 2) DFT, DCT and DWT on multiple planes; 3) DFT,

DCT and DWT on multiple planes in connection with PDE reconstruction. The

model depicted in Figure 7.2 is used for illustration purposes in all experiments,

although the full set of 86 models were used whose statistics and error analysis

are presented in the following sections.

Figure 7.2: The 3D model used for illustration of compression techniques.

7.4.1 DFT, DCT and DWT Applied to Vertices Lying in a Sin-
gle Plane

This first experiment is aimed at validating the approach and computer programs

were applied to a set of vertices lying in a single plane. A plane across the model

depicted in Figure 7.2 was selected that includes the tip of the nose, as this is a

typical complex curve representative of the data set. Each of the techniques was

111

Figure 7.3: DFT (left) and DCT (right) reconstruction of vertices lying in a single
plane.

applied in turn and results are presented in Figures 7.3 and 7.4 for DFT, DCT and

DWT. No compression of coefficients was applied at this stage, which means the

quality parameter was set to Q = 100. The first thing to note is that there seems

to be no significant difference between the techniques, they are all capable of

faithfully reconstructing the data and, in principle, any would be appropriate for

the entire set of planes. The only aspect to take into consideration here is that the

last point of the DFT transform is spurious as, due to periodicity, reconstruction is

performed within the range 0.0, . . . ,2π forcing the last point to join up to the first

data point, and it thus needs to be deleted from every reconstructed plane.

In order to explain exactly how compression would be applied to each of these

curves in slightly different ways consider a quality parameter Q = 50. For the

DFT curve, it would mean that the bottom half of the imaginary components

would be discarded. Upon reconstruction with inverse DFT, the missing coef-

ficients are padded with zeros. For DCT, it would simply mean that the bottom

half of the coefficients in Equation 7.1 would be discarded and then padded with

zeros upon reconstruction with the inverse DCT. For the DWT method, only the

detail coefficients D1, D2 and D3 from the high pass filter are the ones subject to

compression (Equation 7.5). In this case, 50% of all detail coefficients would be

discarded starting from D1, then D2 then D3. Note that before discarding any of

112

Figure 7.4: DWT 3-level decomposition and reconstruction of vertices in a single
plane.

D2 it is necessary to discard all from D1. The same for D3 with regards to D2.

On reconstruction using the inverse DWT all missing coefficients are padded with

zeros. Observe that the approximation coefficients A3 are not subject to compres-

sion.

113

7.4.2 Extending DFT, DCT and DWT to Multiple Planes

In this section, the techniques are applied to a set of multiple planes describing the

entire 3D model and illustrate the quality of perceived reconstructed models and

error surfaces. These techniques use quality Q = 100 (no compression of coeffi-

cients) and Q = 50 (50% compression rate) for both qualitative and quantitative

assessments of the resulting model. Two sets of experiments were performed, the

first to test the effectiveness of the techniques applied to a sparse mesh with simple

compression and decompression. The second experiment was identical, although

with the objective of recovering the high density meshes using the PDE method.

Note that in both cases the compressed model is the sparse mesh, except that the

PDE method allows the recovery of the original mesh density; without PDE, only

the sparse mesh could be recovered.

To apply the techniques to multiple planes, the first step is to perform a polygon

reduction as defined in Section 4.5.1. Then the number of structured planes will

define the density of the sparse mesh and this is a function of the distance between

the planes, both horizontally and vertically (the distances D1 and D2 of Eqs. 4.4

and 4.5). For face models, it is sufficient to place each horizontal plane spaced

around 3mm apart, and along each plane, as many data points as possible are de-

sired in order to capture all the nuances of the face. The set density chosen for

facial models is around 0.25mm between each data point, or 4 points per millime-

tre. These choices will reduce the number of vertices by a factor of around 4 in

the original dense mesh of Figure 5.1. For each model tested, similar distances

between planes were used. The actual number of planes in each model depends

on the original extension of its bounding box.

Following compression, Figure 7.5 depicts the uncompressed models with quality

Q = 100 and respective error surfaces (a numerical quantification of error surfaces

is presented below). Assessing the overall appearance of the 3D models, it can be

stated that any of the three techniques can successfully be used to compress and

decompress 3D data. The bottom row of Figure 7.5 shows the error surfaces which

were estimated by subtracting the reconstructed model from the sparse mesh.

114

Figure 7.5: Quality Q = 100. Top row: reconstructed models DFT (blue) DCT
(red) and DWT (green). Bottom row: respective error surfaces.

A perfect match would mean that the error surface would lie in the xy plane with

all coordinates z = 0. The error surface of the DFT shows relatively large errors

located on the more complex areas of the face such as around the nose and at the

boundaries. In contrast, both DCT and DWT show the desired flat surface with

errors at or near zero. On this basis, it is clear that DCT and DWT are better

techniques and apparently equivalent for compression and decompression with a

quality parameter of 100.

Figure 7.6 shows the results for compression using the quality parameter set to

50. Again, the DFT technique shows a relatively large error surface, pointing to

the superiority of both the DCT and DWT techniques. The DCT transform shows

small errors, mostly at the boundary of the model while DWT techniques have the

error distributed along the surface, and it is noticeable that high frequency ripples

115

Figure 7.6: Quality Q = 50. Top row: reconstructed models DFT (blue) DCT
(red) and DWT (green). Bottom row: respective error surfaces.

start to appear in the green model.

The issue now is to recover the original mesh density using the PDE method as

described in Section 6.2.3. Each pair of structured planes was used as boundary

conditions for an elliptic PDE and the distance D1 was used to estimate the dis-

crete step ∆x between any two planes. Since the distance between the planes is

3mm, it is necessary to solve the Laplace equation using 5 steps (2 at the bound-

aries and 3 internal steps) resulting in a mesh density with an average quad face

area of exactly 0.75× 0.25mm – this is comparable to the original high density

mesh where the average area of each quad face is 0.75×0.26mm.

Results using the PDE method are illustrated in Figures 7.7 and 7.8 for Q = 100

and Q= 50 respectively. The first point to note is that solving the Laplace equation

116

Figure 7.7: Quality Q= 100 with PDE based reconstruction. Top row: DFT (blue)
DCT (red) and DWT (green). Bottom row: respective error surfaces.

over the mesh creates a higher level of noise than for the sparse mesh shown

earlier. While on the 3D models this is not readily apparent, the error surfaces

nevertheless point to the introduction of higher levels of noise. The DFT is clearly

the most affected, but now the DCT and DWT also show ripples across the face

caused by the bluntness of the Laplace solution. For quality 50 the effects are

similar, except that error surfaces are larger than expected. The price paid for

such an introduction of noise is that the PDE method has the advantage that while

the compressed file sizes are the same as for the sparse mesh, the uncompressed

mesh has a high density compared to the original model.

The advantages are, therefore, smaller file sizes and the discovery that high den-

sity meshes are amenable to compression and recovery using relatively few struc-

tured planes. Error surfaces as a function of quality were quantified by running

117

Figure 7.8: Quality Q = 50 with PDE based reconstruction. Top row: DFT (blue)
DCT (red) and DWT (green). Bottom row: respective error surfaces.

Figure 7.9: Average RMSE errors of uncompressed data for quality parameter 5≤
Q ≤ 100. Left, standard DFT, DCT and DWT. Right, PDE based reconstruction.

118

experiments where the quality parameter was set to Q = [5, 10, 20, 30, 40, 50,

60, 70, 80, 90, 100]. Each quality parameter was applied in turn to the 86 mod-

els and summary statistics were computed for both with and without PDE based

reconstruction. The RMSE of each error surface was estimated and the averages

over 86 models are shown in Figure 7.9. The picture on the left was estimated by

simply compressing the data from the multiple planes followed by reconstruction

and it is directly comparable between these two data sets. Because this refers to

the sparse mesh, it provides a straight comparison of the effectiveness of the tech-

niques, although the original mesh density is not recovered. It is clear that DCT is

the most appropriate technique as errors are very small up to a compression rate

of 80% (Q = 20).

For any larger compression rate, surface errors grow exponentially. For aggres-

sive compression rates of 90% and larger, the DWT technique is the most stable

with relatively small error surfaces. The DFT is the worst performer showing

consistently larger errors, but a point to note is that the RMSE of all three tech-

niques stay near 0.5mm over a long range between 0− 80% compression. The

picture on the right of Figure 7.9 shows the results for reconstruction using the

PDE method to recover the original mesh density, with similar behaviour but with

larger RMSEs. This is expected as the initial errors are compounded by uncer-

tainties of data points estimated by PDE. Consequently, a comparison of the orig-

inal dense mesh with the PDE mesh will show errors introduced by the Laplace

approximation added to the underlying errors of the previous sparse mesh re-

construction. The Matlab code for error estimation can be found in functions

‘gmprEstimateErrors.m’ see page(243-260) and ‘gmprRMSE.m’ page (260) of

Appendix B.

Finally a comparative analysis concerning file sizes was performed as specified in

Tables 6.1 (DFT file format), 7.1 (DCT file format) and 7.2 (DWT file format).

All compressed data are saved in plain ASCII format and the comparison is made

with the Wavefront OBJ file format and a simple triplet of (x,y,z) floating points

capable of holding equivalent 3D data in ASCII format.

119

Figure 7.10: Average compression rates for quality parameter 5 ≤ Q ≤ 100. Left,
sparse mesh; right, sparse mesh with PDE reconstruction

Again the quality parameter was set to Q = [5, 10, 20, 30, 40, 50, 60, 70, 80, 90,

100] and compressed each of the 86 data files in turn. Figure 7.10 depicts the re-

sults for both sparse mesh and with PDE reconstruction. While both images show

the same behaviour, the difference lies in the compression rates achieved. Re-

garding sparse meshes (left hand picture) where the density of triangular faces is

similar in the sparse and uncompressed meshes, compression rates from 90–99%

were achieved compared to OBJ files for all three techniques. When compared

to the equivalent text file, 68–98% for DFT and DCT and 68–94% data compres-

sion rates are generally achieved for DWT. Using the PDE method yields higher

compression rates (picture on the right) ranging from 97.5–99% compared to OBJ

files for all three techniques. Compared to the equivalent text file, compression

rates using the PDE method range from 91–99.5% for DFT and DCT and from

91–98.5% for DWT.

Concerning computation time, the performance of the process of compression and

decompression of data has been measured and it is depicted in Tables 7.9–7.11

with an average compression rate of 98.2% for all 86 models. An aspect to note

is that the proposed methods, although code and computationally efficient, have

limitations concerning real time performance – for instance, the current imple-

mented programs in Matlab cannot be applied to demanding applications such as

real time 3D face recognition. For such applications, a re-implementation in more

120

Table 7.9: Compressed data files and CPU time

File Uncompress Compress Reduction Compress
number size in MB size in MB Rates Time in Seconds

1 3.54 0.102 97.1% 76
2 2.711 0.034 98.7% 42
3 4.1 0.037 99.1% 138
4 3.46 0.035 99% 71
5 2.9 0.031 98.9% 31
6 2.88 0.055 98.1% 55
7 2.90 0.053 98.2% 52
8 1.91 0.061 96.8% 21
9 2.06 0.062 97.1% 24

10 4.31 0.072 98.3% 148
11 3.58 0.053 98.5% 59
12 3.12 0.057 98.2% 60
13 4.15 0.056 98.6% 124
14 2.98 0.050 98.3% 40
15 3.58 0.052 98.5% 70
16 2.16 0.050 97.7% 22
17 2.86 0.061 97.9% 47
18 1.64 0.060 96.3% 14
19 2.84 0.062 97.8% 48
20 2.59 0.057 97.8% 40
21 2.82 0.052 98.1% 47
22 2.55 0.064 97.9% 38
23 2.04 0.054 97.3% 23
24 1.92 0.054 97.2% 21
25 1.67 0.062 96.3% 15
26 2.33 0.051 97.8% 30
27 1.72 0.053 96.9% 16
28 4.68 0.059 98.9% 144
29 2.34 0.052 97.8% 28
30 2.56 0.060 97.6% 34
31 3.18 0.056 98.2% 59
32 1.75 0.057 96.7% 16
33 1.87 0.052 97.2% 19
34 2.99 0.057 98.1% 55
35 2.95 0.055 98.1% 52

121

Table 7.10: Compressed data files and CPU time

File Uncompress Compress Reduction Compress
number size in MB size in MB Rates Time in Seconds

36 2.4 0.052 97.8% 33
37 2.33 0.052 97.7% 31
38 2.50 0.054 97.8% 37
39 2.30 0.052 97.7% 29
40 2.29 0.062 97.3% 33
41 2.45 0.051 97.9% 34
42 1.91 0.052 97.2% 20
43 1.91 0.408 97.9% 21
44 3.44 0.404 98.8% 68
45 4.21 0.036 99.1% 85
46 5.2 0.041 99.2% 140
47 2.99 0.041 98.6% 53
48 2.36 0.042 98.2% 33
49 4.02 0.039 99.1% 101
50 3.73 0.050 98.6% 81
51 2.97 0.040 98.6% 55
52 3.46 0.047 98.6% 65
53 3.90 0.045 98.8% 95
54 3.33 0.052 98.4% 70
55 2.24 0.032 98.6% 32
56 3.52 0.045 98.7% 82
57 3.56 0.037 99.0% 66
58 3.55 0.037 98.9% 68
59 4.22 0.051 98.9% 110
60 3.13 0.042 98.6% 57
61 3.47 0.043 98.8% 72
62 2.99 0.038 98.7% 51
63 6.16 0.042 99.3% 220
64 1.85 0.041 97.7% 19
65 3.34 0.042 98.72% 62

122

Table 7.11: Compressed data files and CPU time

File Uncompress Compress Reduction Compress
number size in MB size in MB Rates Time in Seconds

66 4.01 0.044 98.9% 82
67 4.55 0.045 99.1% 131
68 3.19 0.047 98.5% 67
69 3.91 0.041 98.9% 100
70 2.77 0.044 98.4% 46
71 2.75 0.038 98.6% 47
72 3.15 0.048 98.4% 67
73 2.48 0.037 98.5% 34
74 2.84 0.043 98.5% 44
75 3.42 0.043 98.7% 75
76 3.20 0.035 98.9% 53
77 4.45 0.037 99.2% 97
78 2.57 0.036 98.6% 40
79 3.04 0.041 98.6% 57
80 4.20 0.041 99.0% 90
81 3.96 0.045 98.9% 94
82 2.33 0.044 98.1% 31
83 3.57 0.038 98.9% 56
84 3.04 0.033 98.9% 52
85 3.43 0.046 98.6% 66
86 3.55 0.049 98.6% 73

123

efficient programming language and environments will be necessary. To measure

CPU processing time in all experiments, we used the built-in Matlab function

cputime.

The overall observed pattern is that for sparse meshes (where the density of the

structured planes is similar to the original density of the mesh with no significant

polygon reduction applied) the error surfaces are generally very small with good

compression rates. For high-density meshes errors tend to increase as polygon

reduction introduces errors, which are made worse by the Laplace approximation.

The advantage is that the PDE method is able to achieve higher compression rates

for high-density meshes while the perceived quality of the data does not deterio-

rate significantly.

7.5 Discussion

In this chapter a comparative analysis of 3D data compression using the Discrete

Fourier Transform, Discrete Cosine Transform, and Discrete Wavelet Transform

is presented. It is shown that for the compression of 3D surface patches, both

DCT and DWT based methods are superior to DFT in terms of error measures.

The DCT has fewer coefficients compared to DFT because the implicit period-

icity of DFT gives rise to boundary discontinuities that result in significant high

frequency coefficients. Furthermore, most data (for instance 2D images) do not

have much energy in the high frequency coefficients. In addition, studies have

shown that DCT provides better energy compaction than DFT for most natural

images. Furthermore, DCT approximates a linear interpolation between any two

endpoints by using two lowest frequency coefficients and no discontinuity is ob-

served, (see [Blinn, 1993] for more details).

In order to test the limits of compression while preserving the quality of the mesh,

we carried out sensitivity analysis on the coefficients. Since the coefficients of

DFT, DCT and DWT are the main parameters that define a compression, a dis-

crete quality parameter Q was used ranging from 5–100. In practice, Q means the

124

percentage of coefficients to keep, so Q = 100 means zero compression of coef-

ficients. Q is applied to the vector of imaginary coefficients of DFT, to the DCT

coefficients, and to the detail coefficients of DWT starting from the highest level.

A set of experiments using 86 high density meshes were used to compress and

recover the data. Results demonstrate that both DCT and DWT are more robust

than DFT to parametrically define the set of vertices on a mesh and reconstruct

within a wide range of quality parameters. In particular, if we desire to compress

coefficients very aggressively to over 90% then it is recommended to use DWT.

The PDE method has proved useful to recover the original mesh density, but it

increases the RMSE of the reconstructed model as compared to a sparse mesh.

The Laplace’s equation solved by the method of lines (MOL) has also proved to

be useful, but at the same time a blunt tool for this problem. Despite a higher

RMSE the PDE method has been demonstrated to be an effective technique to

recover high-density meshes and can be exploited in conjunction with other data

compression techniques as demonstrated in this thesis.

125

Chapter 8

Conclusions and Further Work

8.1 Summary

The main focus of this thesis has been to investigate novel methods for 3D data

compression with particular emphasis on surface patches. All data have been

acquired by the GMPR scanner, whose point cloud characteristics are typical of

standard 3D scanners. The research approach involved theoretical and experimen-

tal work. From a theoretical point of view, this thesis has developed new models

for 3D data representation and compression from techniques such as polynomial

interpolation, Fourier Transforms, Discrete Cosine Transforms, Wavelets Trans-

forms, and Partial Differential Equations. Experimental work involved the de-

velopment and testing of algorithms concerning the stability and accuracy of the

solutions.

It is important to stress that the approach in this thesis has been to code the ge-

ometry of the data having connectivity of the mesh as a derived property. This

is novel and contrasts with current approaches in the literature focused on coding

the connectivity of the mesh. In the methods demonstrated here, connectivity is

inferred directly from the vertex structure and thus, at reconstruction stage, no

complex triangulation algorithms such as Delauney’s are required.

126

First, given a set of unstructured 3D data from a surface patch (represented ei-

ther as a point cloud or as a triangulated surface), this thesis has proposed a new

method for imposing structure on the data. The method is based on calculating the

minimum bounding box and orienting the surface patch with a global coordinate

system where the z-axis of the data is oriented with the global Z-axis. Next, a

number of cutting planes oriented with the global X and Y axes are defined over

the bounding box. The number of such planes is arbitrary and depends on the

characteristics of the data but, in principle, the higher the number of planes the

more precise the representation. Each plane intersection defines a line and the

point where this line intersects the surface defines a structured vertex. Each set of

structured vertices lying in the plane can be treated as a one-dimensional signal

with a constant step where each value represents the depth z of the data.

Second, a new method of polynomial interpolation was demonstrated for data

compression. While polynomial interpolation is a well-known technique, specific

problems were solved concerning missing data and required information to allow

full reconstruction after compression. Since the cutting planes define a regular

grid and not all vertices defined over this grid contain data, vertices need to be

marked as valid or invalid. A specific representation was designed with informa-

tion on the step between planes, the range of valid points, and the polynomial

coefficients. This information is saved in plain ASCII allowing high rates of com-

pression together with robust reconstruction of the data. Efficient compression

rates of over 99% were achieved compared to the standard OBJ file format. The

major issues with the method are concerned with the stability of the solution.

While high degree polynomials (around degree 30 of the tested data) can recon-

struct the data to acceptable accuracies with lowest RMSE they also introduce

artefacts into the solution for higher degrees. Therefore, there seem to be intrinsic

limitations to using high degree polynomials to approximate complex real world

surface patches and new approaches are needed.

Third, novel spectral methods based on the Fourier Transform were proposed and

demonstrated. The method follows on from polynomial interpolation and is based

on coding the information in each plane by saving the scalar and vector (real and

127

imaginary) Fourier coefficients. A quality parameter was introduced applied to the

imaginary coefficients. A quality of 50 means discarding half of the coefficients

from back to front, a quality of 100 means discard none. Note that the quality pa-

rameter is not applied to the real coefficients otherwise, it would adversely affect

the quality of the reconstructed mesh. Upon reconstruction, all discarded coeffi-

cients are padded with zeros. The technique proved efficient and accurate, with

RMSE at around 0.5mm for quality ranging from 10–100 with compression rates

from 98–90%. The largest errors were observed at the boundaries of the model

and on complex areas of the surface.

Fourth, the concepts of Partial Differential Equations were introduced and a novel

method of reconstructing the mesh was demonstrated. The problem PDEs are ad-

dressing is that, the technique of cutting planes to structure the mesh normally

results in a sparse mesh with fewer polygons than the original unstructured data.

This can be significant, as experiments have shown that the cutting planes can re-

duce the original mesh to a quarter of its original size with no significant deterio-

ration in quality. For some applications (such as 3D face recognition), it is desired

to recover the original mesh density so not to impair recognition algorithms while

not compromising compression ratios. The PDE method was applied over pairs of

cutting planes used as boundary conditions and Laplace’s equations were solved

by the method of lines over this domain, thus recovering the original mesh density.

Results have shown an increase in RMSE by a factor of 6 with compression rates

from 99.8–97.5% for quality 5–100. Laplace’s equation proved to be a blunt tool

but still, the perceived quality of the reconstructed models makes the DFT with

the PDE method a strong, valid solution.

Fifth, a novel method based on the Discrete Cosine Transform was proposed and

demonstrated. Because the DCT only has real coefficients, the ASCII representa-

tion is more compact when compared to DFT. The quality parameter here applies

to such coefficients and, similarly to DFT, all discarded coefficients are padded

with zeros upon reconstruction. Experiments were carried out with and without

the PDE method. Without PDE, results show very low RMSE, below 0.2mm for

quality ranging 20–100. Compression rates in the order of 98–90% were achieved

128

for quality 5–100. When PDE is included, the behaviour is the same, but with

larger RMSE and higher compression rates ranging from 99.8–97.5% for the same

quality parameters. With or without PDE, the DCT technique proved to be more

accurate than DFT.

Sixth, a novel method for data compression based on Wavelet Transforms, was

introduced and demonstrated. The DWT requires a more complex representation

of the compressed data when compared with DFT and DCT. Here, it is necessary

to keep all approximation and detail coefficients of the transformation. A 3-level

Daubechie’s DWT was used, as experiments have shown that little information

is gained by increasing the level of decomposition. In this case, no compression

is applied to the approximation coefficients, only the high frequency detail co-

efficients D1,D2,D3 are subject to compression. A quality parameter is applied

similarly to DFT and DCT, starting to discard from D3, D2 then D1 in that order.

Upon reconstruction, all discarded coefficients are padded with zeros. For most

of the quality range from 5–100 DWT compression proved equivalent to DCT in

terms of RMSE and compression rates. However, it proved superior for very low

levels of quality, which means if one wished to compress very aggressively with

quality at or below 10, the DWT is the preferred technique.

8.2 Conclusions

Evaluating the success of these methods will depend on the applications in which

they are used; the assumption made here is that 3D surfaces are fairly complex

with concave and convex local features. The human face is such a case, and it

has been shown here that some errors show up around the nostril area and at the

boundaries of the model. The observed errors may not impair applications such as

in face recognition, because the nostrils are a known cause of errors and normally

measurements in this area are avoided. Thus, it is expected that compression

and reconstruction by the techniques demonstrated in this thesis would not cause

significant problems for most applications.

129

The method of cutting planes applied to an unstructured point cloud or triangu-

lated surface imposes a regular grid structure on the vertices and has proved a

necessary step in applying the techniques described in this thesis. It is, in itself, a

compression technique as vertices can now be saved for each plane without con-

nectivity information as this can be inferred from the structure of the planes.

The source of some errors with the DFT method can be traced to the rounding

off of the Fourier coefficients. Rounding increases the efficiency of data compres-

sion: for instance, for each entry in those vectors if abs(an,bn)< 0.001 the values

are rounded to zero. However, there are applications (outside the face recogni-

tion domain) where these very complex and detailed surfaces must be accurately

modelled and the rounding operation may be skipped altogether. The result would

be a less efficient compression but a more accurate data reconstruction. Another

issue is to control the quality parameter for the intended application. High quality

means larger files but this may not be a limiting factor for most uses. The main

aspect about the technique is that all data are saved into relatively small ASCII

files making them amenable to fast and secure encryption algorithms that can be

efficiently and securely transmitted over a network.

The PDE method applied at the reconstruction stage proved very successful in

recovering the original mesh density, which may be crucial to some applications.

Laplace’s equation is deemed an appropriate tool to solve the problem but, at the

same time, it introduced errors as it is evaluated between pairs of cutting planes

with obvious disregard to data lying in other adjacent planes. It is observed that

the method of lines tends to evaluate Laplace’s equation in almost straight lines

between the boundaries and perhaps a more specialised function needs to be de-

vised.

The comparative analysis of DFT, DCT and DWT in connection with PDE demon-

strate that both DCT and DWT are more robust than DFT to parametrically define

the set of vertices on a mesh and reconstruct within a wide range of quality param-

eters. In particular, if a very aggressive compression to over 90% is required then

it is recommended to use the DWT technique. All techniques have been tested

130

with an adjustable quality parameter, and yield low and relatively low RMSE ei-

ther with or without PDE interpolation.

The range of 3D applications is continuously expanding: examples include med-

ical visualisation, games, entertainment, engineering, CAD/CAM collaborative

design, e-learning, and security, to mention just a few. Moreover, facilities for

delivering 3D interactive models using a standard web browser are becoming

available from Google and Mozilla; the number of such applications will also

substantially increase in the near future. Internet bandwidth imposes hard limits

and, although bandwidth is increasing slowly, current infrastructure constraints

mean that the availability of efficient 3D compression technologies would benefit

a wide range of industries.

8.3 Future Work

The work in this thesis presented a complete and coherent picture of employing

new methods for 3D compression and reconstruction of surface patches. Never-

theless, the possible extensions to this work are both broad and numerous. Some

possible extensions to be investigated are outlined as follows.

• The use of splines will be investigated, as it is possible to get more accurate

results than with polynomials, and without stability problems. The price

to be paid is that this will generate larger files, as the coefficients of all

polynomials between control points need to be recorded.

• Future work will be focused on defining optimal PDE parameters aiming

at reducing error surfaces. In particular, alternatives to Laplace’s equation

and to the method of lines that would be more appropriate to model com-

plex 3D data with convex and concave regions. Furthermore, it will involve

performing sensitivity analyses concerning levels of noise, smoothness of

the surface, rounding errors and the complexity of data within each cutting

plane.

131

• As an alternative to PDE and Laplace’s equation, work is in progress on

developing a moving 4th order polynomial interpolation applied to 4 adja-

cent vertices on 4 consecutive planes and recursively estimating the missing

vertices.

• Equally, as an alternative to the method of lines, work is in progress on

developing an approach for solving elliptic PDEs by spectral methods.

• While the human eye can smooth out the reconstructed meshes and perceive

little difference between various compression rates, further work includes

carrying out sensitivity analysis of face recognition algorithms operating on

compressed meshes (as, for instance in [Rodrigues and Robinson, 2011]).

• Finally, and this is perhaps the most demanding aspects of future work, it

will involve investigating how the methods demonstrated here would scale

up to full 3D models as opposed to surface patches.

132

References

3DCT [2010], 3D Compression Technologies Inc., www.3dcompress.com/ we-

b/default.asp.

Adamson, A. and Alexa, M. [2003], Approximating and intersecting surfaces

from points, in ‘Proceedings of the 2003 Eurographics/ACM SIGGRAPH sym-

posium on Geometry processing’, Eurographics Association, pp. 230–239.

Adjerid, S., Flaherty, J. E. and Babuška, I. [1999], ‘A posteriori error estimation

for the finite element method-of-lines solution of parabolic problems’, Mathe-

matical Models and Methods in Applied Sciences 9(02), 261–286.

Ahmat, N., Ugail, H. and Castro, G. G. [2011], ‘Method of modelling the com-

paction behaviour of cylindrical pharmaceutical tablets’, International journal

of pharmaceutics 405(1), 113–121.

Akkouche, S. and Galin, E. [2001], Adaptive implicit surface polygonization us-

ing marching triangles, in ‘Computer Graphics Forum’, Vol. 20, Wiley Online

Library, pp. 67–80.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C. T.

[2003], ‘Computing and rendering point set surfaces’, Visualization and Com-

puter Graphics, IEEE Transactions on 9(1), 3–15.

Amenta, N. and Kil, Y. J. [2004], ‘Defining point-set surfaces’, 23(3), 264–270.

Ames, A. L., Nadeau, D. R. and Moreland, J. [1997], VRML 2.0 sourcebook,

Wiley.

133

Ang, D., Nghia, N. and Tam, N. [1998], ‘Regularized solutions of a cauchy prob-

lem for the laplace equation in an irregular layer: a three-dimensional model’,

Acta Math. Vietnam 23(1), 65–74.

Arnaud, R. and Barnes, M. C. [2006], COLLADA: sailing the gulf of 3D digital

content creation, AK Peters Wellesley.

Arnaud, R. and Parisi, T. [2007], ‘Developing web applications with collada and

x3d’, A Whitepaper. March 25.

Auerbach, J. S., Chow, C.-S., Crigler, J. C. and Kaplan, M. A. [1997], ‘Creation

and distribution of cryptographic envelope’. US Patent 5,673,316.

Babuska, I. [1995], Modeling, mesh generation, and adaptive numerical methods

for partial differential equations, Vol. 75, Springer.

Balakrishnan, K. and Ramachandran, P. A. [1999], ‘A particular solution trefftz

method for non-linear poisson problems in heat and mass transfer’, Journal of

Computational Physics 150(1), 239–267.

Bartels, S., Carstensen, C. and Hecht, A. [2006], ‘P2q2iso2d= 2d isopara-

metric fem in matlab’, Journal of computational and applied mathematics

192(2), 219–250.

Belkasim, S. [2011], Multi-resolution analysis using symmetrized odd and

even dct transforms, in ‘Data Compression Conference (DCC), 2011’, IEEE,

pp. 447–447.

Bergh, J. and Löfström, J. [1976], Interpolation spaces. An introduction, Berlin.

Bernatz, R. [2010], Fourier Series and Numerical Methods for Partial Differential

Equations, Wiley.

Beylkin, G. [1993], Wavelets and fast numerical algorithms, in ‘Proceedings of

symposia in applied mathematics’, Vol. 47, pp. 89–117.

134

Bhamra, K. S. [2010], Partial Differential Equations, Prentice-Hall Of India Pvt.

Limited.

Blinn, J. F. [1993], ‘What’s that deal with the dct?’, Computer Graphics and Ap-

plications, IEEE 13(4), 78–83.

Bloomenthal, J. [1988], ‘Polygonization of implicit surfaces’, Computer Aided

Geometric Design 5(4), 341–355.

Bloor, M. I. and Wilson, M. J. [1997], ‘Generating parametrizations of wing ge-

ometries using partial differential equations’, Computer methods in applied me-

chanics and engineering 148(1), 125–138.

Bloor, M. and Wilson, M. [1989], ‘Generating blend surfaces using partial differ-

ential equations’, Computer-Aided Design 21(3), 165–171.

Böhm, W., Farin, G. and Kahmann, J. [1984], ‘A survey of curve and surface

methods in cagd’, Computer Aided Geometric Design 1(1), 1–60.

Bremer, P.-T. and Hart, J. C. [2005], A sampling theorem for mls surfaces, in

‘Point-Based Graphics, 2005. Eurographics/IEEE VGTC Symposium Proceed-

ings’, IEEE, pp. 47–54.

Briggs, W. L. et al. [1995], The DFT: An Owners’ Manual for the Discrete Fourier

Transform, Siam.

Brink, W., Robinson, A. and Rodrigues, M. A. [2008], Indexing uncoded stripe

patterns in structured light systems by maximum spanning trees., in ‘BMVC’,

pp. 1–10.

Brown, J. and Churchill, R. [2012a], Fourier Series and Boundary Value Prob-

lems, Brown and Churchill series, McGraw-Hill.

Brown, J. W. and Churchill, R. V. [2012b], ‘Fourier series and boundary value

problems’, AMC 10, 12.

135

Catmull, E. and Clark, J. [1978], ‘Recursively generated b-spline surfaces on ar-

bitrary topological meshes’, Computer-aided design 10(6), 350–355.

Chaikin, G. M. [1974], ‘An algorithm for high-speed curve generation’, Computer

graphics and image processing 3(4), 346–349.

Chen, J. and Chen, C. [2008], Foundations of 3D Graphics Programming: Using

JOGL and Java3D, Foundations of 3D Graphics Programming: Using JOGL

and Java3D, Springer.

Cohen, E., Lyche, T. and Riesenfeld, R. [1980], ‘Discrete B-splines and subdi-

vision techniques in computer-aided geometric design and computer graphics’,

Computer graphics and image processing 14(2), 87–111.

Cooley, J. W., Lewis, P. A. and Welch, P. D. [1969], ‘The fast fourier transform

and its applications’, Education, IEEE Transactions on 12(1), 27–34.

Cooley, J. W. and Tukey, J. W. [1965], ‘An algorithm for the machine calculation

of complex fourier series’, Mathematics of computation 19(90), 297–301.

Dahmen, W., Müller, S. and Schlinkmann, T. [1999], ‘On a robust adaptive multi-

grid solver for convection-dominated problems’.

Davidson, D. and Hanson, R. [2004], ‘Interpreting shock tube ignition data’, In-

ternational journal of chemical kinetics 36(9), 510–523.

Davis, P. J. [1975], Interpolation and approximation, Courier Dover Publications.

de Boor, C. [2001], A Practical Guide to Splines, Applied Mathematical Sciences,

Springer New York.

de Zeeuw, P. M. [2005], ‘A multigrid approach to image processing’, pp. 396–407.

Deering, M. [1995], Geometry compression, in ‘Proceedings of the 22nd annual

conference on Computer graphics and interactive techniques’, ACM, pp. 13–20.

Dey, T. K. and Sun, J. [2005], . an adaptive mls surface for reconstruction with

guarantees., in ‘Symposium on Geometry Processing’, pp. 43–52.

136

Dodgson, N., Floater, M. and Sabin, M. [2006], Advances in Multiresolution for

Geometric Modelling, Mathematics and Visualization, Springer.

Doo, D. and Sabin, M. [1978], ‘Behaviour of recursive division surfaces near

extraordinary points’, Computer-Aided Design 10(6), 356–360.

Drath, R., Luder, A., Peschke, J. and Hundt, L. [2008], Automationml-the glue

for seamless automation engineering, in ‘Emerging Technologies and Factory

Automation, 2008. ETFA 2008. IEEE International Conference on’, IEEE,

pp. 616–623.

Du, H. and Qin, H. [2005], ‘Dynamic pde-based surface design using geometric

and physical constraints’, Graphical Models 67(1), 43–71.

Duan, Y., Yang, L., Qin, H. and Samaras, D. [2004], Shape reconstruction from 3d

and 2d data using pde-based deformable surfaces, in ‘Computer Vision-ECCV

2004’, Springer, pp. 238–251.

Duffy, D. G. [2008], Mixed boundary value problems, CRC Press.

Dyn, N. and Levin, D. [2002], ‘Subdivision schemes in geometric modelling’,

Acta Numerica 11, 73–144.

Edwards, R. E. [1979], Fourier series, Springer.

Elyan, E. and Ugail, H. [2007], ‘Reconstruction of 3d human facial images using

partial differential equations’, Journal of computers 2(8), 1–8.

Enderling, H., Anderson, A., Chaplain, M., Rowe, G. et al. [2006], ‘Visualisation

of the numerical solution of partial differential equation systems in three space

dimensions and its importance for mathematical models in biology’, Mathe-

matical Biosciences and Engineering 3(4), 571.

Evans, L. [2010], Partial Differential Equations, Vol. 19 of Graduate studies in

mathematics, American Mathematical Society.

URL: http://www.ams.org/bookstore-getitem/item=GSM-19-R

137

Farin, G. E. [1996], Curves and surfaces for computer-aided geometric design: a

practical code, Academic Press, Inc.

Farlow, S. J. [2012], Partial differential equations for scientists and engineers,

Courier Dover Publications.

Foley, J. [1996], Computer Graphics: Principles and Practice, Addison-Wesley

systems programming series, Addison-Wesley.

Forsey, D. R. and Bartels, R. H. [1988], Hierarchical b-spline refinement, in ‘ACM

SIGGRAPH Computer Graphics’, Vol. 22, ACM, pp. 205–212.

Gachpazan, M., Kerayechian, A. and Kamyad, A. [2000], ‘A new method for

solving nonlinear second order partial differential equations’, Korean Journal

of Computational & Applied Mathematics 7(2), 333–345.

Gakhov, F. D. [1990], Boundary value problems, Courier Dover Publications.

Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A. and Seidel, H.-P. [2005],

Towards pde-based image compression, in ‘Variational, Geometric, and Level

Set Methods in Computer Vision’, Springer, pp. 37–48.

Geng, B., Zhang, H., Wang, H. and Wang, G. [2013], ‘Approximate poisson disk

sampling on mesh’, Science China Information Sciences 56(9), 1–12.

Gharge, S. and Krishnan, S. [2007], Simulation and implementation of discrete

cosine transform for mpeg-4, in ‘Conference on Computational Intelligence and

Multimedia Applications, 2007. International Conference on’, Vol. 4, IEEE,

pp. 137–141.

Golbabai, A. and Javidi, M. [2007], ‘A variational iteration method for solving

parabolic partial differential equations’, Computers & Mathematics with Appli-

cations 54(7), 987–992.

Grafakos, L. [2004], Classical and Modern Fourier Analysis, Pearson/Prentice

Hall.

URL: http://books.google.co.uk/books?id=MToZAQAAIAAJ

138

Grattan-Guinness, I. and Ravetz, J. [2003], Joseph Fourier, 1768-1830: A Survey

of His Life and Work, MIT Press.

URL: http://books.google.co.uk/books?id=DNmKHAAACAAJ

Grebennikov, A. [2005], Solution of direct and inverse problems for laplace type

equations by gr-method, in ‘Proceedings of the WSEAS International Confer-

ences MATH05, Cancun’, pp. 1–6.

Griffiths, G. and Schiesser, W. E. [2010], Traveling wave analysis of partial differ-

ential equations: numerical and analytical methods with MATLAB and Maple,

Academic Press.

Gumhold, S. and Straßer, W. [1998], Real time compression of triangle mesh con-

nectivity, in ‘Proceedings of the 25th annual conference on Computer graphics

and interactive techniques’, ACM, pp. 133–140.

Haberman, R. [1983], Elementary applied partial differential equations, Prentice

Hall Englewood Cliffs, NJ.

Hadamard, J. [2003], Lectures on Cauchy’s problem in linear partial differential

equations, Courier Dover Publications.

Haidar, H., Egorova, S. and Soul, J. S. [2005], ‘New numerical solution of the

laplace equation for tissue thickness measurement in three-dimensional mri’,

Journal of Mathematical Modelling and Algorithms 4(1), 83–97.

Hale, J. and Lunel, S. [1993], Introduction to Functional Differential Equations,

number v. 99 in ‘Applied Mathematical Sciences’, Springer.

URL: http://books.google.co.uk/books?id=ZNLjAJQMhqwC

Halpern, D., Wilson, H. B. and Turcotte, L. H. [2002], Advanced mathematics

and mechanics applications using MATLAB, CRC press.

Hamdi, S., Schiesser, W. and Griffiths, G. [2007], ‘Method of lines’, Scholarpedia

2(7), 2859.

139

Hanna, J. R. and Rowland, J. H. [2008], Fourier series, transforms, and boundary

value problems, Courier Dover Publications.

Harding, R. [1985], Fourier Series and Transforms, A computer illustrated text,

Taylor & Francis.

Hase, H.-L. [1997], Dynamische virtuelle Welten mit VRML 2.0, Dpunkt, Verlag

für digitale Technologie.

Heideman, M. T., Johnson, D. H. and Burrus, C. S. [1985], ‘Gauss and the history

of the fast fourier transform’, Archive for history of exact sciences 34(3), 265–

277.

Helsing, J. and Wadbro, E. [2005], ‘Laplaces equation and the dirichlet–neumann

map: a new mode for mikhlins method’, Journal of Computational Physics

202(2), 391–410.

Hill, F. and Kelley, S. [2007], Computer Graphics Using OpenGL, 3/E, Pearson.

Isenburg, M. and Snoeyink, J. [2000], Face fixer: Compressing polygon meshes

with properties, in ‘Proceedings of the 27th annual conference on Computer

graphics and interactive techniques’, ACM Press/Addison-Wesley Publishing

Co., pp. 263–270.

Jain, A. and Jain, J. [1978], ‘Partial differential equations and finite difference

methods in image processing–part ii: Image restoration’, Automatic Control,

IEEE Transactions on 23(5), 817–834.

Jameson, L. [1993], On the daubechies-based wavelet differentiation matrix,

Technical report, DTIC Document.

Jeffrey, A. [2003], Applied Partial Differential Equations: An Introduction, Aca-

demic Press.

URL: http://books.google.co.uk/books?id=xHfgL0xF-p8C

Kassam, A.-K. and Trefethen, L. N. [2005], ‘Fourth-order time-stepping for stiff

pdes’, SIAM Journal on Scientific Computing 26(4), 1214–1233.

140

Kato, A. and Ohno, N. [2009], ‘Construction of three-dimensional tooth model

by micro-computed tomography and application for data sharing’, Clinical oral

investigations 13(1), 43–46.

Kessenich, J., Baldwin, D. and Rost, R. [2004], ‘The opengl shading language’,

Language version 1.

Kim, D. and Shin, D. [2003], Energy-based adaptive dct/idct for video coding, in

‘Multimedia and Expo, 2003. ICME’03. Proceedings. 2003 International Con-

ference on’, Vol. 1, IEEE, pp. I–557.

King, D., Rossignac, J. and Szymczak, A. [2000], ‘Connectivity compression for

irregular quadrilateral meshes’, arXiv preprint cs/0005005 .

Koch, C. and Segev, I. [1998], Methods in neuronal modeling: from ions to net-

works, MIT press.

Kornprobst, P., Deriche, R. and Aubert, G. [1999], ‘Image sequence analysis

via partial differential equations’, Journal of Mathematical Imaging and Vision

11(1), 5–26.

Kronrod, B. and Gotsman, C. [2000], Efficient coding of non-triangular mesh

connectivity, in ‘Computer Graphics and Applications, 2000. Proceedings. The

Eighth Pacific Conference on’, IEEE, pp. 235–242.

Kubiesa, S., Ugail, H. and Wilson, M. [2004], ‘Interactive design using higher

order pdes’, The Visual Computer 20(10), 682–693.

Lahanas, M., Kemmerer, T., Milickovic, N., Karouzakis, K., Baltas, D. and Zam-

boglou, N. [2000], ‘Optimized bounding boxes for three-dimensional treatment

planning in brachytherapy’, Medical Physics 27(10), 2333–2342.

Lange, C. and Polthier, K. [2005], ‘Anisotropic smoothing of point sets’, Com-

puter Aided Geometric Design 22(7), 680–692.

141

Lee, H., Alliez, P. and Desbrun, M. [2002], Angle-analyzer: A triangle-quad mesh

codec, in ‘Computer Graphics Forum’, Vol. 21, Wiley Online Library, pp. 383–

392.

Li, J. and Hero, A. O. [2004], ‘A fast spectral method for active 3d shape recon-

struction’, Journal of Mathematical Imaging and Vision 20(1-2), 73–87.

Li, J. and Kuo, C.-C. [1998], A dual graph approach to 3d triangular mesh com-

pression, in ‘Image Processing, 1998. ICIP 98. Proceedings. 1998 International

Conference on’, Vol. 2, IEEE, pp. 891–894.

Linsen, L. [2001], Point cloud representation, Univ., Fak. für Informatik, Biblio-

thek.

Liu, F., Anh, V. and Turner, I. [2004], ‘Numerical solution of the space fractional

fokker–planck equation’, Journal of Computational and Applied Mathematics

166(1), 209–219.

Loop, C. [1994], Smooth spline surfaces over irregular meshes, in ‘Proceedings of

the 21st annual conference on Computer graphics and interactive techniques’,

ACM, pp. 303–310.

Lord, G., Powell, C. and Shardlow, T. [2014], An Introduction to Computational

Stochastic PDEs, Cambridge Texts in Applied Mathematics, Cambridge Uni-

versity Press.

Mai-Duy, N. and Tran-Cong, T. [2001], ‘Numerical solution of differential equa-

tions using multiquadric radial basis function networks’, Neural Networks

14(2), 185–199.

Mainberger, M. and Weickert, J. [2009], Edge-based image compression with ho-

mogeneous diffusion, in ‘Computer Analysis of Images and Patterns’, Springer,

pp. 476–483.

Malcolm Bloor, I. and Wilson, M. J. [1996], ‘Spectral approximations to pde sur-

faces’, Computer-Aided Design 28(2), 145–152.

142

Mathelin, L. and Gallivan, K. [2010], ‘A compressed sensing approach for partial

differential equations with random input data’, Comput. Methods Appl. Mech.

Eng.(2010, submitted) .

Mathews, J. H. and Fink, K. D. [1994], ‘Using matlab as a programming language

for numerical analysis’, International Journal of Mathematical Education in

Science and Technology 25(4), 481–490.

Meyer, Y. [1990], ‘Ondelettes, vol. i: Ondelettes et op erateurs’, Hermann, Paris .

Min, P., Halderman, J. A., Kazhdan, M. and Funkhouser, T. A. [2003], Early

experiences with a 3d model search engine, in ‘Proceedings of the eighth inter-

national conference on 3D Web technology’, ACM, pp. 7–ff.

Nicholl, P., Ahmad, A. and Amira, A. [2010], Optimal discrete wavelet transform

(dwt) features for face recognition, in ‘Circuits and Systems (APCCAS), 2010

IEEE Asia Pacific Conference on’, IEEE, pp. 132–135.

Peloquin, C. E. [2009], ‘Determination of critical factors for fast and accurate 2d

medical image deformation’.

Peng, J., Kim, C.-S. and Jay Kuo, C.-C. [2005], ‘Technologies for 3d mesh com-

pression: A survey’, Journal of Visual Communication and Image Representa-

tion 16(6), 688–733.

Peng, J. and Kuo, C.-C. J. [2005], Geometry-guided progressive lossless 3d mesh

coding with octree (ot) decomposition, in ‘ACM Transactions on Graphics

(TOG)’, Vol. 24, ACM, pp. 609–616.

Pennebaker, W. B. and Mitchell, J. L. [1993], JPEG: Still image data compression

standard, Springer.

Piegl, L. [1991], ‘On nurbs: a survey’, IEEE Computer Graphics and Applications

11(1), 55–71.

Piegl, L. and Tiller, W. [1987], ‘Curve and surface constructions using rational

b-splines’, Computer-Aided Design 19(9), 485–498.

143

Pinsky, M. [2011], Partial Differential Equations and Boundary-value Problems

with Applications, Pure and applied undergraduate texts, American Mathemat-

ical Society.

URL: http://books.google.co.uk/books?id=vi1HOeTwV5YC

Pu, I. M. [2005], Fundamental data compression, Butterworth-Heinemann.

Qian, S.-E., Hollinger, A. B., Williams, D. and Manak, D. [1998], 3d data com-

pression of hyperspectral imagery using vector quantization with ndvi-based

multiple codebooks, in ‘Geoscience and Remote Sensing Symposium Proceed-

ings, 1998. IGARSS’98. 1998 IEEE International’, Vol. 5, IEEE, pp. 2680–

2684.

Qian, Z., Fu, C.-L. and Xiong, X.-T. [2006], ‘Fourth-order modified method for

the cauchy problem for the laplace equation’, Journal of Computational and

Applied Mathematics 192(2), 205–218.

Qing, X. G. P. [2005], ‘Geometric modelling by discrete surface patches based on

geometric partial differential equations [j]’, Journal of Computer Aided Design

& Computer Graphics 12, 002.

Quinn, J. A., Langbein, F. C. and Martin, R. R. [2007], Low-discrepancy point

sampling of meshes for rendering., in ‘SPBG’, pp. 19–28.

Renardy, M. and Rogers, R. C. [2004], An introduction to partial differential equa-

tions, Vol. 4, Springer.

Ritger, P. and Rose, N. [1968], Differential Equations with Applications, Dover

Books on Mathematics Series, Dover Publications.

URL: http://books.google.co.uk/books?id=Eoaxq73utboC

Rivara, M.-C. [1984], ‘Design and data structure of fully adaptive, multigrid,

finite-element software’, ACM Transactions on Mathematical Software (TOMS)

10(3), 242–264.

144

Robinson, A., Alboul, L. and Rodrigues, M. [2004], ‘Methods for indexing stripes

in uncoded structured light scanning systems’, Journal of WSCG 12(3), 371–

378.

Rodrigues, M. A. and Robinson, A. [2010], ‘Novel methods for real-time 3d facial

recognition’, Strategic Advantage of Computing Information Systems in En-

terprise Management, Majid Sarrafzadeh and Panagiotis Petratos (Eds) ISBN

pp. 978–960.

Rodrigues, M. A. and Robinson, A. [2011], Real-time 3d face recognition using

line projection and mesh sampling, in ‘Proceedings of the 4th Eurographics

conference on 3D Object Retrieval’, Eurographics Association, pp. 9–16.

Rodrigues, M. A., Robinson, A. and Brink, W. [2007], Issues in fast 3d reconstruc-

tion from video sequences, in ‘Proceedings of the 9th WSEAS international

conference on Mathematical and computational methods in science and engi-

neering’, World Scientific and Engineering Academy and Society (WSEAS),

pp. 312–317.

Rodrigues, M. A., Robinson, A. and Brink, W. [2008], ‘Fast 3d reconstruction and

recognition’, New Aspects of Signal Processing, Computational Geometry and

Artificial Vision, 8th WSEAS ISCGAV, Rhodes pp. p15–21.

Rodrigues, M. A., Robinson, A. and Osman, A. [2010], Efficient 3d data com-

pression through parameterization of free-form surface patches, in ‘Signal Pro-

cessing and Multimedia Applications (SIGMAP), Proceedings of the 2010 In-

ternational Conference on’, IEEE, pp. 130–135.

Rodrigues, M., Robinson, A., Alboul, L. and Brink, W. [2006], ‘3d modelling and

recognition’, WSEAS Transactions on Information Science and Applications

3(11), 2118–2122.

Rossignac, J. [2001], 3d compression made simple: Edgebreaker with zipand-

wrap on a corner-table, in ‘Shape Modeling and Applications, SMI 2001 Inter-

national Conference on.’, IEEE, pp. 278–283.

145

Rule, K. [1996], 3D graphics file formats: a programmer’s reference, Addison

Wesley Longman Publishing Co., Inc.

Sapiro, G. [2006], Geometric partial differential equations and image analysis,

Cambridge university press.

Saucez, P., Wouwer, A. V. and Schiesser, W. [1998], ‘An adaptive method of lines

solution of the korteweg-de vries equation’, Computers & Mathematics with

Applications 35(12), 13–25.

Schiesser, W. [1991], The Numerical Method of Lines: Integration of Partial Dif-

ferential Equations, Academic Press.

URL: http://books.google.co.uk/books?id=1vLFQgAACAAJ

Schiesser, W. [1994], ‘Method of lines solution of the korteweg-de vries equation’,

Computers & Mathematics with Applications 28(10), 147–154.

Schneider, K. and Vasilyev, O. V. [2009], ‘Wavelet methods in computational fluid

dynamics*’, Annual Review of Fluid Mechanics 42(1), 473.

Schneider, R. and Kobbelt, L. [2001], ‘Geometric fairing of irregular meshes for

free-form surface design’, Computer aided geometric design 18(4), 359–379.

Sharan, M., Kansa, E. and Gupta, S. [1997], ‘Application of the multiquadric

method for numerical solution of elliptic partial differential equations’, Applied

Mathematics and Computation 84(2), 275–302.

Sheng, Y., Willis, P., Castro, G. G. and Ugail, H. [2008], Pde-based facial anima-

tion: making the complex simple, in ‘Advances in Visual Computing’, Springer,

pp. 723–732.

Shepard, D. [1968], A two-dimensional interpolation function for irregularly-

spaced data, in ‘Proceedings of the 1968 23rd ACM national conference’,

ACM, pp. 517–524.

146

Shikhare, D., Babji, S. V. and Mudur, S. [2002], Compression techniques for dis-

tributed use of 3d data–an emerging media type on the internet, in ‘Proceedings

of the International Conference on Computer Communication’, Vol. 15, p. 676.

Shu, C., Ding, H. and Yeo, K. [2003], ‘Local radial basis function-based differ-

ential quadrature method and its application to solve two-dimensional incom-

pressible navier–stokes equations’, Computer Methods in Applied Mechanics

and Engineering 192(7), 941–954.

Smolic, A., Mueller, K., Merkle, P., Fehn, C., Kauff, P., Eisert, P. and Wiegand, T.

[2006], 3d video and free viewpoint video-technologies, applications and mpeg

standards, in ‘Multimedia and Expo, 2006 IEEE International Conference on’,

IEEE, pp. 2161–2164.

Strang, G. and Aarikka, K. [1986], Introduction to applied mathematics, Vol. 16,

Wellesley-Cambridge Press Wellesley, MA.

Stürmer, M., Köstler, H. and Rüde, U. [2008], ‘A fast full multigrid solver for

applications in image processing’, Numerical linear algebra with applications

15(2-3), 187–200.

Szymczak, A., King, D. and Rossignac, J. [2001], ‘An edgebreaker-based efficient

compression scheme for regular meshes’, Computational Geometry 20(1), 53–

68.

Szymczak, A., Rossignac, J. and King, D. [2002], ‘Piecewise regular meshes:

Construction and compression’, Graphical Models 64(3), 183–198.

Talukder, K. H. and Harada, K. [2011], Enhancement of discrete wavelet trans-

form (dwt) for image transmission over internet, in ‘Information Technology:

New Generations (ITNG), 2011 Eighth International Conference on’, IEEE,

pp. 1054–1055.

Taubin, G., Horn, W. P., Lazarus, F. and Rossignac, J. [1998], ‘Geometry coding

and vrml’, Proceedings of the IEEE 86(6), 1228–1243.

147

Taubin, G. and Rossignac, J. [1998], ‘Geometric compression through topological

surgery’, ACM Transactions on Graphics (TOG) 17(2), 84–115.

Tolstov, G. P. [2012], Fourier series, Courier Dover Publications.

Touma, C. and Gotsman, C. [1998], ‘Triangle mesh compression’, PROC

GRAPHICS INTERFACE. pp. 26-34. 1998 .

Trefethen, L. [2000], Spectral Methods in MATLAB, Software, Environments, and

Tools, Society for Industrial and Applied Mathematics.

URL: http://books.google.co.uk/books?id=pB4xiZKZ4ecC

Trèves, F. [1975], Basic linear partial differential equations, Vol. 62, Academic

press.

Triebel, H. [1999], Interpolation Theory - Function Spaces - Differential Opera-

tors, Wiley.

URL: http://books.google.co.uk/books?id=BuWbGQAACAAJ

Ugail, H. [2003], ‘Parametric design and optimisation of thin-walled structures

for food packaging’, Optimization and Engineering 4(4), 291–307.

Ugail, H., Bloor, M. I. and Wilson, M. J. [1999], ‘Techniques for interactive design

using the pde method’, ACM Transactions on Graphics (TOG) 18(2), 195–212.

Ugail, H. and Sourin, A. [2008], Partial differential equations for function based

geometry modelling within visual cyberworlds, in ‘Cyberworlds, 2008 Interna-

tional Conference on’, IEEE, pp. 224–231.

Ugail, H. and Wilson, M. [2003], ‘Efficient shape parametrisation for automatic

design optimisation using a partial differential equation formulation’, Comput-

ers & structures 81(28), 2601–2609.

Urban, K. [2009], Wavelet methods for elliptic partial differential equations, Ox-

ford University Press Oxford.

148

Van Schijndel, A. [2003], ‘Modeling and solving building physics problems with

femlab’, Building and Environment 38(2), 319–327.

Vasilyev, O. V. and Kevlahan, N. K.-R. [2005], ‘An adaptive multilevel wavelet

collocation method for elliptic problems’, Journal of Computational Physics

206(2), 412–431.

Vasilyev, O. V., Yuen, D. A., Paolucci, S. et al. [1997], ‘Wavelets: an alterna-

tive approach to solving pdes’, UMSI research report/University of Minnesota

(Minneapolis, Mn). Supercomputer institute 97, 97.

Vonesch, C., Blu, T. and Unser, M. [2007], ‘Generalized daubechies wavelet fam-

ilies’, Signal Processing, IEEE Transactions on 55(9), 4415–4429.

Wali, M. K., Murugappan, M., Ahmad, R. B. and Zheng, B. S. [2012], Develop-

ment of discrete wavelet transform (dwt) toolbox for signal processing applica-

tions, in ‘Biomedical Engineering (ICoBE), 2012 International Conference on’,

IEEE, pp. 211–216.

Walker, J. [1996], Fast Fourier Transforms, Second Edition, Studies in Advanced

Mathematics, Taylor & Francis.

URL: http://books.google.co.uk/books?id=cOA-vwKIffkC

Wang, C., Shi, Z., Li, L. and Niu, X. [2012], ‘Adaptive parameterization and

reconstruction of 3d face images using partial differential equations’, IJACT:

International Journal of Advancements in Computing Technology 4(5), 214–

221.

Wazwaz, A. [2002], Partial Differential Equations, Taylor & Francis.

Weatherill, N. P. and Hassan, O. [1994], ‘Efficient three-dimensional delaunay

triangulation with automatic point creation and imposed boundary constraints’,

International Journal for Numerical Methods in Engineering 37(12), 2005–

2039.

149

Weinberger, H. F. [2012], A first course in partial differential equations: with

complex variables and transform methods, Courier Dover Publications.

Wiegmann, A. and Bube, K. P. [1998], ‘The immersed interface method for

nonlinear differential equations with discontinuous coefficients and singular

sources’, SIAM Journal on Numerical Analysis 35(1), 177–200.

Witkin, A. P. and Heckbert, P. S. [1994], Using particles to sample and control

implicit surfaces, in ‘Proceedings of the 21st annual conference on Computer

graphics and interactive techniques’, ACM, pp. 269–277.

Xu, G., Pan, Q. and Bajaj, C. L. [2006], ‘Discrete surface modelling using partial

differential equations’, Computer Aided Geometric Design 23(2), 125–145.

Xu, J.-C. and Shann, W.-C. [1992], ‘Galerkin-wavelet methods for two-point

boundary value problems’, Numerische Mathematik 63(1), 123–144.

You, L., Comninos, P. and Zhang, J. J. [2004], ‘Pde blending surfaces with¡ i¿

c¡/i¿¡ sup¿ 2¡/sup¿ continuity’, Computers & Graphics 28(6), 895–906.

You, L., Comninos, P., Zhang, M., Mikhael, W., Caballero, A., Abatzoglou, N.,

Tabrizi, M., Leandre, R., Garcia-Planas, M. and Choras, R. [2008], Analytical

pde solid modelling, in ‘WSEAS International Conference. Proceedings. Math-

ematics and Computers in Science and Engineering’, WSEAS.

Young, R. M. [2001], An Introduction to Non-Harmonic Fourier Series, Revised

Edition, 93, Academic Press.

Zhang, J. J. and You, L. [2001], Surface representation using second, fourth and

mixed order partial differential equations, in ‘Shape Modeling and Applica-

tions, SMI 2001 International Conference on.’, IEEE, pp. 250–256.

Zhang, J. J. and You, L. [2002], ‘Pde based surface representationvase design’,

Computers & Graphics 26(1), 89–98.

150

Zhang, J. J. and You, L. [2004a], ‘Surface blending using a power series solution

to fourth order partial differential equations’, International Journal of Shape

Modeling 10(02), 155–185.

Zhang, J.-J. and You, L.-H. [2004b], ‘Pde surface generation with combined

closed and non-closed form solutions’, Journal of Computer Science and Tech-

nology 19(5), 650–656.

Zill, D. [2012], A First Course in Differential Equations with Modeling Applica-

tions, Cengage Learning.

URL: http://books.google.co.uk/books?id=pasKAAAAQBAJ

Zorin, D., Schröder, P. and Sweldens, W. [1996], Interpolating subdivision for

meshes with arbitrary topology, in ‘Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques’, ACM, pp. 189–192.

Zwillinger, D. [1998], Handbook of differential equations, Vol. 1, Gulf Profes-

sional Publishing.

151

Appendix A

Published papers

width=!,height=!,pages=2-4,7 width=!,height=!,pages=1-13

152

Appendix B

Source code

1 f u n c t i o n gmprWriteOBJ (VL, FL , f i l e n a m e , f l i p f a c e s) ;

2 % GMPRWRITEOBJ(VL, FL , FILENAME, FLIPFACES)

3 % c r e a t e s a Wavef ron t OBJ f i l e from v e r t e x and f a c e

l i s t s and save t o d i s k

4

5 i f n a r g i n == 3 , f l i p f a c e s = 0 ; end

6 i f f l i p f a c e s , FL = FL (: , [3 2 1]) ; end

7

8 f i d = fopen (f i l e n a m e , ’w’) ;

9

10

11 nv = s i z e (VL, 1) ;

12 nf = s i z e (FL , 1) ;

13

14 n = nv + nf ;

15 h = w a i t b a r (0 , ’ W r i t i n g o b j f i l e . . . ’ , ’ P o s i t i o n ’ , [3 7 6

400 272 5 3]) ;

16

17 f o r j = 1 : nv ,

18 f p r i n t f (f i d , [’ v ’ , num2s t r (VL(j , :)) , ’\n ’]) ;

153

19 w a i t b a r (j / n) ;

20 end

21 f p r i n t f (f i d , ’\n ’) ;

22

23 f o r j = 1 : nf ,

24 f p r i n t f (f i d , [’ f ’ , num2s t r (FL (j , :)) , ’\n ’]) ;

25 w a i t b a r ((j +nv) / n) ;

26 end

27

28 f c l o s e (f i d) ;

29

30 c l o s e (h) ;

===

1 f u n c t i o n gmprDrawBox3d (box , v a r a r g i n)

2 % GMPRDRAWBOX3D Draw a 3D box d e f i n e d by box

c o o r d i n a t e s

3 % BOX = [XMIN XMAX YMIN YMAX ZMIN ZMAX] .

4 % The f u n c t i o n draws on ly t h e o u t l i n e edges o f t h e box

.

5

6 xmin = box (: , 1) ;

7 xmax = box (: , 2) ;

8 ymin = box (: , 3) ;

9 ymax = box (: , 4) ;

10 zmin = box (: , 5) ;

11 zmax = box (: , 6) ;

12

13 nBoxes = s i z e (box , 1) ;

14

15 f o r i =1 : l e n g t h (nBoxes)

16 % lower f a c e (z=zmin)

154

17 gmprDrawEdge3d ([xmin (i) ymin (i) zmin (i) xmax (i)

ymin (i) zmin (i)] , v a r a r g i n { : }) ;

18 gmprDrawEdge3d ([xmin (i) ymin (i) zmin (i) xmin (i)

ymax (i) zmin (i)] , v a r a r g i n { : }) ;

19 gmprDrawEdge3d ([xmax (i) ymin (i) zmin (i) xmax (i)

ymax (i) zmin (i)] , v a r a r g i n { : }) ;

20 gmprDrawEdge3d ([xmin (i) ymax (i) zmin (i) xmax (i)

ymax (i) zmin (i)] , v a r a r g i n { : }) ;

21

22 % f r o n t f a c e (y=ymin)

23 gmprDrawEdge3d ([xmin (i) ymin (i) zmin (i) xmin (i)

ymin (i) zmax (i)] , v a r a r g i n { : }) ;

24 gmprDrawEdge3d ([xmax (i) ymin (i) zmin (i) xmax (i)

ymin (i) zmax (i)] , v a r a r g i n { : }) ;

25 gmprDrawEdge3d ([xmin (i) ymin (i) zmax (i) xmax (i)

ymin (i) zmax (i)] , v a r a r g i n { : }) ;

26

27 % l e f t f a c e (x=xmin)

28 gmprDrawEdge3d ([xmin (i) ymax (i) zmin (i) xmin (i)

ymax (i) zmax (i)] , v a r a r g i n { : }) ;

29 gmprDrawEdge3d ([xmin (i) ymin (i) zmax (i) xmin (i)

ymax (i) zmax (i)] , v a r a r g i n { : }) ;

30

31 % t h e l a s t 3 r e m a i n i n g edges

32 gmprDrawEdge3d ([xmin (i) ymax (i) zmax (i) xmax (i)

ymax (i) zmax (i)] , v a r a r g i n { : }) ;

33 gmprDrawEdge3d ([xmax (i) ymax (i) zmin (i) xmax (i)

ymax (i) zmax (i)] , v a r a r g i n { : }) ;

34 gmprDrawEdge3d ([xmax (i) ymin (i) zmax (i) xmax (i)

ymax (i) zmax (i)] , v a r a r g i n { : }) ;

35 end

155

===

1 f u n c t i o n VL = g m p r C a l c u l a t e P l a n e (n , p , minX , maxX , minY ,

maxY , minZ , maxZ) ;

2 % VL = GMPRCALCULATEPLANE(N, P , MINX,MAXX, MINY,MAXY, MINZ

,MAXZ) ;

3 % R e t u r n s a l i s t o f t h e f o u r c o r n e r v e r t i c e s o f a

p l a n e wi th normal N, p a s s i n g t h r o u g h p o i n t P .

4

5 VL = z e r o s (4 , 3) ;

6 i f abs (n (1)) > max (abs (n (2 : 3))) ,

7 yy = maxY ; zz = maxZ ; xx = (n (2) * (p (2) − yy) + n

(3) * (p (3) − zz)) / n (1) + p (1) ; VL (1 , :) = [xx yy

zz] ;

8 yy = maxY ; zz = minZ ; xx = (n (2) * (p (2) − yy) + n

(3) * (p (3) − zz)) / n (1) + p (1) ; VL (2 , :) = [xx yy

zz] ;

9 yy = minY ; zz = minZ ; xx = (n (2) * (p (2) − yy) + n

(3) * (p (3) − zz)) / n (1) + p (1) ; VL (3 , :) = [xx yy

zz] ;

10 yy = minY ; zz = maxZ ; xx = (n (2) * (p (2) − yy) + n

(3) * (p (3) − zz)) / n (1) + p (1) ; VL (4 , :) = [xx yy

zz] ;

11 e l s e i f abs (n (2)) > max (abs (n ([1 , 3]))) ,

12 xx = maxX ; zz = maxZ ; yy = (n (1) * (p (1) − xx) + n

(3) * (p (3) − zz)) / n (2) + p (2) ; VL (1 , :) = [xx yy

zz] ;

13 xx = maxX ; zz = minZ ; yy = (n (1) * (p (1) − xx) + n

(3) * (p (3) − zz)) / n (2) + p (2) ; VL (2 , :) = [xx yy

zz] ;

14 xx = minX ; zz = minZ ; yy = (n (1) * (p (1) − xx) + n

(3) * (p (3) − zz)) / n (2) + p (2) ; VL (3 , :) = [xx yy

156

zz] ;

15 xx = minX ; zz = maxZ ; yy = (n (1) * (p (1) − xx) + n

(3) * (p (3) − zz)) / n (2) + p (2) ; VL (4 , :) = [xx yy

zz] ;

16 e l s e

17 xx = maxX ; yy = maxY ; zz = (n (1) * (p (1) − xx) + n

(2) * (p (2) − yy)) / n (3) + p (3) ; VL (1 , :) = [xx yy

zz] ;

18 xx = maxX ; yy = minY ; zz = (n (1) * (p (1) − xx) + n

(2) * (p (2) − yy)) / n (3) + p (3) ; VL (2 , :) = [xx yy

zz] ;

19 xx = minX ; yy = minY ; zz = (n (1) * (p (1) − xx) + n

(2) * (p (2) − yy)) / n (3) + p (3) ; VL (3 , :) = [xx yy

zz] ;

20 xx = minX ; yy = maxY ; zz = (n (1) * (p (1) − xx) + n

(2) * (p (2) − yy)) / n (3) + p (3) ; VL (4 , :) = [xx yy

zz] ;

21 end

===

1 f u n c t i o n v a r a r g o u t = gmprDrawEdge3d (v a r a r g i n)

2 % GMPRDRAWEDGE3D Draw 3D edge

3 % Draw t h e edge EDGE on t h e c u r r e n t a x i s . EDGE has t h e

form : [x1 y1 z1 x2 y2 z2] .

4 % No c l i p p i n g i s pe r fo rmed .

5

6 nCol = s i z e (v a r a r g i n {1} , 2) ;

7 i f nCol ==6

8 edges = v a r a r g i n {1} ;

9 o p t i o n s = v a r a r g i n (2 : end) ;

10 e l s e i f nCol ==3

11 edges = [v a r a r g i n {1} v a r a r g i n {2}] ;

157

12 o p t i o n s = v a r a r g i n (3 : end) ;

13 e l s e i f nCol ==6

14 edges = [v a r a r g i n {1} v a r a r g i n {2} v a r a r g i n {3} v a r a r g i n

{4} v a r a r g i n {5} v a r a r g i n {6}] ;

15 o p t i o n s = v a r a r g i n (7 : end) ;

16 end

17

18 h = l i n e ([edges (: , 1) edges (: , 4)] ’ , . . .

19 [edges (: , 2) edges (: , 5)] ’ , . . .

20 [edges (: , 3) edges (: , 6)] ’ , ’ c o l o r ’ ,

’ b ’ , ’ L i n e w i d t h ’ , 2) ;

21

22 i f ˜ i s e m p t y (o p t i o n s)

23 s e t (h , o p t i o n s { : }) ;

24 end

25

26 i f n a r g o u t >0

27 v a r a r g o u t {1}=h ;

28 end

===

1 f u n c t i o n gmprDrawPlane ()

2 % Draw p l a n e s a t t h e v e r t e x l i s t VL

3 % VL = DRAWPLANE(N, P , MINX,MAXX, MINY,MAXY, MINZ,MAXZ) ;

4 % R e t u r n s a l i s t o f t h e f o u r c o r n e r v e r t i c e s o f a

p l a n e wi th normal N, p a s s i n g t h r o u g h p o i n t P .

5

6 a d d p a t h = [pwd ’\Data ’] ;

7 p a t h (pa th , a d d p a t h) ;

8 gmprLoadData (’ Data \Data07 . t x t ’ , ’ Data \D a t a 0 7 S c a l e . t x t

158

’) ;

9 d a t a = l o a d (’ Data \Data07 . t x t ’) ;

10 s c a l e = l o a d (’ Data \D a t a 0 7 S c a l e . t x t ’) ;

11

12 d e p t h S c a l e 1 = s c a l e (1) ;

13 d e p t h S c a l e 2 = s c a l e (2) ;

14

15 maxZ = max (max (d a t a)) ;

16 minZ = min (min (d a t a)) ;

17

18 maxX = s i z e (da t a , 1) ;

19 maxY = s i z e (da t a , 2) ;

20

21 X = round ([1 2 3] . * [maxX / 4 maxX / 4 maxX / 4]) ;

22 Y = round ([1 2 3] . * [maxY / 4 maxY / 4 maxY / 4]) ;

23

24

25 Red = [2 5 5 / 2 5 5 125/255 1 2 5 / 2 5 5] ;

26 Green = [1 2 5 / 2 5 5 255/255 1 2 5 / 2 5 5] ;

27

28 f o r i =1:3

29 V= g m p r C a l c u l a t e P l a n e ([0 1 0] , [X(i) * d e p t h S c a l e 1 Y

(i) * d e p t h S c a l e 2 d a t a (X(i) +1 ,Y(i))] , 0 , maxX*
d e p t h S c a l e 1 , Y(i) * d e p t h S c a l e 2 , Y(i) * d e p t h S c a l e 2

, maxZ , minZ) ;

30 p a t c h (V (: , 1) ,V (: , 2) ,V (: , 3) , Red) ;

31 end

32

33 f o r i =1:3

34 V= g m p r C a l c u l a t e P l a n e ([1 0 0] , [X(i) * d e p t h S c a l e 1 Y

(i) * d e p t h S c a l e 2 d a t a (X(i) +1 ,Y(i))] , maxY*

159

d e p t h S c a l e 1 , maxY* d e p t h S c a l e 1 , 0 , maxY*
d e p t h S c a l e 2 , maxZ , minZ) ;

35 p a t c h (V (: , 1) ,V (: , 2) ,V (: , 3) , Green) ;

36 end

===

1 f u n c t i o n [P , F i r s t , L a s t] = gmprCompressPolynomia ls ()

2 %Compress d a t a by p o l y n o m i a l i n t e r p o l a t i o n

3 %B ef o r e u s i n g t h i s f u n c t i o n a d j u s t t o t h e d e s i r e d

d e g r e e and f i l e n a m e

4

5 l o a d f a c e . t x t

6 c u r v e s = f a c e ;

7

8 d e p t h S c a l e 1 = 3 . 3 3 2 9 1 0 ;

9 d e p t h S c a l e 2 = 0 . 2 8 9 0 2 5 ;

10

11 X= [] ;Y= [] ; Z = [] ; P = [] ;

12 b F i r s t = 0 ;

13 b L a s t = 0 ;

14 b S t a r t e d = 0 ;

15 bDone = 0 ;

16 D = 1 0 ; %p o l y n o m i a l d e g r e e

17 Fi l ename = [’ c o e f f i c i e n t s ’ , num2s t r (D)] ;

18

19 f o r x =1: s i z e (cu rves , 1)

20 b F i r s t =0 ; b L a s t =0 ; b S t a r t e d =0; bDone =0;

21 Y= [] ; Z = [] ;

22 f o r y =1: s i z e (cu rves , 2)

23 i f (i s n a n (c u r v e s (x , y)) & b S t a r t e d == 0)

24 %do n o t h i n g

25 e l s e i f (i s n a n (c u r v e s (x , y)) & b S t a r t e d == 1)

160

26 %b L a s t = y −1;

27 bDone =1;

28 e l s e i f (b S t a r t e d == 0)

29 b S t a r t e d = 1 ;

30 b F i r s t = y ;

31 Y = [Y; y* d e p t h S c a l e 2] ;

32 Z = [Z ; c u r v e s (x , y)] ;

33 e l s e i f (b S t a r t e d == 1)

34 Y = [Y; y* d e p t h S c a l e 2] ;

35 Z = [Z ; c u r v e s (x , y)] ;

36 i f (bDone == 0)

37 b L a s t = y ;

38 end

39 end

40 end

41 P = [P ; p o l y f i t (Y, Z ,D) b F i r s t b L a s t] ;

42 Y= [] ; Z = [] ;

43 end

44

45 % / f i x n e x t l i n e wi th t h e d e s i r e d

p o l y n o m i a l d e g r e e i n t h e f i l e n a m e

46 s ave c o e f f i c i e n t s 1 0 . t x t P −ASCII %save a l l

c o e f f i c i e t n s i n ASCII

47 s ave (Fi lename , ’P ’) %save a l l c o e f f i c i e n t s i n . mat

where t h e f i l e n a m e i s ” c o e f f i c i e n t s ” + ”D”

48

49 %now r e c o n s t r u c t t h e p o l y n o m i a l s

50 p c u r v e s = [] ;

51 f o r i =1 : s i z e (P , 1)

52 F i r s t = D+2; %f i r s t v a l i d p o i n t

53 L a s t = D+3; %l a s t v a l i d p o i n t

161

54 p = p o l y v a l (P (i , 1 : D+1) , P (i , F i r s t) * d e p t h S c a l e 2 :

d e p t h S c a l e 2 : P (i , L a s t) * d e p t h S c a l e 2) ;

55 i f P (i , F i r s t)> 1

56 f o r j =1 : P (i , F i r s t) −1

57 p = [NaN p] ;

58 end

59 end

60 i f P (i , L a s t)<s i z e (cu rves , 2)

61 f o r k=P (i , L a s t) +1 : s i z e (cu rves , 2)

62 p = [p NaN] ;

63 end

64 end

65 p c u r v e s = [p c u r v e s ; p] ;

66 end

67

68

69 % / / / / / / / / / / / / / / / / / / / f i x n e x t l i n e wi th t h e d e s i r e d

p o l y n o m i a l d e g r e e i n t h e f i l e n a m e

70 s ave f a c e p o l y 1 0 . t x t p c u r v e s −ASCII %save i n ASCII wi th

a g e n e r i c name

71 Fi l ename = [’ f a c e p o l y ’ , num2s t r (D)] ;

72 s ave (Fi lename , ’ p c u r v e s ’) ; %save i n . mat

73

74 % To l o a d and v i s u a l i z e r e c o n s t r u c t e d 3D run from t h e

command prompt

75 % gmprUncompressPolynomia ls (F i l ename) ;

76 % where F i l ename i s ’ f a c e p o l y 3 . t x t ’ , ’ f a c e p o l y 1 0 . t x t ’ ,

’ f a c e p o l y 1 5 . t x t ’ , e t c . . .

77

78 % The s i z e o f t h e compressed f i l e s can be checked by

l o o k i n g a t t h e compessed f i l e s

162

79 % c o e f f i c i e n t s 3 . t x t , c o e f f i c i e n t s 1 0 . t x t ,

c o e f f i c i e n t s 1 5 . t x t , e t c . . .

===

1 f u n c t i o n [VL, FL]= gmprUncompressPolynomia ls (f i l e n a m e)

;

2 %Load p o l y n o m i a l compressed da ta , uncompress and

d i s p l a y

3 %P a r a m e t e r f i l e n a m e i s ’ f a c e p o l y 3 . t x t ’ , ’ f a c e p o l y 1 0 .

t x t ’ , ’ f a c e p o l y 1 5 . t x t ’ , e t c . . .

4

5

6 %3 Oct 2013

7 c u r v e s = l o a d (f i l e n a m e) ; %t h i s w i l l l o a d t h e c o r r e c t

p l y n o m i a l f i l e

8

9 d e p t h S c a l e 1 = 3 . 3 3 2 9 1 0 ; %t h i s i s f o r t h e t e s t f i l e ,

a d j u s t i f u s i n g a d i f f e r e n t f i l e

10 d e p t h S c a l e 2 = 0 . 2 8 9 0 2 5 ;

11

12 depthZDim1 = s i z e (cu rves , 1) ;

13 depthZDim2 = s i z e (cu rves , 2) ;

14

15 X= [] ;Y= [] ; Z = [] ; c o u n t =0 ;

16 f o r x =1: s i z e (cu rves , 1)

17 f o r y =1: s i z e (cu rves , 2)

18 X = [X; (x −1) * d e p t h S c a l e 1] ;

19 Y = [Y; (y −1) * d e p t h S c a l e 2] ;

20 Z = [Z ; c u r v e s (x , y)] ;

21 i f (n o t (i s n a n (c u r v e s (x , y))))

22 c o u n t = c o u n t +1 ;

23 end

163

24 end

25 end

26 VL = [X Y Z] ;

27

28 FL = [] ;

29 f o r x =1: depthZDim1 −1

30 f o r y =1: depthZDim2 −1

31 i f (n o t (i s n a n (c u r v e s (x , y))) & n o t (i s n a n (

c u r v e s (x +1 , y))) & n o t (i s n a n (c u r v e s (x , y +1)))

) %f i r s t t r i a n g l e numbered 3−2−1

32 FL=[FL ; (x* depthZDim2 + y) ((x −1) *
depthZDim2 + y +1) ((x −1) * depthZDim2

+ y)] ;

33 end

34 i f (n o t (i s n a n (c u r v e s (x , y +1))) & n o t (i s n a n (

c u r v e s (x +1 , y))) & n o t (i s n a n (c u r v e s (x +1 , y +1)

))) %second t r i a n g l e numbered 2−3−4

35 FL=[FL ; ((x −1) * depthZDim2 + y + 1) (x*
depthZDim2 + y) (x* depthZDim2 + y +

1)] ;

36 end

37 end

38 end

39

40 ’ v a l i d v e r t i c e s = ’

41 c o u n t

42 gmprSurfaceView (VL, FL) ;

===

1 f u n c t i o n c o m p r e s s e d f i l e n a m e = gmprCompressFFT (

d a t a f i l e n a m e , s c a l e f i l e n a m e , q u a l i t y)

2 % COMPRESSEDFILENAME = GMPRCOMPRESSFFT(DATAFILENAME,

164

SCALEFILENAME, QUALITY)

3 % Compress 3D d a t a u s i n g F a s t F o u r i e r Trans fo rm

4

5 a d d p a t h = [pwd ’\Data ’] ;

6 p a t h (pa th , a d d p a t h) ;

7

8 s t r i p e s = l o a d (d a t a f i l e n a m e) ;

9 s c a l e = l o a d (s c a l e f i l e n a m e) ;

10 d e p t h S c a l e 1 = s c a l e (1) ;

11 d e p t h S c a l e 2 = s c a l e (2) ;

12 depthZDim1 = s i z e (s t r i p e s , 1) ;

13 depthZDim2 = s i z e (s t r i p e s , 2) ;

14

15 c o m p r e s s e d f i l e = [’ cFFT ’ num2s t r (q u a l i t y)

d a t a f i l e n a m e] ;

16 f i d = fopen (c o m p r e s s e d f i l e , ’w’) ;

17

18 f p r i n t f (f i d , ’ %12.4 f \ t %12.4 f \ t%i \ t%i \ t%i \n ’ ,

d e p t h S c a l e 1 , 2* d e p t h S c a l e 2 , depthZDim1 , depthZDim2 ,

q u a l i t y) ;

19

20 s t a r t e d =0; s t a r t =0 ; f i n i s h =0;

21 a0 =0; a6 =0; an = [] ; bn = [] ;

22 f o r r =1 : depthZDim1

23 s t a r t e d =0;

24 f o r c =1: depthZDim2

25 i f n o t (i s n a n (s t r i p e s (r , c))) & n o t (s t a r t e d)

26 s t a r t e d =1;

27 s t a r t = c ;

28 e l s e i f n o t (i s n a n (s t r i p e s (r , c))) & s t a r t e d

29 f i n i s h = c ;

165

30 end

31 end

32 s i g n a l = [] ; a0 =0; a6 =0; an = [] ; bn = [] ;

33 s i g n a l = s t r i p e s (r , s t a r t : f i n i s h) ;

34 i f l e n g t h (s i g n a l) > 2

35 [a0 , a6 , an , bn] = g e t f o u r i e r c o e f f (s t r i p e s (r

, s t a r t : f i n i s h)) ;

36 end

37

38 an = c l e a n (an , q u a l i t y) ;

39 bn = c l e a n (bn , q u a l i t y) ;

40 f p r i n t f (f i d , ’%i \ t%i \ t %12.4 f \ t %12.4 f \ t%i \ t ’ , s t a r t

, f i n i s h , a0 , a6 , l e n g t h (an)) ;

41 L = l e n g t h (an) ;

42 Q = f l o o r ((q u a l i t y / 1 0 0) *L) ;

43

44 f o r k =1:Q

45 f p r i n t f (f i d , ’ %12.4 f \ t ’ , an (k)) ;

46 end

47 f o r k =1:Q

48 f p r i n t f (f i d , ’ %12.4 f \ t ’ , bn (k)) ;

49 end

50 f p r i n t f (f i d , ’\n ’) ;

51 end

52 f c l o s e (f i d) ;

53

54 s t a t u s = c o p y f i l e (c o m p r e s s e d f i l e , [’ Data \ ’

c o m p r e s s e d f i l e]) ;

55 d e l e t e (c o m p r e s s e d f i l e) ;

56 c o m p r e s s e d f i l e n a m e = c o m p r e s s e d f i l e ;

57

166

58

59 f u n c t i o n c = c l e a n (a , q u a l i t y)

60 i f l e n g t h (a)>1

61 L= l e n g t h (a) ;

62 Q = f l o o r ((q u a l i t y / 1 0 0) *L) ;

63

64 i f (Q+1)<=L

65 a (Q+1: end) = 0 ;

66 end

67 end

68 c = a ;

69

70 f u n c t i o n [a0 , a6 , an , bn] = g e t f o u r i e r c o e f f (

s i n g l e s t r i p e)

71 L= l e n g t h (s i n g l e s t r i p e) −1;

72 x = 0 : 3 6 0 / L : 3 6 0 ;

73 d = f f t (s i n g l e s t r i p e) ;

74 m = l e n g t h (s i n g l e s t r i p e) ;

75 M = f l o o r ((m+1) / 2) ;

76

77 a0 = d (1) /m;

78 an = 2* r e a l (d (2 :M)) /m;

79 a6 = d (M+1) /m;

80 bn = −2* imag (d (2 :M)) /m;

81

82 n = 1 : l e n g t h (an) ;

83 y = a0 + an * cos (2* p i *n ’* x / 3 6 0) . . .

84 + bn* s i n (2* p i *n ’* x / 3 6 0) . . .

85 + a6 * cos (2* p i *6*x / 3 6 0) ;

86 p l o t (x , y , ’ L i n e w i d t h ’ , 2)

87 l e g e n d (’Raw d a t a ’ , ’FFT I n t e r p o l a t e d ’)

167

==

1 f u n c t i o n [da t a , d a t a f i l e n a m e , s c a l e f i l e n a m e] =

gmprUncompressFFT (f i l e n a m e , N)

2 % [DATA, DATAFILENAME, SCALEFILENAME] =

GMPRUNCOMPRESSFFT(FILENAME, N)

3 % uncompress d a t a from f o u r i e r c o e f f i c i e n t S

4

5 a d d p a t h = [pwd ’\Data ’] ;

6 p a t h (pa th , a d d p a t h) ;

7

8 f i d = fopen (f i l e n a m e , ’ r ’) ;

9 d e p t h S c a l e 1 = f s c a n f (f i d , ’%f ’ , 1) ;

10 d e p t h S c a l e 2 = f s c a n f (f i d , ’%f ’ , 1) ;

11 depthZDim1 = f s c a n f (f i d , ’%i ’ , 1) ;

12 depthZDim2 = f s c a n f (f i d , ’%i ’ , 1) ;

13 q u a l i t y = f s c a n f (f i d , ’%i \n ’ , 1) ;

14

15 d a t a = z e r o s (depthZDim1 , round (depthZDim2 / 2)) ;

16 d a t a (: , :) =NaN ;

17

18 f o r r =1 : depthZDim1

19 s t a r t = f s c a n f (f i d , ’%i ’ , 1) ;

20 f i n i s h = f s c a n f (f i d , ’%i ’ , 1) ;

21 a0 = f s c a n f (f i d , ’%f ’ , 1) ;

22 a6 = f s c a n f (f i d , ’%f ’ , 1) ;

23 L = f s c a n f (f i d , ’%i ’ , 1) ;

24 an = [] ; i f L>1 an= z e r o s (1 , L) ; end

25 bn = [] ; i f L>1 bn= z e r o s (1 , L) ; end

26

27 i f L >= 2

28 Q = f l o o r ((q u a l i t y / 1 0 0) *L) ;

168

29 f o r k =1:Q

30 an (k) = f s c a n f (f i d , ’%f ’ , 1) ;

31 end

32 f o r k =1:Q

33 bn (k) = f s c a n f (f i d , ’%f ’ , 1) ;

34 end

35

36 y = r e c o n s t r u c t s t r i p e (a0 , a6 , an , bn) ;

37 d a t a (r , round (s t a r t / 2) : round (s t a r t / 2) + l e n g t h (

y) −1) = y ;

38 end

39 end

40 f c l o s e (f i d) ;

41

42 n e w s t r i p e s = [] ; d e p t h S c a l e 2 = d e p t h S c a l e 2 / 2 ;

43 f o r r =1 : s i z e (da t a , 1)

44 s t r i p e = [] ;

45 f o r c =1: s i z e (da t a , 2) −1

46 s t r i p e =[s t r i p e d a t a (r , c) (d a t a (r , c) + d a t a (r ,

c +1)) / 2] ;

47 end

48 n e w s t r i p e s = [n e w s t r i p e s ; s t r i p e] ;

49 end

50 d a t a = n e w s t r i p e s ;

51 [R , C] = s i z e (d a t a) ;

52

53 uu = [] ;

54 i f N>0

55 f o r r =1 :R−1

56 S1 = d a t a (r , :) ;

57 S2 = d a t a (r + 1 , :) ;

169

58 u = gmprLaplace (S1 , S2 , N) ;

59 i f r ==1

60 uu = [uu ; u] ;

61 e l s e

62 uu = [uu ; u (2 : end , :)] ;

63 end

64 end

65 e l s e

66 uu= d a t a ;

67 end

68 d e p t h S c a l e 1 = d e p t h S c a l e 1 / (N+1) ;

69 s c a l e = [d e p t h S c a l e 1 d e p t h S c a l e 2] ;

70 d a t a = uu ;

71

72 s ave pdeData . t x t d a t a −ASCII

73 s ave p d e S c a l e . t x t s c a l e −ASCII

74 sca l ename = f i l e n a m e (1 : end −4) ;

75 sca l ename = [’ Data \pde ’ num2s t r (N) sca l ename ’ S c a l e .

t x t ’] ;

76 f i l e n a m e = [’ Data \pde ’ num2s t r (N) f i l e n a m e] ;

77 c o p y f i l e (’ pdeData . t x t ’ , f i l e n a m e) ;

78 c o p y f i l e (’ p d e S c a l e . t x t ’ , s ca l ename) ;

79 d e l e t e (’ pdeData . t x t ’) ;

80 d e l e t e (’ p d e S c a l e . t x t ’) ;

81

82 d a t a f i l e n a m e = f i l e n a m e ;

83 s c a l e f i l e n a m e = sca l ename ;

84

85 f u n c t i o n y = r e c o n s t r u c t s t r i p e (a0 , a6 , an , bn)

86 n = 1 : l e n g t h (an) ;

87 L = l e n g t h (an) ;

170

88 x = 0 : 3 6 0 / L : 3 6 0 ;

89 y = a0 + an * cos (2* p i *n ’* x / 3 6 0) . . .

90 + bn* s i n (2* p i *n ’* x / 3 6 0) . . .

91 + a6 * cos (2* p i *6*x / 3 6 0) ;

92 y (end) = NaN ;

===

1 f u n c t i o n c o m p r e s s e d f i l e n a m e = gmprCompressDCT (

d a t a f i l e n a m e , s c a l e f i l e n a m e , q u a l i t y)

2 %COMPRESSEDFILENAME = GMPRCOMPRESSDCT(DATAFILENAME,

SCALEFILENAME, QUALITY)

3 %Compress 3D d a t a u s i n g D i s c r e t e Cos ine Trans fo rm

4

5 i f n a r g i n == 0 | n a r g i n == 1 ,

6 d i s p (’ Not enough use r − d e f i n e d i n p u t p a r a m e t e r s .

Program a b o r t e d . ’) ;

7 r e t u r n

8 end

9

10 i f n a r g i n == 2 ,

11 i f i s s t r (d a t a f i l e n a m e) & i s s t r (s c a l e f i l e n a m e)

12 d i s p (’ Q u a l i t y s e t t o d e f a u l t . ’) ;

13 q u a l i t y = 100 ;

14 e l s e

15 d i s p (’ E r r o r . ’) ;

16 d i s p (’ Data and s c a l e f i l e n a m e s must be s t r i n g s . ’

) ;

17 d i s p (’ Program a b o r t e d . ’) ;

18 r e t u r n

19 end

20 end

21

171

22 i f n a r g i n == 3 ,

23 i f i s s t r (d a t a f i l e n a m e) & i s s t r (s c a l e f i l e n a m e)

& q u a l i t y >=1 & q u a l i t y <=100

24 e l s e

25 d i s p (’ E r r o r . ’) ;

26 d i s p (’ Data and s c a l e f i l e n a m e s must be s t r i n g s

and 1<= q u a l i t y <=100. ’) ;

27 d i s p (’ Program a b o r t e d . ’) ;

28 r e t u r n

29 end

30 end

31

32 a d d p a t h = [pwd ’\Data ’] ;

33 p a t h (pa th , a d d p a t h) ;

34

35 s t r i p e s = l o a d (d a t a f i l e n a m e) ;

36 s c a l e = l o a d (s c a l e f i l e n a m e) ;

37 d e p t h S c a l e 1 = s c a l e (1) ;

38 d e p t h S c a l e 2 = s c a l e (2) ;

39 depthZDim1 = s i z e (s t r i p e s , 1) ;

40 depthZDim2 = s i z e (s t r i p e s , 2) ;

41

42 c o m p r e s s e d f i l e = [’cDCT ’ num2s t r (q u a l i t y)

d a t a f i l e n a m e] ;

43 f i d = fopen (c o m p r e s s e d f i l e , ’w’) ;

44

45 f p r i n t f (f i d , ’ %12.4 f \ t %12.4 f \ t%i \ t%i \ t%i \n ’ ,

d e p t h S c a l e 1 , d e p t h S c a l e 2 , depthZDim1 , depthZDim2 ,

q u a l i t y) ;

46

47 s t a r t e d =0; s t a r t =0 ; f i n i s h =0;

172

48 a0 =0; a6 =0; an = [] ; bn = [] ;

49 f o r r =1 : depthZDim1

50 s t a r t e d =0;

51 s t a r t =1 ; f i n i s h =1;

52 f o r c =1: depthZDim2

53 i f n o t (i s n a n (s t r i p e s (r , c))) & n o t (s t a r t e d)

54 s t a r t e d =1;

55 s t a r t = c ;

56 e l s e i f n o t (i s n a n (s t r i p e s (r , c))) & s t a r t e d

57 f i n i s h = c ;

58 end

59 end

60 s i g n a l = [] ;

61 s i g n a l = s t r i p e s (r , s t a r t : f i n i s h) ;

62 B = g e t d c t c o e f f (s i g n a l) ;

63

64 L= l e n g t h (s i g n a l) ; Q = f l o o r ((q u a l i t y / 1 0 0) *L) ;

65 f p r i n t f (f i d , ’%i \ t%i \ t ’ , s t a r t , f i n i s h) ;

66 f o r k =1:Q

67 f p r i n t f (f i d , ’ %12.4 f \ t ’ , B(k)) ;

68 end

69 f p r i n t f (f i d , ’\n ’) ;

70 end

71 f c l o s e (f i d) ;

72

73 c o p y f i l e (c o m p r e s s e d f i l e , [’ Data \ ’ c o m p r e s s e d f i l e]) ;

74 d e l e t e (c o m p r e s s e d f i l e) ;

75 c o m p r e s s e d f i l e n a m e = c o m p r e s s e d f i l e ;

76

77 f u n c t i o n B = g e t d c t c o e f f (s i n g l e s t r i p e)

78 B = d c t (s i n g l e s t r i p e) ;

173

==

1 f u n c t i o n [da t a , d a t a f i l e n a m e , s c a l e f i l e n a m e] =

gmprUncompressDCT (f i l e n a m e , N)

2 % [DATA, DATAFILENAME, SCALEFILENAME] =

GMPRUNCOMPRESSDCT(FILENAME, N)

3 % uncompress d a t a from DCT c o e f f i c i e n t s

4

5 i f n a r g i n == 2 ,

6 i f i s s t r (f i l e n a m e)

7 e l s e

8 d i s p (’ E r r o r . ’) ;

9 d i s p (’ F i l ename must be s t r i n g . Program a b o r t e d . ’

) ;

10 r e t u r n

11 end

12 end

13

14 a d d p a t h = [pwd ’\Data ’] ;

15 p a t h (pa th , a d d p a t h) ;

16

17 f i d = fopen (f i l e n a m e , ’ r ’) ;

18 d e p t h S c a l e 1 = f s c a n f (f i d , ’%f ’ , 1) ;

19 d e p t h S c a l e 2 = f s c a n f (f i d , ’%f ’ , 1) ;

20 depthZDim1 = f s c a n f (f i d , ’%i ’ , 1) ;

21 depthZDim2 = f s c a n f (f i d , ’%i ’ , 1) ;

22 q u a l i t y = f s c a n f (f i d , ’%i \n ’ , 1) ;

23

24 d a t a = z e r o s (depthZDim1 , depthZDim2) ;

25 d a t a (: , :) =NaN ;

26

27 f o r r =1 : depthZDim1

174

28 s t a r t = f s c a n f (f i d , ’%i ’ , 1) ;

29 f i n i s h = f s c a n f (f i d , ’%i ’ , 1) ;

30

31 L = f i n i s h − s t a r t +1 ;

32 Q = f l o o r ((q u a l i t y / 1 0 0) *L) ;

33 dn = [] ;

34 f o r k =1:Q

35 dn (k) = f s c a n f (f i d , ’%f ’ , 1) ;

36 end

37

38 B= z e r o s (1 , L) ;

39 B (1 :Q) = dn ;

40

41 y = i d c t (B) ;

42 d a t a (r , s t a r t : f i n i s h) = y ;

43 end

44 f c l o s e (f i d) ;

45

46 [R , C] = s i z e (d a t a) ;

47 uu = [] ;

48 i f N>0

49 f o r r =1 :R−1

50 S1 = d a t a (r , :) ;

51 S2 = d a t a (r + 1 , :) ;

52 u = gmprLaplace (S1 , S2 , N) ;

53 i f r ==1

54 uu = [uu ; u] ;

55 e l s e

56 uu = [uu ; u (2 : end , :)] ;

57 end

58 end

175

59 e l s e

60 uu= d a t a ;

61 end

62 d e p t h S c a l e 1 = d e p t h S c a l e 1 / (N+1) ;

63 s c a l e = [d e p t h S c a l e 1 d e p t h S c a l e 2] ;

64 d a t a = uu ;

65

66 s ave pdeData . t x t d a t a −ASCII

67 s ave p d e S c a l e . t x t s c a l e −ASCII

68

69 sca l ename = f i l e n a m e (1 : end −4) ;

70 sca l ename = [’ Data \pde ’ num2s t r (N) sca l ename ’ S c a l e .

t x t ’] ;

71 f i l e n a m e = [’ Data \pde ’ num2s t r (N) f i l e n a m e] ;

72

73 c o p y f i l e (’ pdeData . t x t ’ , f i l e n a m e) ;

74 c o p y f i l e (’ p d e S c a l e . t x t ’ , s ca l ename) ;

75 d e l e t e (’ pdeData . t x t ’) ;

76 d e l e t e (’ p d e S c a l e . t x t ’) ;

77

78 d a t a f i l e n a m e = f i l e n a m e ;

79 s c a l e f i l e n a m e = sca l ename ;

===

1 f u n c t i o n c o m p r e s s e d f i l e n a m e = gmprCompressDWT (

d a t a f i l e n a m e , s c a l e f i l e n a m e , q u a l i t y)

2 % COMPRESSEDFILENMAE = GMPRCOMPRESSDWT(DATAFILENAME,

SCALEFILENAME, QUALITY)

3 % Compress 3D d a t a u s i n g D i s c r e t e Wavele t Trans fo rm

4

5 a d d p a t h = [pwd ’\Data ’] ;

6 p a t h (pa th , a d d p a t h) ;

176

7

8 s t r i p e s = l o a d (d a t a f i l e n a m e) ;

9 s c a l e = l o a d (s c a l e f i l e n a m e) ;

10 d e p t h S c a l e 1 = s c a l e (1) ;

11 d e p t h S c a l e 2 = s c a l e (2) ;

12 depthZDim1 = s i z e (s t r i p e s , 1) ;

13 depthZDim2 = s i z e (s t r i p e s , 2) ;

14

15 c o m p r e s s e d f i l e = [’cDWT’ num2s t r (q u a l i t y)

d a t a f i l e n a m e] ;

16 f i d = fopen (c o m p r e s s e d f i l e , ’w’) ;

17

18 f p r i n t f (f i d , ’ %12.4 f \ t %12.4 f \ t%i \ t%i \ t%i \n ’ ,

d e p t h S c a l e 1 , d e p t h S c a l e 2 , depthZDim1 , depthZDim2 ,

q u a l i t y) ;

19

20 s t a r t e d =0; S t a r t =0 ; F i n i s h =0;

21 a0 =0; a6 =0; an = [] ; bn = [] ;

22 f o r r =1 : depthZDim1

23 s t a r t e d =0;

24 S t a r t =1 ; F i n i s h =1;

25 f o r c =1: depthZDim2

26 i f n o t (i s n a n (s t r i p e s (r , c))) & n o t (s t a r t e d)

27 s t a r t e d =1;

28 S t a r t = c ;

29 F i n i s h = c ;

30 e l s e i f n o t (i s n a n (s t r i p e s (r , c))) & s t a r t e d

31 F i n i s h = c ;

32 end

33 end

34 s i g n a l = [] ;

177

35 s i g n a l = s t r i p e s (r , S t a r t : F i n i s h) ;

36 [C , L] = wavedec (s i g n a l , 3 , ’ db1 ’) ;

37 D = l e n g t h (C(L (1) + 1 : end)) ;

38 Q = f l o o r (q u a l i t y *D/100) ;

39

40 Q2Dele te = D−Q;

41 i f Q2Dele te > L (4) + L (3)

42 s t a r t = L (1) +L (2) +L (3) +1;

43 f i n i s h = L (1) +L (2) +L (3) +L (4) ;

44 C(s t a r t : f i n i s h) =NaN ;

45 s t a r t = L (1) +L (2) +1;

46 f i n i s h = L (1) +L (2) +L (3) ;

47 C(s t a r t : f i n i s h) =NaN ;

48 s t a r t = L (1) +1;

49 f i n i s h = L (1) +Q2Delete −(L (4) +L (3)) ;

50 C(s t a r t : f i n i s h) = NaN ;

51

52 e l s e i f Q2Dele te > L (4)

53 s t a r t = L (1) +L (2) +L (3) +1;

54 f i n i s h = L (1) +L (2) +L (3) +L (4) ;

55 C(s t a r t : f i n i s h) =NaN ;

56 s t a r t = L (1) +L (2) +1;

57 f i n i s h = L (1) +L (2) +Q2Delete −L (4) ;

58 C(s t a r t : f i n i s h) =NaN ;

59

60 e l s e i f Q2Dele te <= L (4)

61 s t a r t = L (1) +L (2) +L (3) +1;

62 f i n i s h = L (1) +L (2) +L (3) + Q2Dele te ;

63 C(s t a r t : f i n i s h) =NaN ;

64 end

65

178

66 f p r i n t f (f i d , ’%i \ t ’ , S t a r t) ;

67 f p r i n t f (f i d , ’%i \ t ’ , F i n i s h) ;

68 f o r k =1: l e n g t h (L)

69 f p r i n t f (f i d , ’%i \ t ’ , L (k)) ;

70 end

71 f p r i n t f (f i d , ’%i \ t ’ , l e n g t h (C)) ;

72 f o r k =1: l e n g t h (C)

73 i f ˜ i s n a n (C(k))

74 f p r i n t f (f i d , ’ %12.4 f \ t ’ , C(k)) ;

75 e l s e

76 C(k) =0;

77 end

78 end

79 f p r i n t f (f i d , ’\n ’) ;

80 end

81 f c l o s e (f i d) ;

82

83 c o p y f i l e (c o m p r e s s e d f i l e , [’ Data \ ’ c o m p r e s s e d f i l e]) ;

84 d e l e t e (c o m p r e s s e d f i l e) ;

85 c o m p r e s s e d f i l e n a m e = c o m p r e s s e d f i l e ;

86

87 f i g u r e , mesh (s t r i p e s) , t i t l e (’ O r i g i n a l d a t a ’)

88 A3 = wrcoef (’ a ’ ,C , L , ’ db1 ’ , 3) ;

89 D1 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 1) ;

90 D2 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 2) ;

91 D3 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 3) ;

92 f i g u r e

93 s u b p l o t (2 , 2 , 1) ; p l o t (A3) ; t i t l e (’ Approx ima t ion A3 ’)

94 s u b p l o t (2 , 2 , 2) ; p l o t (D1) ; t i t l e (’ D e t a i l D1 compressed ’

)

95 s u b p l o t (2 , 2 , 3) ; p l o t (D2) ; t i t l e (’ D e t a i l D2 compressed ’

179

)

96 s u b p l o t (2 , 2 , 4) ; p l o t (D3) ; t i t l e (’ D e t a i l D3 compressed ’

)

97

98 A0 = waverec (C , L , ’ db1 ’) ;

99 e r r o r 3 = gmprRMSE (s i g n a l , A0)

100

101 f i g u r e , p l o t (A0)

102 f i g u r e , p l o t (C)

103

104 q u a l i t y = 1 ;

105 l o a d Data01 . t x t

106 s=Data01 (f l o o r (s i z e (Data01 , 1) / 2) , :) ;

107 s=s (2 9 : 6 8 3) ;

108 l s = l e n g t h (s) ;

109

110 [C , L] = wavedec (s , 3 , ’ db1 ’) ;

111 cA3 = a p p c o e f (C , L , ’ db1 ’ , 3) ;

112 cD3 = d e t c o e f (C , L , 3) ;

113 cD2 = d e t c o e f (C , L , 2) ;

114 cD1 = d e t c o e f (C , L , 1) ;

115 [cD1 , cD2 , cD3] = d e t c o e f (C , L , [1 , 2 , 3]) ; cD1 (:) =0 ;

116

117 A3 = wrcoef (’ a ’ ,C , L , ’ db1 ’ , 3) ;

118 D1 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 1) ;

119 D2 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 2) ;

120 D3 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 3) ;

121 f i g u r e , t i t l e (’DWT’)

122 s u b p l o t (2 , 2 , 1) ; p l o t (A3) ; t i t l e (’ Approx ima t ion A3 ’)

123 s u b p l o t (2 , 2 , 2) ; p l o t (D1) ; t i t l e (’ D e t a i l D1 ’)

124 s u b p l o t (2 , 2 , 3) ; p l o t (D2) ; t i t l e (’ D e t a i l D2 ’)

180

125 s u b p l o t (2 , 2 , 4) ; p l o t (D3) ; t i t l e (’ D e t a i l D3 ’)

126

127 A0 = waverec (C , L , ’ db1 ’) ;

128 e r r o r 3 = max (abs (s −A0))

129

130 D = l e n g t h (C(l e n g t h (cA3) +1 : end)) ;

131 Q = f l o o r (q u a l i t y *D/100) ;

132

133 Q2Dele te = D−Q;

134 i f Q2Dele te > L (4) + L (3)

135 s t a r t = L (1) +L (2) +L (3) +1;

136 f i n i s h = s t a r t +L (4) −1;

137 C(s t a r t : f i n i s h) =0;

138 s t a r t = L (1) +L (2) +1;

139 f i n i s h = s t a r t + L (3) −1;

140 C(s t a r t : f i n i s h) =NaN ;

141 s t a r t = L (1) +1;

142 f i n i s h = s t a r t +Q2Delete −L (4) −L (3) ;

143 C(s t a r t : f i n i s h) = NaN ;

144

145 e l s e i f Q2Dele te > L (4)

146 s t a r t = L (1) +L (2) +L (3) +1;

147 f i n i s h = s t a r t +L (4) −1;

148 C(s t a r t : f i n i s h) =NaN ;

149 s t a r t = L (1) +L (2) +1;

150 f i n i s h = s t a r t + Q2Delete −L (4) ;

151 C(s t a r t : f i n i s h) =NaN ;

152

153 e l s e i f Q2Dele te <= L (4)

154 s t a r t = L (1) +L (2) +L (3) +1;

155 f i n i s h = s t a r t + Q2Dele te ;

181

156 C(s t a r t : f i n i s h) =NaN ;

157 end

158

159 A3 = wrcoef (’ a ’ ,C , L , ’ db1 ’ , 3) ;

160 D1 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 1) ;

161 D2 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 2) ;

162 D3 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 3) ;

163 f i g u r e

164 s u b p l o t (2 , 2 , 1) ; p l o t (A3) ; t i t l e (’ Approx ima t ion A3 ’)

165 s u b p l o t (2 , 2 , 2) ; p l o t (D1) ; t i t l e (’ D e t a i l D1 compressed ’

)

166 s u b p l o t (2 , 2 , 3) ; p l o t (D2) ; t i t l e (’ D e t a i l D2 compressed ’

)

167 s u b p l o t (2 , 2 , 4) ; p l o t (D3) ; t i t l e (’ D e t a i l D3 compressed ’

)

168

169 A0 = waverec (C , L , ’ db1 ’) ;

170 e r r o r 3 = gmprRMSE (s , A0)

171 r e t u r n

===

1 f u n c t i o n [da t a , d a t a f i l e n a m e , s c a l e f i l e n a m e] =

gmprUncompressDWT (f i l e n a m e , N)

2 % [DATA, DATAFILENAME, SCALEFILENAME] =

GMPRUNCOMPRESSDCT(FILENAME, N)

3 % uncompress d a t a from DWT c o e f f i c i e n t S

4

5 i f n a r g i n == 2 ,

6 i f i s s t r (f i l e n a m e)

7 e l s e

8 d i s p (’ E r r o r . ’) ;

9 d i s p (’ F i l ename must be s t r i n g . Program a b o r t e d . ’

182

) ;

10 r e t u r n

11 end

12 end

13

14 a d d p a t h = [pwd ’\Data ’] ;

15 p a t h (pa th , a d d p a t h) ;

16

17 f i d = fopen (f i l e n a m e , ’ r ’) ;

18 d e p t h S c a l e 1 = f s c a n f (f i d , ’%f ’ , 1) ;

19 d e p t h S c a l e 2 = f s c a n f (f i d , ’%f ’ , 1) ;

20 depthZDim1 = f s c a n f (f i d , ’%i ’ , 1) ;

21 depthZDim2 = f s c a n f (f i d , ’%i ’ , 1) ;

22 q u a l i t y = f s c a n f (f i d , ’%i \n ’ , 1) ;

23

24 d a t a = z e r o s (depthZDim1 , depthZDim2) ;

25 d a t a (: , :) =NaN ;

26

27 f o r r =1 : depthZDim1

28 S t a r t = f s c a n f (f i d , ’%i ’ , 1) ;

29 F i n i s h = f s c a n f (f i d , ’%i ’ , 1) ;

30 f o r k =1:5

31 L (k) = f s c a n f (f i d , ’%i ’ , 1) ;

32 end

33 Lc = f s c a n f (f i d , ’%i ’ , 1) ;

34 C = z e r o s (1 , Lc) ;

35 D = l e n g t h (C(L (1) + 1 : end)) ;

36 Q = f l o o r (q u a l i t y *D/100) ;

37

38 Q2Dele te = D−Q;

39 i f Q2Dele te > L (4) + L (3)

183

40 s t a r t = L (1) +L (2) +L (3) +1;

41 f i n i s h = L (1) +L (2) +L (3) +L (4) ;

42 C(s t a r t : f i n i s h) =NaN ;

43 s t a r t = L (1) +L (2) +1;

44 f i n i s h = L (1) +L (2) + L (3) ;

45 C(s t a r t : f i n i s h) =NaN ;

46 s t a r t = L (1) +1;

47 f i n i s h = L (1) +Q2Delete −(L (4) +L (3)) ;

48 C(s t a r t : f i n i s h) = NaN ;

49

50 e l s e i f Q2Dele te > L (4)

51 s t a r t = L (1) +L (2) +L (3) +1;

52 f i n i s h = L (1) +L (2) +L (3) +L (4) ;

53 C(s t a r t : f i n i s h) =NaN ;

54 s t a r t = L (1) +L (2) +1;

55 f i n i s h = L (1) +L (2) + Q2Dele te − L (4) ;

56 C(s t a r t : f i n i s h) =NaN ;

57

58

59 e l s e i f Q2Dele te <= L (4)

60 s t a r t = L (1) +L (2) +L (3) +1;

61 f i n i s h = L (1) +L (2) +L (3) + Q2Dele te ;

62 C(s t a r t : f i n i s h) =NaN ;

63 end

64

65 f o r k =1: Lc

66 i f ˜ i s n a n (C(k))

67 C(k) = f s c a n f (f i d , ’%f ’ , 1) ;

68 e l s e

69 C(k) =0;

70 end

184

71 end

72

73 A0 = waverec (C , L , ’ db1 ’) ;

74 d a t a (r , S t a r t : F i n i s h) = A0 ;

75 end

76 f c l o s e (f i d) ;

77

78

79 [R , C] = s i z e (d a t a) ;

80 uu = [] ;

81 i f N>0

82 f o r r =1 :R−1

83 S1 = d a t a (r , :) ;

84 S2 = d a t a (r + 1 , :) ;

85 u = gmprLaplace (S1 , S2 , N) ;

86 i f r ==1

87 uu = [uu ; u] ;

88 e l s e

89 uu = [uu ; u (2 : end , :)] ;

90 end

91 end

92 e l s e

93 uu= d a t a ;

94 end

95 d e p t h S c a l e 1 = d e p t h S c a l e 1 / (N+1) ;

96 s c a l e = [d e p t h S c a l e 1 d e p t h S c a l e 2] ;

97 d a t a = uu ;

98

99 s ave pdeData . t x t d a t a −ASCII

100 s ave p d e S c a l e . t x t s c a l e −ASCII

101

185

102 sca l ename = f i l e n a m e (1 : end −4) ;

103 sca l ename = [’ Data \pde ’ num2s t r (N) sca l ename ’ S c a l e .

t x t ’] ;

104 f i l e n a m e = [’ Data \pde ’ num2s t r (N) f i l e n a m e] ;

105

106 c o p y f i l e (’ pdeData . t x t ’ , f i l e n a m e) ;

107 c o p y f i l e (’ p d e S c a l e . t x t ’ , s ca l ename) ;

108 d e l e t e (’ pdeData . t x t ’) ;

109 d e l e t e (’ p d e S c a l e . t x t ’) ;

110

111 d a t a f i l e n a m e = f i l e n a m e ;

112 s c a l e f i l e n a m e = sca l ename ;

===

1 f u n c t i o n [VL, FL]= gmprLoadData (d a t a f i l e n a m e ,

s c a l e f i l e n a m e)

2 % [VL, FL] = GMPRLOADDATA(DATAFILENAME SCALEFILENAME

) l o a d s a f i l e

3 % and r e t u r n s t h e V er t e x L i s t (VL) and Face L i s t (FL)

o f t h e mesh s t r u c t u r e .

4

5 a d d p a t h = [pwd ’\Data ’] ;

6 p a t h (pa th , a d d p a t h) ;

7

8 s t r i p e s = l o a d (d a t a f i l e n a m e) ;

9 s c a l e = l o a d (s c a l e f i l e n a m e) ;

10 d e p t h S c a l e 1 = s c a l e (1) ;

11 d e p t h S c a l e 2 = s c a l e (2) ;

12

13 depthZDim1 = s i z e (s t r i p e s , 1) ;

14 depthZDim2 = s i z e (s t r i p e s , 2) ;

15

186

16 d i s p ([’ Loading f i l e ’ d a t a f i l e n a m e ’ . . . ’]) ;

17 d i s p ([’ Number o f s t r i p e s : ’ num2s t r (depthZDim1)]) ;

18 d i s p ([’ V e r t i c e s p e r s t r i p e : ’ num2s t r (depthZDim2)]) ;

19 d i s p (’When i t l o a d s , t o g g l e ” i ” f o r i n f o , t h e n ” e ” f o r

edges ’) ;

20 d i s p (’ V i s u a l i z a t i o n can t a k e a whi le , p l e a s e w a i t . . . ’)

;

21

22

23 X= [] ;Y= [] ; Z = [] ; c o u n t =0 ;

24 f o r x =1: s i z e (s t r i p e s , 1)

25 f o r y =1: s i z e (s t r i p e s , 2)

26 X = [X; (x −1) * d e p t h S c a l e 1] ;

27 Y = [Y; (y −1) * d e p t h S c a l e 2] ;

28 Z = [Z ; s t r i p e s (x , y)] ;

29 i f (n o t (i s n a n (s t r i p e s (x , y))))

30 c o u n t = c o u n t +1 ;

31 end

32 end

33 end

34 VL = [X Y Z] ;

35

36 FL = [] ;

37 x s t e p =1;

38 y s t e p =1;

39 f o r x= x s t e p +1: x s t e p : depthZDim1 − x s t e p

40 f o r y =1: y s t e p : depthZDim2 − y s t e p

41 i f (n o t (i s n a n (s t r i p e s (x , y))) & n o t (i s n a n (

s t r i p e s (x+ x s t e p , y))) & n o t (i s n a n (s t r i p e s (x ,

y+ y s t e p))))

42 FL=[FL ; (x* depthZDim2 + y) ((x− x s t e p) *

187

depthZDim2 + y + y s t e p) ((x− x s t e p) *
depthZDim2 + y)] ;

43 end

44 i f (n o t (i s n a n (s t r i p e s (x , y+ y s t e p))) & n o t (

i s n a n (s t r i p e s (x+ x s t e p , y))) & n o t (i s n a n (

s t r i p e s (x+ x s t e p , y+ y s t e p))))

45 FL=[FL ; ((x− x s t e p) * depthZDim2 + y + y s t e p

) (x* depthZDim2 + y) (x* depthZDim2

+ y + y s t e p)] ;

46 end

47 end

48 end

49

50 gmprWriteOBJ (VL, FL , [d a t a f i l e n a m e (1 : end −3) ’ o b j ’]

) ;

51 gmprSurfaceView (VL, FL) ;

===

1 f u n c t i o n gmprSurfaceView (VL, FL , CL , i1 , i2 , i3 , i4 , i5 , i6 , i7

, i8 , i9 , i10 , i11 , i12 , i13 , i14 , i15 , i16 , i17 , i18 , i19 , i20 ,

i21 , i 2 2) ;

2 % SURFACEVIEW V i s u a l i z e a 3D s u r f a c e d e f i n e d by

v e r t e x l i s t and f a c e l i s t .

3 %

4 % s u r f a c e v i e w (VL, FL)

5 % Draws t h e s u r f a c e d e f i n e d by v e r t e x l i s t VL and

f a c e l i s t FL .

6 %

7 % s u r f a c e v i e w (VL, FL , CL)

8 % Draws t h e s u r f a c e d e f i n e d by VL and FL , wi th added

v e r t e x c o l o r s g i v e n by CL .

9 %

188

10 % s u r f a c e v i e w (VL, FL , CL , i n f o , axesbox , p r o j e c t i o n ,

background , . . .

11 % t e x t u r e , f a c e c o l o r , e d g e c o l o r , m a t e r i a l ,

f a c e a l p h a , v e r t i c e s , edges , f a c e s , normals , . . .

12 % v i e w p o i n t , camerav iewang le , c a m e r a t a r g e t ,

. . .

13 % l i g h t , l i g h t p o s i t i o n , smoothshad ing ,

move l igh t , b a c k f a c e l i g h t)

14 %

15 % P o s s i b l e v a l u e s f o r t h e s e a rgumen t s (d e f a u l t

v a l u e s shown i n {}) :

16 % CL = n−by −3 m a t r i x { []}
17 % i n f o = {0} | 1

18 % n a v i g a t o r = {0} | 1

19 % axesbox = {0} | 1

20 % p r o j e c t i o n = 0 | {1}
21 % background = 1 | {2} | 3

22 % t e x t u r e = {0} | 1

23 % f a c e c o l o r = 3−by −1 v e c t o r { [. 9 . 8 . 6] }
24 % e d g e c o l o r = 3−by −1 v e c t o r { [0 . 4 . 4] }
25 % m a t e r i a l = 1 | {2} | 3

26 % f a c e a l p h a = s c a l a r >= 0 and <= 1 {1}
27 % v e r t i c e s = {0} | 1

28 % edges = 0 | {1}
29 % f a c e s = 0 | {1}
30 % norma l s = {0} | 1

31 % v i e w p o i n t = 2−by −1 v e c t o r { [135 24]}
32 % came rav i ew ang le = s c a l a r > 0 and <= 180 { []}
33 % c a m e r a t a r g e t = 3−by −1 v e c t o r { []}
34 % l i g h t = 0 | {1}
35 % l i g h t p o s i t i o n = 3−by −1 v e c t o r { []}

189

36 % smoo thshad ing = 0 | {1}
37 % m o v e l i g h t = 0 | {1}
38 % b a c k f a c e l i g h t = {0} | 1

39

40 g l o b a l h a n d l e f i g h a n d l e a x e s h a n d l e n a v i h a n d l e s u r f

h a n d l e v e r t handlenorm h a n d l e l i g t i n f o i n f o t e x t n a v i

n a v i g a t o r f l i p p i n v i e w axesbox p r o j background

t e x t u r e canmap f a c e c o l o r e d g e c o l o r m a t e r i a a l

f a c e a l p h a v e r t i c e s edges f a c e s no rma l s l i g t

smoo thshad ing movelwcam b f r l i g h t boxrange

41

42

43 i f n a r g i n == 0 ,

44 VL = [0 0 0] ;

45 FL = [] ;

46 CL = [] ;

47 end

48

49 i f n a r g i n < 25 ,

50 i f n a r g i n > 3 , d i s p (’ Not enough use r − d e f i n e d i n p u t

p a r a m e t e r s , d e f a u l t i n g a l l v a l u e s . ’) ; end

51 i f n a r g i n == 2 , canmap = 0 ; e l s e canmap = ˜ i s e m p t y

(CL) ; end

52 i n f o = 0 ;

53 n a v i g a t o r = 0 ;

54 axesbox = 0 ;

55 p r o j = 1 ;

56 background = 2 ;

57 t e x t u r e = 0 ;

58 f a c e c o l o r = [. 9 . 8 . 6] ;

59 e d g e c o l o r = [0 . 4 . 4] ;

190

60 m a t e r i a a l = 2 ;

61 f a c e a l p h a = 1 ;

62 v e r t i c e s = 0 ;

63 edges = 1 ;

64 f a c e s = 1 ;

65 norma l s = 0 ;

66 v i e w p o i n t = [135 2 4] ;

67 v i e w a n g l e = [] ;

68 camta rg = [] ;

69 l i g t = 1 ;

70 l i g h t p o s = [] ;

71 smoo thshad ing = 1 ;

72 movelwcam = 1 ;

73 b f r l i g h t = 0 ;

74 e l s e

75 canmap = ˜ i s e m p t y (CL) ;

76 i n f o = i 1 ;

77 n a v i g a t o r = i 2 ;

78 axesbox = i 3 ;

79 p r o j = i 4 ;

80 background = i 5 ;

81 t e x t u r e = i 6 ;

82 f a c e c o l o r = i 7 ;

83 e d g e c o l o r = i 8 ;

84 m a t e r i a a l = i 9 ;

85 f a c e a l p h a = i 1 0 ;

86 v e r t i c e s = i 1 1 ;

87 edges = i 1 2 ;

88 f a c e s = i 1 3 ;

89 norma l s = i 1 4 ;

90 v i e w p o i n t = i 1 5 ;

191

91 v i e w a n g l e = i 1 6 ;

92 camta rg = i 1 7 ;

93 l i g t = i 1 8 ;

94 l i g h t p o s = i 1 9 ;

95 smoo thshad ing = i 2 0 ;

96 movelwcam = i 2 1 ;

97 b f r l i g h t = i 2 2 ;

98 end

99

100 i f i s e m p t y (i n f o) , i n f o = 0 ; end

101 i f i s e m p t y (n a v i g a t o r) , n a v i g a t o r = 0 ; end

102 i f i s e m p t y (axesbox) , axesbox = 0 ; end

103 i f i s e m p t y (p r o j) , p r o j = 1 ; end

104 i f i s e m p t y (background) , background = 2 ; end

105 i f i s e m p t y (t e x t u r e) , t e x t u r e = 0 ; end

106 i f i s e m p t y (f a c e c o l o r) , f a c e c o l o r = [. 9 . 8 . 6] ; end

107 i f i s e m p t y (e d g e c o l o r) , e d g e c o l o r = [0 . 4 . 4] ; end

108 i f i s e m p t y (m a t e r i a a l) , m a t e r i a a l = 2 ; end

109 i f i s e m p t y (f a c e a l p h a) , f a c e a l p h a = 1 ; end

110 i f i s e m p t y (v e r t i c e s) , v e r t i c e s = 0 ; end

111 i f i s e m p t y (edges) , edges = 1 ; end

112 i f i s e m p t y (f a c e s) , f a c e s = 1 ; end

113 i f i s e m p t y (no rma l s) , no rma l s = 0 ; end

114 i f i s e m p t y (v i e w p o i n t) , v i e w p o i n t = [135 2 4] ; end

115 i f i s e m p t y (l i g t) , l i g t = 1 ; end

116 i f i s e m p t y (smoo thshad ing) , smoo thshad ing = 1 ; end

117 i f i s e m p t y (movelwcam) , movelwcam = 1 ; end

118 i f i s e m p t y (b f r l i g h t) , b f r l i g h t = 0 ; end

119

120 %fname = ’ (no f i l e l o a d e d) ’ ;

121 i f i s e m p t y (FL) ,

192

122 sNF = ’ ’ ;

123 sNV = ’ ’ ;

124 e l s e

125 N = s i z e (VL, 1) ; sN = num2s t r (N) ;

126 ekspvorm = 0 ; f o r j = 1 : l e n g t h (sN) , i f sN (j) == ’ e

’ , ekspvorm = 1 ; end ; end

127 i f ˜ ekspvorm ,

128 i f abs (round (log10 (N)) − log10 (N)) < 10* eps ,

aanta lkommas = f l o o r (f l o o r (log10 (N + 1)) / 3)

; e l s e aanta lkommas = f l o o r (f l o o r (log10 (N))

/ 3) ; end

129 f o r j = 1 : aantalkommas , sN = s t r c a t (sN (1 : (end

−4* j +1)) , ’ , ’ , sN ((end −4* j +2) : end)) ; end

130 end

131 sNV = sN ;

132 N = s i z e (FL , 1) ; sN = num2s t r (N) ;

133 ekspvorm = 0 ; f o r j = 1 : l e n g t h (sN) , i f sN (j) == ’ e

’ , ekspvorm = 1 ; end ; end

134 i f ˜ ekspvorm ,

135 i f abs (round (log10 (N)) − log10 (N)) < 10* eps ,

aanta lkommas = f l o o r (f l o o r (log10 (N + 1)) / 3)

; e l s e aanta lkommas = f l o o r (f l o o r (log10 (N))

/ 3) ; end

136 f o r j = 1 : aantalkommas , sN = s t r c a t (sN (1 : (end

−4* j +1)) , ’ , ’ , sN ((end −4* j +2) : end)) ; end

137 end

138 sNF = sN ;

139 end

140

141 warn ing o f f % t u r n ” Unrecogn ized OpenGL v e r s i o n ,

d e f a u l t i n g t o 1 . 0 . ” w a r n i n g s o f f

193

142

143 r and (’ s t a t e ’ , sum (100* c l o c k)) ; % r e s e t s t a t e o f random

number g e n e r a t o r

144

145 X = VL (: , 1) ;

146 Y = VL (: , 2) ;

147 Z = VL (: , 3) ;

148

149 h a n d l e f i g = f i g u r e ;

150 s e t (h a n d l e f i g , ’ C loseReques tFcn ’ , ’ c l o s e r e q , warn ing on ’

) ; %t u r n w a r n i n g s back on a f t e r k i l l i n g f i g u r e

151 s e t (h a n d l e f i g , ’Name ’ , ’ S u r f a c e Viewer ’ , ’ NumberT i t l e ’ , ’

o f f ’ , ’ MenuBar ’ , ’ none ’) ;

152

153 a1 = axes (’ P o s i t i o n ’ , [0 0 1 1] , ’ V i s i b l e ’ , ’ o f f ’) ;

154 h a n d l e n a v i = axes (’ P o s i t i o n ’ , [. 8 9 . 0 5 . 0 6 . 0 6]) ;

155 h a n d l e a x e s = axes (’ P o s i t i o n ’ , [0 . 1 3 0 . 1 1 0 .775 0 . 8 1 5]) ;

a x i s o f f

156

157 s e t (gcf , ’ Cur r en tAxes ’ , h a n d l e n a v i) , ho ld on

158 n a v i = {} ;

159 n a v i {1} = p l o t 3 (0 , 0 , 0 , ’ . ’ , ’ Co lo r ’ , [0 0 0 . 8 5]) ;

160 n a v i {2} = p a t c h (’ V e r t i c e s ’ , 0 . 0 8 * [1 0 0 ; 0 0 0 ; 0 1 0 ;

1 1 0 ; 1 0 1 ; 0 0 1 ; 0 1 1 ; 1 1 1] , ’ Faces ’ , [1 2 3

4 ; 5 8 7 6 ; 1 5 6 2 ; 2 6 7 3 ; 3 7 8 4 ; 4 8 5 1] , ’

FaceCo lo r ’ , [. 6 . 3 . 3] , ’ EdgeColor ’ , ’ k ’ , ’ LineWidth ’

, 1 , ’ FaceAlpha ’ , 0 . 9 8) ;

161 n a v i {3} = p l o t 3 ([0 0 . 1 5] , [0 0] , [0 0] , ’ Co lo r ’ , [0 0

0 . 8 5] , ’ LineWidth ’ , 2) ;

162 n a v i {4} = p l o t 3 ([0 0] , [0 0 . 1 5] , [0 0] , ’ Co lo r ’ , [0 0

0 . 8 5] , ’ LineWidth ’ , 2) ;

194

163 n a v i {5} = p l o t 3 ([0 0] , [0 0] , [0 0 . 1 5] , ’ Co lo r ’ , [0 0

0 . 8 5] , ’ LineWidth ’ , 2) ;

164 n a v i {6} = t e x t (0 . 1 8 , 0 , 0 , ’ x ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t S i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’) ;

165 n a v i {7} = t e x t (0 , 0 . 1 8 , 0 , ’ y ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t S i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’) ;

166 n a v i {8} = t e x t (0 , 0 , 0 . 1 8 , ’ z ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t S i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’) ;

167 a x i s image , view ([1 3 5 , 2 4]) ; a x i s v i s3d , a x i s o f f

168

169 i f ˜ n a v i g a t o r ,

170 f o r j = 1 : l e n g t h (n a v i) , s e t (n a v i { j } , ’ V i s i b l e ’ , ’ o f f

’) ; end

171 end

172

173 s e t (gcf , ’ Cur r en tAxes ’ , a1) , ho ld on

174

175 a x i s ([0 1 0 1]) ;

176 i n f o t e x t = {} ;

177 i n f o t e x t {1} = t e x t (. 0 5 , . 9 2 , ’ G e n e r a l ’ , ’ FontName ’ , ’ A r i a l

’ , ’ F o n t s i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r ’ , [0 0 0])

;

178 i n f o t e x t {2} = t e x t (. 0 5 , . 8 0 , ’ Axes ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r ’ , [0 0 0]) ;

179 i n f o t e x t {3} = t e x t (. 0 5 , . 6 8 , ’ S u r f a c e ’ , ’ FontName ’ , ’ A r i a l

’ , ’ F o n t s i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r ’ , [0 0 0])

;

180 i n f o t e x t {4} = t e x t (. 0 5 , . 4 4 , ’ Camera ’ , ’ FontName ’ , ’ A r i a l ’

, ’ F o n t s i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r ’ , [0 0 0]) ;

181 i n f o t e x t {5} = t e x t (. 0 5 , . 2 4 , ’ L i g h t & Shading ’ , ’ FontName

’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 9 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r ’

195

, [0 0 0]) ;

182

183 i n f o t e x t {6} = t e x t (. 0 6 , . 9 0 , ’ i ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {7} = t e x t (. 0 8 , . 9 0 , ’ show / h i d e i n f o r m a t i o n ’

, ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

184 i n f o t e x t {8} = t e x t (. 0 6 , . 8 8 , ’ o ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {9} = t e x t (. 0 8 , . 8 8 , ’ open s u r f a c e from MAT−

f i l e ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

185 i n f o t e x t {10} = t e x t (. 0 6 , . 8 6 , ’ d ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {11} = t e x t (. 0 8 , . 8 6 , ’ d i s p l a y a l l

p a r a m e t e r s i n command window ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8) ;

186 i n f o t e x t {12} = t e x t (. 0 6 , . 8 4 , ’ g ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {13} = t e x t (. 0 8 , . 8 4 , ’ e x p o r t c u r r e n t s c r e e n

as TIFF ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

187

188 i n f o t e x t {14} = t e x t (. 0 6 , . 7 8 , ’ j ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {15} = t e x t (. 0 8 , . 7 8 , ’ f l i p c o o r d i n a t e sys tem

’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

189 i n f o t e x t {16} = t e x t (. 0 6 , . 7 6 , ’ a ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {17} = t e x t (. 0 8 , . 7 6 , ’ axes b o r d e r on / o f f ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

190 i n f o t e x t {18} = t e x t (. 0 6 , . 7 4 , ’ p ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {19} = t e x t (. 0 8 , . 7 4 , ’ p e r s p e c t i v e / o r t h o g o n a l

196

p r o j e c t i o n ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

191 i n f o t e x t {20} = t e x t (. 0 6 , . 7 2 , ’w’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {21} = t e x t (. 0 8 , . 7 2 , ’ w h i t e / g r ay / b l a c k

background ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

192

193 i n f o t e x t {22} = t e x t (. 0 6 , . 6 6 , ’ c ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {23} = t e x t (. 0 8 , . 6 6 , ’ change un i fo rm s u r f a c e

c o l o r ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

194 i n f o t e x t {24} = t e x t (. 0 6 , . 6 4 , ’ k ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {25} = t e x t (. 0 8 , . 6 4 , ’ change edge c o l o r ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

195 i n f o t e x t {26} = t e x t (. 0 6 , . 6 2 , ’ u ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {27} = t e x t (. 0 8 , . 6 2 , ’ s h i n y / d u l l / m e t a l l i c

r e f l e c t a n c e ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

196 i n f o t e x t {28} = t e x t (. 0 6 , . 6 0 , ’ t ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {29} = t e x t (. 0 8 , . 6 0 , ’ show / h i d e t e x t u r e ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

197 i n f o t e x t {30} = t e x t (. 0 6 , . 5 8 , ’+ ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {31} = t e x t (. 0 8 , . 5 8 , ’ i n c r e a s e s u r f a c e

t r a n s p a r e n c y ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

198 i n f o t e x t {32} = t e x t (. 0 6 , . 5 6 , ’− ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {33} = t e x t (. 0 8 , . 5 6 , ’ d e c r e a s e s u r f a c e

t r a n s p a r e n c y ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

199 i n f o t e x t {34} = t e x t (. 0 6 , . 5 4 , ’ v ’ , ’ FontName ’ , ’ A r i a l ’ , ’

197

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {35} = t e x t (. 0 8 , . 5 4 , ’ show / h i d e v e r t i c e s ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

200 i n f o t e x t {36} = t e x t (. 0 6 , . 5 2 , ’ e ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {37} = t e x t (. 0 8 , . 5 2 , ’ show / h i d e edges ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

201 i n f o t e x t {38} = t e x t (. 0 6 , . 5 0 , ’ f ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {39} = t e x t (. 0 8 , . 5 0 , ’ show / h i d e f a c e s ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

202 i n f o t e x t {40} = t e x t (. 0 6 , . 4 8 , ’ n ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {41} = t e x t (. 0 8 , . 4 8 , ’ show / h i d e f a c e norma l s

’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

203

204 i n f o t e x t {42} = t e x t (. 0 6 , . 4 2 , ’ q ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {43} = t e x t (. 0 8 , . 4 2 , ’ n a v i g a t o r on / o f f ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

205 i n f o t e x t {44} = t e x t (. 0 6 , . 4 0 , ’ r ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {45} = t e x t (. 0 8 , . 4 0 , ’ r e s e t camera t o

d e f a u l t p o s i t i o n ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

206 i n f o t e x t {46} = t e x t (. 0 6 , . 3 8 , ’ x ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {47} = t e x t (. 0 8 , . 3 8 , ’ view down x− a x i s ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

207 i n f o t e x t {48} = t e x t (. 0 6 , . 3 6 , ’ y ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {49} = t e x t (. 0 8 , . 3 6 , ’ view down y− a x i s ’ , ’

198

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

208 i n f o t e x t {50} = t e x t (. 0 6 , . 3 4 , ’ z ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {51} = t e x t (. 0 8 , . 3 4 , ’ view down z− a x i s ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

209 i n f o t e x t {52} = t e x t (. 0 5 7 , . 3 2 , ’ l e f t c l i c k & drag t o

r o t a t e ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

210 i n f o t e x t {53} = t e x t (. 0 5 7 , . 3 0 , ’ midd le c l i c k & drag t o

t r a n s l a t e ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

211 i n f o t e x t {54} = t e x t (. 0 5 7 , . 2 8 , ’ r i g h t c l i c k & drag t o

zoom ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

212

213 i n f o t e x t {55} = t e x t (. 0 6 , . 2 2 , ’ l ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {56} = t e x t (. 0 8 , . 2 2 , ’ l i g h t s o u r c e on / o f f ’ , ’

FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

214 i n f o t e x t {57} = t e x t (. 0 6 , . 2 0 , ’ s ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {58} = t e x t (. 0 8 , . 2 0 , ’ e n a b l e / d i s a b l e smooth

s h a d i n g ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

215 i n f o t e x t {59} = t e x t (. 0 6 , . 1 8 , ’m’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {60} = t e x t (. 0 8 , . 1 8 , ’move l i g h t w i th camera

on / o f f ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

216 i n f o t e x t {61} = t e x t (. 0 6 , . 1 6 , ’ b ’ , ’ FontName ’ , ’ A r i a l ’ , ’

F o n t s i z e ’ , 8 , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’) ;

i n f o t e x t {62} = t e x t (. 0 8 , . 1 6 , ’ back f a c e l i g h t i n g on /

o f f ’ , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 8) ;

217

218 i n f o t e x t {63} = t e x t (. 0 5 , . 0 7 , s t r c a t ([sNV , ’ v e r t i c e s ’

, sNF , ’ f a c e s ’]) , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 9 , ’

199

FontWeight ’ , ’ bo ld ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ l e f t ’) ;

219 i f i s e m p t y (FL) , s e t (i n f o t e x t {63} , ’ S t r i n g ’ , ’ no f i l e

l o a d e d ’) ; end

220

221 i f ˜ i n f o ,

222 f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’

V i s i b l e ’ , ’ o f f ’) ; end ;

223 end

224

225 s e t (gcf , ’ Cur r en tAxes ’ , h a n d l e a x e s) , ho ld on

226

227

228 i f i s e m p t y (FL) , h a n d l e s u r f = t r i s u r f (FL , X, Y, Z) ;

229 e l s e h a n d l e s u r f = t r i s u r f (FL (: , [3 2 1]) ,X, Y, Z) ; end

230 h a n d l e v e r t = p l o t 3 (X, Y, Z , ’ . ’ , ’ Co lo r ’ , [. 8 0 0]) ;

231

232 i f canmap , s e t (h a n d l e s u r f , ’ FaceVer texCData ’ ,CL) ; end

233

234 s e t (h a n d l e s u r f , ’ FaceCo lo r ’ , f a c e c o l o r , ’ F a c e L i g h t i n g ’ , ’

gouraud ’ , ’ FaceAlpha ’ , f a c e a l p h a , ’ B a c k F a c e L i g h t i n g ’ , ’

l i t ’ , ’ EdgeColor ’ , e d g e c o l o r) ;

235

236 i f b f r l i g h t , s e t (h a n d l e s u r f , ’ B a c k F a c e L i g h t i n g ’ , ’

r e v e r s e l i t ’) ; end

237

238 i f canmap & t e x t u r e , s e t (h a n d l e s u r f , ’ FaceCo lo r ’ , ’

i n t e r p ’) ; end

239 i f ˜ canmap , t e x t u r e = 0 ; end

240

241 i f m a t e r i a a l == 1 , m a t e r i a l s h i n y ;

242 e l s e i f m a t e r i a a l == 2 , m a t e r i a l d u l l ;

200

243 e l s e m a t e r i a l m e t a l ; end

244

245 h a n d l e l i g t = l i g h t (’ P o s i t i o n ’ , [1 0 1] , ’ S t y l e ’ , ’

i n f i n i t e ’) ;

246

247 view (v i e w p o i n t) ;

248

249 i f axesbox , a x i s on , e l s e a x i s o f f , end

250 x l a b e l (’ ’) , y l a b e l (’ ’) , z l a b e l (’ ’) ,

251

252 i f i s e m p t y (v i e w a n g l e) ,

253 s e t (h a n d l e a x e s , ’ CameraViewAngleMode ’ , ’ a u t o ’) ;

254 e l s e

255 s e t (h a n d l e a x e s , ’ CameraViewAngle ’ , v i e w a n g l e) ;

256 end

257 a x i s image , a x i s v i s 3 d

258

259 i f p r o j ,

260 s e t (gca , ’ P r o j e c t i o n ’ , ’ p e r s p e c t i v e ’) ;

261 e l s e

262 s e t (gca , ’ P r o j e c t i o n ’ , ’ o r t h o g r a p h i c ’) ;

263 end

264

265

266 s e t (gca , ’Box ’ , ’ on ’ , ’ Co lo r ’ , ’ none ’) ;

267

268

269 s e t (gca , ’ XColor ’ , ’ k ’ , ’ YColor ’ , ’ k ’ , ’ ZColor ’ , ’ k ’) ;

270 s e t (gca , ’ FontName ’ , ’ A r i a l ’ , ’ F o n t s i z e ’ , 9 . 0 , ’ FontWeight ’

, ’Demi ’) ;

271

201

272 i f background == 1 ,

273 s e t (h a n d l e f i g , ’ Co lo r ’ , [1 1 1]) ;

274 s e t (gca , ’ Co lo r ’ , ’ none ’ , ’ XColor ’ , ’ k ’ , ’ YColor ’ , ’ k ’ , ’

ZColor ’ , ’ k ’) ;

275 f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ Co lo r

’ , ’ k ’) ; end ;

276 e l s e i f background == 2 ,

277 s e t (h a n d l e f i g , ’ Co lo r ’ , [0 . 8 0 . 8 0 . 8]) ;

278 s e t (gca , ’ Co lo r ’ , ’ none ’ , ’ XColor ’ , ’ k ’ , ’ YColor ’ , ’ k ’ , ’

ZColor ’ , ’ k ’) ;

279 f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ Co lo r

’ , ’ k ’) ; end ;

280 e l s e

281 s e t (h a n d l e f i g , ’ Co lo r ’ , [0 0 0]) ;

282 s e t (gca , ’ Co lo r ’ , ’ none ’ , ’ XColor ’ , ’w’ , ’ YColor ’ , ’w’ , ’

ZColor ’ , ’w’) ;

283 f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ Co lo r

’ , ’w’) ; end ;

284 end ;

285

286

287 i f ˜ v e r t i c e s , s e t (h a n d l e v e r t , ’ V i s i b l e ’ , ’ o f f ’) ; end

288 i f ˜ edges , s e t (h a n d l e s u r f , ’ EdgeColor ’ , ’ none ’) ; end

289 i f ˜ f a c e s , s e t (h a n d l e s u r f , ’ FaceCo lo r ’ , ’ none ’) ; end

290

291 i f ˜ smoothshad ing , s e t (h a n d l e s u r f , ’ F a c e L i g h t i n g ’ , ’ f l a t

’) ; end

292 i f ˜ l i g t , s e t (h a n d l e s u r f , ’ F a c e L i g h t i n g ’ , ’ none ’) ; end

293

294 i f i s e m p t y (l i g h t p o s) ,

295 s e t (h a n d l e l i g t , ’ P o s i t i o n ’ , g e t (h a n d l e a x e s , ’

202

C a m e r a P o s i t i o n ’)) ;

296 e l s e

297 s e t (h a n d l e l i g t , ’ P o s i t i o n ’ , l i g h t p o s) ;

298 end

299

300

301 i f ˜ i s e m p t y (camta rg) , s e t (gca , ’ CameraTarge t ’ , c amta rg) ;

end

302

303

304 i f ˜ i s e m p t y (FL) ,

305 NL = c r o s s (VL(FL (: , 2) , :) −VL(FL (: , 1) , :) ,VL(FL (: , 3)

, :) −VL(FL (: , 1) , :)) ;

306 normNL = s q r t (sum (NL . ˆ 2 , 2)) ;

307 NL = [NL (: , 1) . / normNL , NL (: , 2) . / normNL , NL (: , 3) . /

normNL] ;

308 FMP = [mean (r e s h a p e (VL(FL , 1) , s i z e (FL , 1) , 3) , 2) ,

mean (r e s h a p e (VL(FL , 2) , s i z e (FL , 1) , 3) , 2) , mean (

r e s h a p e (VL(FL , 3) , s i z e (FL , 1) , 3) , 2)] ;

309

310 handlenorm = q u i v e r 3 (FMP (: , 1) ,FMP (: , 2) ,FMP (: , 3) ,NL

(: , 1) ,NL (: , 2) ,NL (: , 3)) ;

311 s e t (handlenorm (1) , ’ Co lo r ’ , [0 . 8 0 0]) ;

312

313 i f ˜ normals ,

314 s e t (handlenorm (1) , ’ V i s i b l e ’ , ’ o f f ’) ;

315 s e t (handlenorm (2) , ’ V i s i b l e ’ , ’ o f f ’) ;

316 end

317 e l s e

318 handlenorm = [] ;

319 end

203

320

321 mbut ton = [0 0 0] ;

322 prevmousex = 0 ;

323 prevmousey = 0 ;

324

325 mymousedown = [. . .

326 ’ g l o b a l h a n d l e f i g mbut ton prevmousex prevmousey , ’ . . .

327 ’ prevmousex = g e t (h a n d l e f i g , ’ ’ C u r r e n t P o i n t ’ ’) ;

prevmousey = prevmousex (2) ; prevmousex = prevmousex

(1) ; ’ . . .

328 ’ b u t t o n = g e t (h a n d l e f i g , ’ ’ S e l e c t i o n T y p e ’ ’) ; ’ . . .

329 ’ i f b u t t o n (1) == ’ ’ n ’ ’ , mbut ton = [1 0 0] ; ’ . . .

330 ’ e l s e i f b u t t o n (1) == ’ ’ a ’ ’ , mbut ton = [0 0 1] ; ’ . . .

331 ’ e l s e i f b u t t o n (1) == ’ ’ o ’ ’ , ’ . . .

332 ’ e l s e mbut ton = [0 1 0] ; end ; ’ . . .

333 ’ c l e a r b u t t o n h a n d l e f i g mbut ton prevmousex prevmousey ;

’ . . .

334] ;

335

336 mymouseup = [. . .

337 ’ g l o b a l mbutton , ’ . . .

338 ’ mbut ton = [0 0 0] ; ’ . . .

339 ’ c l e a r mbut ton ; ’ . . .

340] ;

341

342 boxrange = max ([(max (VL (: , 1)) −min (VL (: , 1))) , (max (VL

(: , 2)) −min (VL (: , 2))) , (max (VL (: , 3)) −min (VL (: , 3)))])

;

343

344 mymousemove = [. . .

345 ’ g l o b a l h a n d l e f i g h a n d l e l i g t h a n d l e a x e s h a n d l e n a v i

204

movelwcam mbut ton prevmousex prevmousey boxrange , ’

. . .

346 ’ i f any (mbut ton) , ’ . . .

347 ’ x = g e t (h a n d l e f i g , ’ ’ C u r r e n t P o i n t ’ ’) ; y = x (2) ; x =

x (1) ; ’ . . .

348 ’ p = g e t (h a n d l e f i g , ’ ’ P o s i t i o n ’ ’) ; ’ . . .

349 ’ i f mbut ton (1) == 1 , ’ . . .

350 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; ’ . . .

351 ’ c a m o r b i t ((prevmousex −x) / p (3) *360*2 , (prevmousey

−y) / p (4) *360*2) ; ’ . . .

352 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

353 ’ c a m o r b i t ((prevmousex −x) / p (3) *360*2 , (prevmousey

−y) / p (4) *360*2) ; ’ . . .

354 ’ i f movelwcam , c a m l i g h t (h a n d l e l i g t , ’ ’ h e a d l i g h t ’

’) ; end ; ’ . . .

355 ’ e l s e i f mbut ton (2) == 1 , ’ . . .

356 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

357 ’ vax = g e t (gca , ’ ’ CameraUpVector ’ ’) ; vax = vax /

norm (vax) ; ’ . . .

358 ’ hax = c r o s s (g e t (gca , ’ ’ CameraUpVector ’ ’) , g e t (

gca , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; hax = hax / norm (hax) ; ’ . . .

359 ’ d = (prevmousex −x) * hax / (p (3) / boxrange) * 1 . 5 ; ’

. . .

360 ’ s e t (gca , ’ ’ C a m e r a P o s i t i o n ’ ’ , g e t (gca , ’ ’

C a m e r a P o s i t i o n ’ ’) +d) ; s e t (gca , ’ ’ CameraTarge t ’ ’ , g e t (

gca , ’ ’ CameraTarge t ’ ’) +d) ; ’ . . .

361 ’ d = (prevmousey −y) * vax / (p (3) / boxrange) * 1 . 5 ; ’

. . .

362 ’ s e t (gca , ’ ’ C a m e r a P o s i t i o n ’ ’ , g e t (gca , ’ ’

C a m e r a P o s i t i o n ’ ’) +d) ; s e t (gca , ’ ’ CameraTarge t ’ ’ , g e t (

gca , ’ ’ CameraTarge t ’ ’) +d) ; ’ . . .

205

363 ’ e l s e ’ . . .

364 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

365 ’ i f (y−prevmousey) > 0 , camzoom (1 + (y−prevmousey

) / 5 0) ; ’ . . .

366 ’ e l s e i f ((y−prevmousey) < 0) & ((prevmousey −y)

< 50) , camzoom (1 −(prevmousey −y) / 5 0) ; end ; ’ . . .

367 ’ end ; ’ . . .

368 ’ prevmousex = x ; ’ . . .

369 ’ prevmousey = y ; ’ . . .

370 ’ end ; ’ . . .

371 ’ c l e a r p x y vax hax d h a n d l e f i g h a n d l e l i g t h a n d l e a x e s

h a n d l e n a v i movelwcam mbut ton prevmousex prevmousey

boxrange ; ’ . . .

372] ;

373

374 s e t (h a n d l e f i g , ’ WindowButtonDownFcn ’ , mymousedown) ;

375 s e t (h a n d l e f i g , ’ WindowButtonUpFcn ’ , mymouseup) ;

376

377 s e t (h a n d l e f i g , ’ WindowButtonMotionFcn ’ , mymousemove) ;

378

379 f l i p p i n v i e w = 1 ;

380

381 mykeyboard = [. . .

382 ’ g l o b a l h a n d l e f i g h a n d l e a x e s h a n d l e n a v i h a n d l e s u r f

h a n d l e v e r t handlenorm h a n d l e l i g t boxrange i n f o

i n f o t e x t n a v i n a v i g a t o r f l i p p i n v i e w axesbox

b f r l i g h t p r o j background t e x t u r e canmap f a c e c o l o r

e d g e c o l o r m a t e r i a a l f a c e a l p h a v e r t i c e s edges f a c e s

no rma l s l i g t smoo thshad ing movelwcam , ’ . . .

383 ’ key = g e t (h a n d l e f i g , ’ ’ C u r r e n t C h a r a c t e r ’ ’) ; ’ . . .

384 ’ i f key == ’ ’ i ’ ’ , ’ . . .

206

385 ’ i n f o = ˜ i n f o ; ’ . . .

386 ’ i f i n f o , ’ . . .

387 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

V i s i b l e ’ ’ , ’ ’ on ’ ’) ; end ; ’ . . .

388 ’ e l s e ’ . . .

389 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; end ; ’ . . .

390 ’ end ; ’ . . .

391 ’ end ; ’ . . .

392 ’ i f key == ’ ’ d ’ ’ , ’ . . .

393 ’ d i s p (’ ’ ’ ’) ; d i s p (’ ’ ’ ’) ; ’ . . .

394 ’ i f i n f o , d i s p (’ ’ i n f o = on ’ ’) ; e l s e d i s p (’ ’ i n f o =

o f f ’ ’) ; end ; ’ . . .

395 ’ i f n a v i g a t o r , d i s p (’ ’ n a v i g a t o r = on ’ ’) ; e l s e d i s p (

’ ’ n a v i g a t o r = o f f ’ ’) ; end ; ’ . . .

396 ’ i f axesbox , d i s p (’ ’ a x e s b o r d e r = on ’ ’) ; e l s e d i s p (’

’ axesbox = o f f ’ ’) ; end ; ’ . . . ’ i f a x e s l a b , d i s p (’

’ a x e s l a b e l s = on ’ ’) ; e l s e d i s p (’ ’ a x e s l a b e l s = o f f ’ ’

) ; end ; ’ . . .

397 ’ i f p r o j , d i s p (’ ’ p r o j e c t i o n = p e r s p e c t i v e ’ ’) ; e l s e

d i s p (’ ’ p r o j e c t i o n = o r t h o g r a p h i c ’ ’) ; end ; ’ . . .

398 ’ i f background ==1 , d i s p (’ ’ background = w h i t e ’ ’) ;

e l s e i f background ==2 , d i s p (’ ’ background = gray ’ ’) ;

e l s e d i s p (’ ’ background = b l a c k ’ ’) ; end ; ’ . . .

399 ’ i f t e x t u r e , d i s p (’ ’ t e x t u r e = on ’ ’) ; e l s e d i s p (’ ’

t e x t u r e = o f f ’ ’) ; end ; ’ . . .

400 ’ d i s p ([’ ’ f a c e c o l o r = [’ ’ , num2s t r (f a c e c o l o r (1)) , ’ ’ ’

’ , num2s t r (f a c e c o l o r (2)) , ’ ’ ’ ’ , num2s t r (f a c e c o l o r (3))

, ’ ’] ’ ’]) ; ’ . . .

401 ’ d i s p ([’ ’ e d g e c o l o r = [’ ’ , num2s t r (e d g e c o l o r (1)) , ’ ’ ’

’ , num2s t r (e d g e c o l o r (2)) , ’ ’ ’ ’ , num2s t r (e d g e c o l o r (3))

207

, ’ ’] ’ ’]) ; ’ . . .

402 ’ d i s p ([’ ’ f a c e a l p h a = ’ ’ , num2s t r (f a c e a l p h a)]) ; ’ . . .

403 ’ i f v e r t i c e s , d i s p (’ ’ v e r t i c e s = on ’ ’) ; e l s e d i s p (’ ’

v e r t i c e s = o f f ’ ’) ; end ; ’ . . .

404 ’ i f edges , d i s p (’ ’ edges = on ’ ’) ; e l s e d i s p (’ ’ edges

= o f f ’ ’) ; end ; ’ . . .

405 ’ i f f a c e s , d i s p (’ ’ f a c e s = on ’ ’) ; e l s e d i s p (’ ’ f a c e s

= o f f ’ ’) ; end ; ’ . . .

406 ’ i f normals , d i s p (’ ’ no rma l s = on ’ ’) ; e l s e d i s p (’ ’

no rma l s = o f f ’ ’) ; end ; ’ . . .

407 ’ [i , j] = view ; d i s p ([’ ’ v i e w p o i n t = [’ ’ , num2s t r (i) , ’

’ ’ ’ , num2s t r (j) , ’ ’] ’ ’]) ; ’ . . .

408 ’ d i s p ([’ ’ ca merav i ewan g le = ’ ’ , num2s t r (g e t (

h a n d l e a x e s , ’ ’ CameraViewAngle ’ ’))]) ; ’ . . .

409 ’ j = g e t (h a n d l e a x e s , ’ ’ CameraTarge t ’ ’) ; d i s p ([’ ’

c a m e r a t a r g e t = [’ ’ , num2s t r (j (1)) , ’ ’ ’ ’ , num2s t r (j (2)

) , ’ ’ ’ ’ , num2s t r (j (3)) , ’ ’] ’ ’]) ; ’ . . .

410 ’ i f l i g t , d i s p (’ ’ l i g h t = on ’ ’) ; e l s e d i s p (’ ’ l i g h t =

o f f ’ ’) ; end ; ’ . . .

411 ’ j = g e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’) ; d i s p ([’ ’

l i g h t p o s i t i o n = [’ ’ , num2s t r (j (1)) , ’ ’ ’ ’ , num2s t r (j

(2)) , ’ ’ ’ ’ , num2s t r (j (3)) , ’ ’] ’ ’]) ; ’ . . .

412 ’ i f smoothshad ing , d i s p (’ ’ smoo thshad ing = on ’ ’) ;

e l s e d i s p (’ ’ smoo thshad ing = o f f ’ ’) ; end ; ’ . . .

413 ’ i f movelwcam , d i s p (’ ’ m o v e l i g h t = on ’ ’) ; e l s e d i s p (

’ ’ m o v e l i g h t = o f f ’ ’) ; end ; ’ . . .

414 ’ i f b f r l i g h t , d i s p (’ ’ b a c k f a c e l i g h t i n g = on ’ ’) ; e l s e

d i s p (’ ’ b a c k f a c e l i g h t i n g = o f f ’ ’) ; end ; ’ . . .

415 ’ d i s p (’ ’ ’ ’) ; d i s p (’ ’ ’ ’) ; ’ . . .

416 ’ end ; ’ . . .

417 ’ i f key == ’ ’ o ’ ’ , ’ . . .

208

418 ’ [fname , pname] = u i g e t f i l e (’ ’ * . mat ’ ’ , ’ ’ Open ’ ’) ; ’

. . .

419 ’ i f pname == 0 , i = { ’ ’ ’ ’ } ; e l s e i = who (’ ’− f i l e ’ ’

, [pname , fname]) ; end ; ’ . . .

420 ’ f e x = 0 ; v ex = 0 ; c e x = 0 ; ’ . . .

421 ’ f o r j = 1 : l e n g t h (i) , ’ . . .

422 ’ i f l e n g t h (i { j }) == 2 & i { j } == ’ ’FL ’ ’ , f e x =

1 ; end ; ’ . . .

423 ’ i f l e n g t h (i { j }) == 2 & i { j } == ’ ’VL ’ ’ , v ex =

1 ; end ; ’ . . .

424 ’ i f l e n g t h (i { j }) == 2 & i { j } == ’ ’CL ’ ’ , c e x =

1 ; end ; ’ . . .

425 ’ end ; ’ . . .

426 ’ i f f e x & v ex , ’ . . .

427 ’ i f c ex , canmap = 1 ; e l s e canmap = 0 ; end ; ’

. . .

428 ’ e v a l ([’ ’ l o a d ’ ’ ’ ’ ’ ’ , pname , fname , ’ ’ ’ ’ ’ ’ ’ ’]) ; ’

. . .

429 ’ N = s i z e (VL, 1) ; sN = num2s t r (N) ; ’ . . .

430 ’ ekspvorm = 0 ; f o r j = 1 : l e n g t h (sN) , i f sN (j)

== ’ ’ e ’ ’ , ekspvorm = 1 ; end ; end ; ’ . . .

431 ’ i f ˜ ekspvorm , ’ . . .

432 ’ i f abs (round (log10 (N)) − log10 (N)) < 10*
eps , aanta lkommas = f l o o r (f l o o r (log10 (N + 1)) / 3) ;

e l s e aanta lkommas = f l o o r (f l o o r (log10 (N)) / 3) ; end ;

’ . . .

433 ’ f o r j = 1 : aantalkommas , sN = s t r c a t (sN (1 : (

end −4* j +1)) , ’ ’ , ’ ’ , sN ((end −4* j +2) : end)) ; end ; ’ . . .

434 ’ end ; ’ . . .

435 ’ sNV = sN ; ’ . . .

436 ’ N = s i z e (FL , 1) ; sN = num2s t r (N) ; ’ . . .

209

437 ’ ekspvorm = 0 ; f o r j = 1 : l e n g t h (sN) , i f sN (j)

== ’ ’ e ’ ’ , ekspvorm = 1 ; end ; end ; ’ . . .

438 ’ i f ˜ ekspvorm , ’ . . .

439 ’ i f abs (round (log10 (N)) − log10 (N)) < 10*
eps , aanta lkommas = f l o o r (f l o o r (log10 (N + 1)) / 3) ;

e l s e aanta lkommas = f l o o r (f l o o r (log10 (N)) / 3) ; end ;

’ . . .

440 ’ f o r j = 1 : aantalkommas , sN = s t r c a t (sN (1 : (

end −4* j +1)) , ’ ’ , ’ ’ , sN ((end −4* j +2) : end)) ; end ; ’ . . .

441 ’ end ; ’ . . .

442 ’ sNF = sN ; ’ . . .

443 ’ s e t (i n f o t e x t {63} , ’ ’ S t r i n g ’ ’ , s t r c a t ([sNV , ’ ’

v e r t i c e s ’ ’ , sNF , ’ ’ f a c e s ’ ’])) ; ’ . . .

444 ’ NL = c r o s s (VL(FL (: , 2) , :) −VL(FL (: , 1) , :) ,VL(FL

(: , 3) , :) −VL(FL (: , 1) , :)) ; ’ . . .

445 ’ normNL = s q r t (sum (NL . ˆ 2 , 2)) ; ’ . . .

446 ’ NL = [NL (: , 1) . / normNL , NL (: , 2) . / normNL , NL

(: , 3) . / normNL] ; ’ . . .

447 ’ FMP = [mean (r e s h a p e (VL(FL , 1) , s i z e (FL , 1) , 3) , 2) ,

mean (r e s h a p e (VL(FL , 2) , s i z e (FL , 1) , 3) , 2) , mean (

r e s h a p e (VL(FL , 3) , s i z e (FL , 1) , 3) , 2)] ; ’ . . .

448 ’ i f ˜ i s e m p t y (handlenorm) , d e l e t e (handlenorm) ;

end ; ’ . . .

449 ’ handlenorm = q u i v e r 3 (FMP (: , 1) ,FMP (: , 2) ,FMP

(: , 3) ,NL (: , 1) ,NL (: , 2) ,NL (: , 3)) ; ’ . . .

450 ’ handlenorm (2) = p l o t 3 (FMP (: , 1) ,FMP (: , 2) ,FMP

(: , 3) , ’ ’ . ’ ’ , ’ ’ Co lo r ’ ’ , [0 . 5 0 0]) ; ’ . . .

451 ’ s e t (handlenorm (1) , ’ ’ Co lo r ’ ’ , [0 . 8 0 0]) ; ’ . . .

452 ’ i f ˜ normals , ’ . . .

453 ’ s e t (handlenorm (1) , ’ ’ V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; ’

. . .

210

454 ’ s e t (handlenorm (2) , ’ ’ V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; ’

. . .

455 ’ end ; ’ . . .

456 ’ s e t (h a n d l e v e r t , ’ ’ XData ’ ’ ,VL (: , 1) , ’ ’ YData ’ ’ ,VL

(: , 2) , ’ ’ ZData ’ ’ ,VL (: , 3)) ; ’ . . .

457 ’ s e t (h a n d l e s u r f , ’ ’ Faces ’ ’ , [] , ’ ’ V e r t i c e s ’ ’ ,VL, ’ ’

Faces ’ ’ , FL (: , [3 2 1])) ; ’ . . .

458 ’ i f canmap , s e t (h a n d l e s u r f , ’ ’ FaceVer texCData ’ ’ ,

CL) ; end ; ’ . . .

459 ’ i f canmap & t e x t u r e , s e t (h a n d l e s u r f , ’ ’

FaceCo lo r ’ ’ , ’ ’ i n t e r p ’ ’) ; end ; ’ . . .

460 ’ i f ˜ canmap , ’ . . .

461 ’ t e x t u r e = 0 ; ’ . . .

462 ’ s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , f a c e c o l o r) ; ’

. . .

463 ’ end ; ’ . . .

464 ’ i f ˜ f a c e s , s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , ’ ’ none

’ ’) ; end ; ’ . . .

465 ’ a x i s image , view ([1 3 5 , 2 4]) ; s e t (h a n d l e a x e s , ’ ’

CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ; ’ . . .

466 ’ a x i s image , a x i s v i s3d , ’ . . .

467 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

468 ’ boxrange = max ([(max (VL (: , 1)) −min (VL (: , 1))) , (

max (VL (: , 2)) −min (VL (: , 2))) , (max (VL (: , 3)) −min (VL

(: , 3)))]) ; ’ . . .

469 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view

(1 3 5 , 2 4) ; ’ . . .

470 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

471 ’ end ; ’ . . .

472 ’ end ; ’ . . .

211

473 ’ i f key == ’ ’ g ’ ’ , ’ . . .

474 ’ f o r j = 1 : l e n g t h (n a v i) , s e t (n a v i { j } , ’ ’ V i s i b l e ’ ’ , ’ ’

o f f ’ ’) ; end ; ’ . . .

475 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; end ; ’ . . .

476 ’ p r i n t − d t i f f s c r e e n , ’ . . .

477 ’ i f n a v i g a t o r , f o r j = 1 : l e n g t h (n a v i) , s e t (n a v i { j } ,

’ ’ V i s i b l e ’ ’ , ’ ’ on ’ ’) ; end ; end ; ’ . . .

478 ’ i f i n f o , f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t {
j } , ’ ’ V i s i b l e ’ ’ , ’ ’ on ’ ’) ; end ; end ; ’ . . .

479 ’ end ; ’ . . .

480 ’ i f key == ’ ’ q ’ ’ , ’ . . .

481 ’ n a v i g a t o r = ˜ n a v i g a t o r ; ’ . . .

482 ’ i f n a v i g a t o r , ’ . . .

483 ’ f o r j = 1 : l e n g t h (n a v i) , s e t (n a v i { j } , ’ ’ V i s i b l e ’

’ , ’ ’ on ’ ’) ; end ; ’ . . .

484 ’ e l s e ’ . . .

485 ’ f o r j = 1 : l e n g t h (n a v i) , s e t (n a v i { j } , ’ ’ V i s i b l e ’

’ , ’ ’ o f f ’ ’) ; end ; ’ . . .

486 ’ end ; ’ . . .

487 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

488 ’ end ; ’ . . .

489 ’ i f key == ’ ’ j ’ ’ , ’ . . .

490 ’ f l i p p i n v i e w = mod (f l i p p i n v i e w , 3) + 1 ; ’ . . .

491 ’ N = g e t (h a n d l e s u r f , ’ ’ V e r t i c e s ’ ’) ; ’ . . .

492 ’ s e t (h a n d l e s u r f , ’ ’ V e r t i c e s ’ ’ ,N (: , [3 1 2])) ; ’ . . .

493 ’ s e t (h a n d l e v e r t , ’ ’ XData ’ ’ ,N (: , 3) , ’ ’ YData ’ ’ ,N (: , 1) , ’

’ ZData ’ ’ ,N (: , 2)) ; ’ . . .

494 ’ N = [g e t (handlenorm (1) , ’ ’ XData ’ ’) , g e t (handlenorm

(1) , ’ ’ YData ’ ’) , g e t (handlenorm (1) , ’ ’ ZData ’ ’)] ; ’ . . .

495 ’ s e t (handlenorm (1) , ’ ’ XData ’ ’ ,N (: , 3) , ’ ’ YData ’ ’ ,N

212

(: , 1) , ’ ’ ZData ’ ’ ,N(: , 2)) ; ’ . . .

496 ’ N = [g e t (handlenorm (2) , ’ ’ XData ’ ’) ; g e t (handlenorm

(2) , ’ ’ YData ’ ’) ; g e t (handlenorm (2) , ’ ’ ZData ’ ’)] ; ’ . . .

497 ’ s e t (handlenorm (2) , ’ ’ XData ’ ’ ,N (3 , :) , ’ ’ YData ’ ’ ,N

(1 , :) , ’ ’ ZData ’ ’ ,N(2 , :)) ; ’ . . .

498 ’ a x i s image ; ’ . . .

499 ’ i f f l i p p i n v i e w == 1 , s e t (n a v i {6} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’)

; s e t (n a v i {7} , ’ ’ S t r i n g ’ ’ , ’ ’ y ’ ’) ; s e t (n a v i {8} , ’ ’

S t r i n g ’ ’ , ’ ’ z ’ ’) ; ’ . . .

500 ’ e l s e i f f l i p p i n v i e w == 2 , s e t (n a v i {6} , ’ ’ S t r i n g ’ ’ , ’ ’

z ’ ’) ; s e t (n a v i {7} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’) ; s e t (n a v i {8} , ’ ’

S t r i n g ’ ’ , ’ ’ y ’ ’) ; ’ . . .

501 ’ e l s e s e t (n a v i {6} , ’ ’ S t r i n g ’ ’ , ’ ’ y ’ ’) ; s e t (n a v i {7} , ’ ’

S t r i n g ’ ’ , ’ ’ z ’ ’) ; s e t (n a v i {8} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’) ; end

; ’ . . . ’ i f a x e s l a b , ’ . . . ’ i f f l i p p i n v i e w

== 1 , x l a b e l (’ ’x ’ ’) ; y l a b e l (’ ’ y ’ ’) ; z l a b e l (’ ’ z ’ ’) ;

s e t (n a v i {6} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’) ; s e t (n a v i {7} , ’ ’ S t r i n g

’ ’ , ’ ’ y ’ ’) ; s e t (n a v i {8} , ’ ’ S t r i n g ’ ’ , ’ ’ z ’ ’) ; ’ . . . ’

e l s e i f f l i p p i n v i e w == 2 , x l a b e l (’ ’ z ’ ’) ;

y l a b e l (’ ’ x ’ ’) ; z l a b e l (’ ’ y ’ ’) ; s e t (n a v i {6} , ’ ’ S t r i n g ’

’ , ’ ’ z ’ ’) ; s e t (n a v i {7} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’) ; s e t (n a v i

{8} , ’ ’ S t r i n g ’ ’ , ’ ’ y ’ ’) ; ’ . . . ’ e l s e x l a b e l (’ ’y ’

’) ; y l a b e l (’ ’ z ’ ’) ; z l a b e l (’ ’ x ’ ’) ; s e t (n a v i {6} , ’ ’

S t r i n g ’ ’ , ’ ’ y ’ ’) ; s e t (n a v i {7} , ’ ’ S t r i n g ’ ’ , ’ ’ z ’ ’) ; s e t

(n a v i {8} , ’ ’ S t r i n g ’ ’ , ’ ’ x ’ ’) ; end ; ’ . . . ’ end ; ’ . . .

502 ’ s e t (gcf , ’ ’ Cur ren tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

503 ’ end ; ’ . . .

504 ’ i f key == ’ ’ a ’ ’ , ’ . . .

505 ’ axesbox = ˜ axesbox ; ’ . . .

506 ’ i f axesbox , a x i s on ; ’ . . .

507 ’ e l s e a x i s o f f ; end ; ’ . . .

213

508 ’ end ; ’ . . .

509 ’ i f key == ’ ’ b ’ ’ , ’ . . .

510 ’ b f r l i g h t = ˜ b f r l i g h t ; ’ . . .

511 ’ i f b f r l i g h t , s e t (h a n d l e s u r f , ’ ’ B a c k F a c e L i g h t i n g ’ ’ , ’

’ r e v e r s e l i t ’ ’) ; ’ . . .

512 ’ e l s e s e t (h a n d l e s u r f , ’ ’ B a c k F a c e L i g h t i n g ’ ’ , ’ ’ l i t ’ ’) ;

end ; ’ . . .

513 ’ end ; ’ . . .

514 ’ i f key == ’ ’ p ’ ’ , ’ . . .

515 ’ p r o j = ˜ p r o j ; ’ . . .

516 ’ i f p r o j , s e t (gca , ’ ’ P r o j e c t i o n ’ ’ , ’ ’ p e r s p e c t i v e ’ ’) ; ’

. . .

517 ’ e l s e s e t (gca , ’ ’ P r o j e c t i o n ’ ’ , ’ ’ o r t h o g r a p h i c ’ ’) ; end

; ’ , . . .

518 ’ end ; ’ . . .

519 ’ i f key == ’ ’w’ ’ , ’ . . .

520 ’ background = background + 1 ; ’ . . .

521 ’ i f background > 3 , background = 1 ; end ; ’ . . .

522 ’ i f background == 1 , ’ . . .

523 ’ s e t (h a n d l e f i g , ’ ’ Co lo r ’ ’ , [1 1 1]) ; ’ . . .

524 ’ s e t (gca , ’ ’ Co lo r ’ ’ , ’ ’ none ’ ’ , ’ ’ XColor ’ ’ , ’ ’ k ’ ’ , ’ ’

YColor ’ ’ , ’ ’ k ’ ’ , ’ ’ ZColor ’ ’ , ’ ’ k ’ ’) ; ’ . . .

525 ’ s e t (n a v i {2} , ’ ’ EdgeColor ’ ’ , ’ ’ k ’ ’) ; ’ . . .

526 ’ f o r j = 6 : 8 , s e t (n a v i { j } , ’ ’ Co lo r ’ ’ , ’ ’ k ’ ’) ; end

; ’ . . .

527 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

Co lo r ’ ’ , ’ ’ k ’ ’) ; end ; ’ . . .

528 ’ e l s e i f background == 2 , ’ . . .

529 ’ s e t (h a n d l e f i g , ’ ’ Co lo r ’ ’ , [0 . 8 0 . 8 0 . 8]) ; ’ . . .

530 ’ s e t (gca , ’ ’ Co lo r ’ ’ , ’ ’ none ’ ’ , ’ ’ XColor ’ ’ , ’ ’ k ’ ’ , ’ ’

YColor ’ ’ , ’ ’ k ’ ’ , ’ ’ ZColor ’ ’ , ’ ’ k ’ ’) ; ’ . . .

214

531 ’ s e t (n a v i {2} , ’ ’ EdgeColor ’ ’ , ’ ’ k ’ ’) ; ’ . . .

532 ’ f o r j = 6 : 8 , s e t (n a v i { j } , ’ ’ Co lo r ’ ’ , ’ ’ k ’ ’) ; end

; ’ . . .

533 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

Co lo r ’ ’ , ’ ’ k ’ ’) ; end ; ’ . . .

534 ’ e l s e ’ . . .

535 ’ s e t (h a n d l e f i g , ’ ’ Co lo r ’ ’ , [0 0 0]) ; ’ . . .

536 ’ s e t (gca , ’ ’ Co lo r ’ ’ , ’ ’ none ’ ’ , ’ ’ XColor ’ ’ , ’ ’w’ ’ , ’ ’

YColor ’ ’ , ’ ’w’ ’ , ’ ’ ZColor ’ ’ , ’ ’w’ ’) ; ’ . . .

537 ’ s e t (n a v i {2} , ’ ’ EdgeColor ’ ’ , ’ ’w’ ’) ; ’ . . .

538 ’ f o r j = 6 : 8 , s e t (n a v i { j } , ’ ’ Co lo r ’ ’ , ’ ’w’ ’) ; end

; ’ . . .

539 ’ f o r j = 1 : l e n g t h (i n f o t e x t) , s e t (i n f o t e x t { j } , ’ ’

Co lo r ’ ’ , ’ ’w’ ’) ; end ; ’ . . .

540 ’ end ; ’ . . .

541 ’ end ; ’ . . .

542 ’ i f key == ’ ’ t ’ ’ , ’ . . .

543 ’ i f canmap , ’ . . .

544 ’ t e x t u r e = ˜ t e x t u r e ; ’ . . .

545 ’ i f t e x t u r e , s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , ’ ’

i n t e r p ’ ’) ; ’ . . .

546 ’ e l s e s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , f a c e c o l o r) ;

end ; ’ . . .

547 ’ i f ˜ f a c e s , s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , ’ ’ none

’ ’) ; end ; ’ . . .

548 ’ end ; ’ . . .

549 ’ end ; ’ . . .

550 ’ i f key == ’ ’ c ’ ’ , ’ . . .

551 ’ j = u i s e t c o l o r (f a c e c o l o r , ’ ’ Change s u r f a c e c o l o r ’ ’)

; ’ . . .

552 ’ i f l e n g t h (j) == 3 , ’ . . .

215

553 ’ f a c e c o l o r = j ; ’ . . .

554 ’ i f ˜ t e x t u r e & f a c e s , s e t (h a n d l e s u r f , ’ ’

FaceCo lo r ’ ’ , f a c e c o l o r) ; end ; ’ . . .

555 ’ end ; ’ . . .

556 ’ end ; ’ . . .

557 ’ i f key == ’ ’ k ’ ’ , ’ . . .

558 ’ j = u i s e t c o l o r (e d g e c o l o r , ’ ’ Change edge c o l o r ’ ’) ; ’

. . .

559 ’ i f l e n g t h (j) == 3 , ’ . . .

560 ’ e d g e c o l o r = j ; ’ . . .

561 ’ i f edges , s e t (h a n d l e s u r f , ’ ’ EdgeColor ’ ’ ,

e d g e c o l o r) ; end ; ’ . . .

562 ’ end ; ’ . . .

563 ’ end ; ’ . . .

564 ’ i f key == ’ ’ u ’ ’ , ’ . . .

565 ’ m a t e r i a a l = mod (m a t e r i a a l , 3) + 1 ; ’ . . .

566 ’ s e t (gcf , ’ ’ C u r r e n t O b j e c t ’ ’ , h a n d l e s u r f) ; ’ . . .

567 ’ i f m a t e r i a a l == 1 , m a t e r i a l s h i n y ; ’ . . .

568 ’ e l s e i f m a t e r i a a l == 2 , m a t e r i a l d u l l ; ’ . . .

569 ’ e l s e m a t e r i a l m e t a l ; end ; ’ . . .

570 ’ end ; ’ . . .

571 ’ i f key == ’ ’+ ’ ’ , ’ . . .

572 ’ i f f a c e a l p h a == 1 , f a c e a l p h a = 0 . 9 8 ; e l s e i f

f a c e a l p h a == 0 . 9 8 , f a c e a l p h a = 0 . 9 5 ; e l s e i f

f a c e a l p h a >= 0 . 0 5 , f a c e a l p h a = f a c e a l p h a − 0 . 0 5 ;

end ; ’ . . .

573 ’ s e t (h a n d l e s u r f , ’ ’ FaceAlpha ’ ’ , f a c e a l p h a) ; ’ . . .

574 ’ end ; ’ . . .

575 ’ i f key == ’ ’− ’ ’ , ’ . . .

576 ’ i f f a c e a l p h a == 0 . 9 5 , f a c e a l p h a = 0 . 9 8 ; e l s e i f

f a c e a l p h a == 0 . 9 8 , f a c e a l p h a = 1 ; e l s e i f f a c e a l p h a

216

<= 0 . 9 , f a c e a l p h a = f a c e a l p h a + 0 . 0 5 ; end ; ’ . . .

577 ’ s e t (h a n d l e s u r f , ’ ’ FaceAlpha ’ ’ , f a c e a l p h a) ; ’ . . .

578 ’ end ; ’ . . .

579 ’ i f key == ’ ’ v ’ ’ , ’ . . .

580 ’ v e r t i c e s = ˜ v e r t i c e s ; ’ . . .

581 ’ i f v e r t i c e s , s e t (h a n d l e v e r t , ’ ’ V i s i b l e ’ ’ , ’ ’ on ’ ’) ; ’

. . .

582 ’ e l s e s e t (h a n d l e v e r t , ’ ’ V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; end ; ’

. . .

583 ’ end ; ’ . . .

584 ’ i f key == ’ ’ e ’ ’ , ’ . . .

585 ’ edges = ˜ edges ; ’ . . .

586 ’ i f edges , s e t (h a n d l e s u r f , ’ ’ EdgeColor ’ ’ , e d g e c o l o r) ;

’ . . .

587 ’ e l s e s e t (h a n d l e s u r f , ’ ’ EdgeColor ’ ’ , ’ ’ none ’ ’) ; end ;

’ . . .

588 ’ end ; ’ . . .

589 ’ i f key == ’ ’ f ’ ’ , ’ . . .

590 ’ f a c e s = ˜ f a c e s ; ’ . . .

591 ’ i f f a c e s , ’ . . .

592 ’ i f t e x t u r e , s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , ’ ’

i n t e r p ’ ’) ; ’ . . .

593 ’ e l s e s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , f a c e c o l o r) ;

end ; ’ . . .

594 ’ e l s e ’ . . .

595 ’ s e t (h a n d l e s u r f , ’ ’ FaceCo lo r ’ ’ , ’ ’ none ’ ’) ; ’ . . .

596 ’ end ; ’ . . .

597 ’ end ; ’ . . .

598 ’ i f key == ’ ’ n ’ ’ , ’ . . .

599 ’ no rma l s = ˜ no rma l s ; ’ . . .

600 ’ i f normals , ’ . . .

217

601 ’ s e t (handlenorm (1) , ’ ’ V i s i b l e ’ ’ , ’ ’ on ’ ’) ; ’ . . .

602 ’ s e t (handlenorm (2) , ’ ’ V i s i b l e ’ ’ , ’ ’ on ’ ’) ; ’ . . .

603 ’ e l s e ’ . . .

604 ’ s e t (handlenorm (1) , ’ ’ V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; ’ . . .

605 ’ s e t (handlenorm (2) , ’ ’ V i s i b l e ’ ’ , ’ ’ o f f ’ ’) ; ’ . . .

606 ’ end ; ’ . . .

607 ’ end ; ’ . . .

608 ’ i f key == ’ ’ r ’ ’ , ’ . . .

609 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (1 3 5 , 2 4) ;

’ . . .

610 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

611 ’ view (1 3 5 , 2 4) ; ’ . . .

612 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

613 ’ a x i s image , a x i s v i s3d , ’ . . .

614 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

615 ’ end ; ’ . . .

616 ’ i f key == ’ ’ x ’ ’ , ’ . . .

617 ’ i f f l i p p i n v i e w == 1 , N = [90 0] ; e l s e i f

f l i p p i n v i e w == 2 , N = [0 0] ; e l s e N = [0 9 0] ; end ;

’ . . .

618 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

619 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

620 ’ view (1 3 5 , 2 4) ; ’ . . .

621 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

622 ’ a x i s image , a x i s v i s3d , ’ . . .

623 ’ view (N) ; ’ . . .

624 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

218

625 ’ end ; ’ . . .

626 ’ i f key == ’ ’X’ ’ , ’ . . .

627 ’ i f f l i p p i n v i e w == 1 , N = [−90 0] ; e l s e i f

f l i p p i n v i e w == 2 , N = [−180 0] ; e l s e N = [−180

−90] ; end ; ’ . . .

628 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

629 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

630 ’ view (1 3 5 , 2 4) ; ’ . . .

631 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

632 ’ a x i s image , a x i s v i s3d , ’ . . .

633 ’ view (N) ; ’ . . .

634 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

635 ’ end ; ’ . . .

636 ’ i f key == ’ ’ y ’ ’ , ’ . . .

637 ’ i f f l i p p i n v i e w == 1 , N = [0 0] ; e l s e i f f l i p p i n v i e w

== 2 , N = [0 9 0] ; e l s e N = [90 0] ; end ; ’ . . .

638 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

639 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

640 ’ view (1 3 5 , 2 4) ; ’ . . .

641 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

642 ’ a x i s image , a x i s v i s3d , ’ . . .

643 ’ view (N) ; ’ . . .

644 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

645 ’ end ; ’ . . .

646 ’ i f key == ’ ’Y’ ’ , ’ . . .

647 ’ i f f l i p p i n v i e w == 1 , N = [−180 0] ; e l s e i f

f l i p p i n v i e w == 2 , N = [−180 −90] ; e l s e N = [−90 0] ;

219

end ; ’ . . .

648 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

649 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

650 ’ view (1 3 5 , 2 4) ; ’ . . .

651 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

652 ’ a x i s image , a x i s v i s3d , ’ . . .

653 ’ view (N) ; ’ . . .

654 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

655 ’ end ; ’ . . .

656 ’ i f key == ’ ’ z ’ ’ , ’ . . .

657 ’ i f f l i p p i n v i e w == 1 , N = [0 9 0] ; e l s e i f

f l i p p i n v i e w == 2 , N = [90 0] ; e l s e N = [0 0] ; end ;

’ . . .

658 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

659 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

660 ’ view (1 3 5 , 2 4) ; ’ . . .

661 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

662 ’ a x i s image , a x i s v i s3d , ’ . . .

663 ’ view (N) ; ’ . . .

664 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

665 ’ end ; ’ . . .

666 ’ i f key == ’ ’Z ’ ’ , ’ . . .

667 ’ i f f l i p p i n v i e w == 1 , N = [−180 −90] ; e l s e i f

f l i p p i n v i e w == 2 , N = [−90 0] ; e l s e N = [−180 0] ;

end ; ’ . . .

668 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e n a v i) ; view (N) ; ’ . . .

669 ’ s e t (gcf , ’ ’ Cu r r en tAxes ’ ’ , h a n d l e a x e s) ; ’ . . .

220

670 ’ view (1 3 5 , 2 4) ; ’ . . .

671 ’ s e t (h a n d l e a x e s , ’ ’ CameraViewAngleMode ’ ’ , ’ ’ a u t o ’ ’) ;

’ . . .

672 ’ a x i s image , a x i s v i s3d , ’ . . .

673 ’ view (N) ; ’ . . .

674 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

675 ’ end ; ’ . . .

676 ’ i f key == ’ ’ l ’ ’ , ’ . . .

677 ’ l i g t = ˜ l i g t ; ’ . . .

678 ’ i f l i g t , ’ . . .

679 ’ i f smoothshad ing , ’ . . .

680 ’ s e t (h a n d l e s u r f , ’ ’ F a c e L i g h t i n g ’ ’ , ’ ’ gouraud ’

’) ; ’ . . .

681 ’ e l s e ’ . . .

682 ’ s e t (h a n d l e s u r f , ’ ’ F a c e L i g h t i n g ’ ’ , ’ ’ f l a t ’ ’) ;

’ . . .

683 ’ end ; ’ . . .

684 ’ e l s e ’ . . .

685 ’ s e t (h a n d l e s u r f , ’ ’ F a c e L i g h t i n g ’ ’ , ’ ’ none ’ ’) ; ’

. . .

686 ’ end ; ’ . . .

687 ’ end ; ’ . . .

688 ’ i f key == ’ ’ s ’ ’ , ’ . . .

689 ’ smoo thshad ing = ˜ smoo thshad ing ; ’ . . .

690 ’ i f l i g t , ’ . . .

691 ’ i f smoothshad ing , ’ . . .

692 ’ s e t (h a n d l e s u r f , ’ ’ F a c e L i g h t i n g ’ ’ , ’ ’ gouraud ’

’) ; ’ . . .

693 ’ e l s e ’ . . .

694 ’ s e t (h a n d l e s u r f , ’ ’ F a c e L i g h t i n g ’ ’ , ’ ’ f l a t ’ ’) ;

221

’ . . .

695 ’ end ; ’ . . .

696 ’ end ; ’ . . .

697 ’ end ; ’ . . .

698 ’ i f key == ’ ’m’ ’ , ’ . . .

699 ’ movelwcam = ˜ movelwcam ; ’ . . .

700 ’ i f movelwcam , s e t (h a n d l e l i g t , ’ ’ P o s i t i o n ’ ’ , g e t (

h a n d l e a x e s , ’ ’ C a m e r a P o s i t i o n ’ ’)) ; end ; ’ . . .

701 ’ end ; ’ . . .

702 ’ c l e a r key f e x v ex c e x aanta lkommas ekspvorm fname

pname sN sNF sNV N FMP NL normNL i j h a n d l e f i g

h a n d l e a x e s h a n d l e n a v i h a n d l e s u r f h a n d l e v e r t

handlenorm h a n d l e l i g t boxrange i n f o i n f o t e x t n a v i

n a v i g a t o r f l i p p i n v i e w axesbox b f r l i g h t p r o j

background t e x t u r e canmap f a c e c o l o r e d g e c o l o r

m a t e r i a a l f a c e a l p h a v e r t i c e s edges f a c e s no rma l s

l i g t smoo thshad ing movelwcam , ’ . . .

703] ;

704

705

706 s e t (h a n d l e f i g , ’ KeyPressFcn ’ , mykeyboard) ;

===

1 f u n c t i o n uu = gmprLaplace (S1 , S2 , N)

2 % FUNCTION GMPRLAPLACE

3 % I t e r a t i v e l y s o l v e s t h e L a p l a c e e q u a t i o n ove r a

r e c t a n g u l a r domain

4

5 i f i s e m p t y (S1) | i s e m p t y (S2)

6 e r r o r (’ I n p u t v e c t d o r s c a n n o t be empty ’) ;

7 r e t u r n

8 end

222

9

10 i f s i z e (S1 , 1) == 1

11 e l s e

12 S1 = t r a n s p o s e (S1) ;

13 end

14 i f s i z e (S2 , 1) == 1

15 e l s e

16 S2 = t r a n s p o s e (S2) ;

17 end

18

19 i f l e n g t h (S1) ˜= l e n g t h (S2)

20 e r r o r (’ERROR: I n p u t d i m e n s i o n s must a g r e e . ’) ;

21 r e t u r n

22 end

23 i f N<1

24 uu = [S1 ; S2] ;

25 r e t u r n

26 end

27

28 N = N+2;

29 L = l e n g t h (S1) ;

30 d a t a = z e r o s (N, L) ;

31 d a t a (: , :) =NaN ;

32 d a t a (1 , :) =S1 ;

33 d a t a (N , :) =S2 ;

34

35 U1=L ; U2=1;

36 f o r i =1 :L

37 i f i s n a n (S1 (i))

38 e l s e

39 i f i<U1 U1= i ; end

223

40 i f i>U2 U2= i ; end

41 end

42 end

43

44 U3=L ; U4=1;

45 f o r i =1 :L

46 i f i s n a n (S2 (i))

47 e l s e

48 i f i<U3 U3= i ; end

49 i f i>U4 U4= i ; end

50 end

51 end

52

53 i f (U2−U1+1)<2

54 uu =[S1 ; S2] ;

55 r e t u r n

56 end

57 i f (U4−U3+1)<2

58 uu =[S1 ; S2] ;

59 r e t u r n

60 end

61

62 i f U1<U3 U1=U3 ; e l s e U3=U1 ; end

63 i f U2>U4 U2=U4 ; e l s e U4=U2 ; end

64

65 C = U2−U1+1;

66 UU = z e r o s (N, C) ;

67

68 v = 1 / (N−1) ;

69 h = 1 / (C−1) ;

70 B12 = S1 (U1 : U2) ;

224

71 B34 = S2 (U3 : U4) ;

72 B13 = U1 : (U3−U1) / (N−1) : U3 ;

73 B24 = U2 : (U4−U2) / (N−1) : U4 ;

74

75 i f i s e m p t y (B12)

76 B12 = S1 (U1) * (ones (1 , s i z e (S1 , 1))) ;

77 end

78 i f i s e m p t y (B34)

79 B34 = S2 (U3) * (ones (1 , s i z e (S1 , 1))) ;

80 end

81 i f i s e m p t y (B13)

82 B13 = S1 (U1) * (ones (1 ,N)) ;

83 end

84 i f i s e m p t y (B24)

85 B24 = S1 (U2) * (ones (1 ,N)) ;

86 end

87

88 UU(1 , :) = B12 ;

89 UU(end , :) = B34 ;

90 UU(: , 1) = t r a n s p o s e (B13) ;

91 UU(: , end) = t r a n s p o s e (B24) ;

92

93 f o r k =1:100

94 tmp = UU;

95 f o r r =2 :N−1

96 f o r c =2:C−1

97 tmp (r , c) = . . .

98 (1 / 4) * (UU(r −1 , c) +UU(r +1 , c) +UU(r , c −1)+

UU(r , c +1)) ;

99 end

100 end

225

101 UU=tmp ;

102 end

103

104 d a t a (2 : end −1 ,U1 : U2) = UU(2 : end − 1 , :) ;

105 uu = d a t a ;

106

107 i f U1==1

108 l ead ingNaNs = [] ;

109 e l s e

110 l ead ingNaNs = ones (N, U1−1) ;

111 l ead ingNaNs (: , :) = NaN ;

112 end

113 i f U2 == l e n g t h (S1)

114 t r a i l i n g N a N s = [] ;

115 e l s e

116 t r a i l i n g N a N s = ones (N, l e n g t h (S1) −U2) ;

117 t r a i l i n g N a N s (: , :) = NaN ;

118 end

119

120 uu = [lead ingNaNs uu t r a i l i n g N a N s] ;

===

1 f u n c t i o n g m p r E s t i m a t e E r r o r s ()

2

3 a d d p a t h = [pwd ’\Data ’] ;

4 p a t h (pa th , a d d p a t h) ;

5

6 N=0;

7 p d e f f t f i l e = [’ pde ’ num2s t r (N) ’ f f t d a t a ’] ;

8 p d e d c t f i l e = [’ pde ’ num2s t r (N) ’ d c t d a t a ’] ;

9 p d e d w t f i l e = [’ pde ’ num2s t r (N) ’ d w t d a t a ’] ;

10

226

11 d a t a f i l e = ’ Data01 . t x t ’ ;

12 s c a l e f i l e = ’ D a t a 0 1 S c a l e . t x t ’ ;

13

14 F =5;

15 f o r i =1 : F

16 t i c

17 d a t a f i l e (6) = num2s t r (i) ;

18 s c a l e f i l e (6) = num2s t r (i) ;

19

20 f o r q u a l i t y = [100 90 80 70 60 50 40 30 20 10 5]

21

22 d i s p ([’FFT c o m p r e s s i o n q u a l i t y = ’ num2s t r (

q u a l i t y) ’ , PDE i n t e r p o l a t i o n = ’ num2s t r (N)

]) ;

23 i f N==0

24 c o m p r e s s e d f i l e = gmprCompressFFT (d a t a f i l e

, s c a l e f i l e , q u a l i t y) ;

25 [f f t d a t a { i }{ q u a l i t y } , f1 , f2] =

gmprUncompressFFT (c o m p r e s s e d f i l e , N) ;

26 e l s e

27 c o m p r e s s e d f i l e = [’ cFFT ’ num2s t r (q u a l i t y)

d a t a f i l e] ;

28 [f f t d a t a { i }{ q u a l i t y } , f1 , f2] =

gmprUncompressFFT (c o m p r e s s e d f i l e , N) ;

29 end

30

31 d i s p ([’DCT c o m p r e s s i o n q u a l i t y = ’ num2s t r (

q u a l i t y) ’ , PDE i n t e r p o l a t i o n = ’ num2s t r (N)

]) ;

32 i f N==0

33 c o m p r e s s e d f i l e = gmprCompressDCT (

227

d a t a f i l e , s c a l e f i l e , q u a l i t y) ;

34 [d c t d a t a { i }{ q u a l i t y } , f3 , f4] =

gmprUncompressDCT (c o m p r e s s e d f i l e , N) ;

35 e l s e

36 c o m p r e s s e d f i l e = [’cDCT ’ num2s t r (q u a l i t y)

d a t a f i l e] ;

37 [d c t d a t a { i }{ q u a l i t y } , f3 , f4] =

gmprUncompressDCT (c o m p r e s s e d f i l e , N) ;

38 end

39

40 d i s p ([’DWT c o m p r e s s i o n q u a l i t y = ’ num2s t r (

q u a l i t y) ’ , PDE i n t e r p o l a t i o n = ’ num2s t r (N)

]) ;

41 i f N==0

42 c o m p r e s s e d f i l e = gmprCompressDWT (

d a t a f i l e , s c a l e f i l e , q u a l i t y) ;

43 [d w t d a t a { i }{ q u a l i t y } , f5 , f6] =

gmprUncompressDWT (c o m p r e s s e d f i l e , N) ;

44 e l s e

45 c o m p r e s s e d f i l e = [’cDWT’ num2s t r (q u a l i t y)

d a t a f i l e] ;

46 [d w t d a t a { i }{ q u a l i t y } , f5 , f6] =

gmprUncompressDWT (c o m p r e s s e d f i l e , N) ;

47 end

48 end

49 d t = t o c ;

50 fHours = ((F − i) * d t) / 3 6 0 0 ;

51 nHours = f l o o r (fHours) ;

52 f M i n u t e s = (fHours − nHours) * 6 0 ;

53 nMinutes = f l o o r (f M i n u t e s) ;

54 nSeconds = f l o o r ((f M i n u t e s − nMinutes) * 60) ;

228

55 i f fHours > 24

56 days = f l o o r (fHours / 2 4) ;

57 h o u r s = f l o o r ((fHours / 2 4 − days) *24) ;

58 e l s e

59 days = 0 ;

60 h o u r s = f l o o r (fHours) ;

61 end

62 d i s p ([’ End of f i l e ’ num2s t r (i) ’ . Remaning t ime

i s ’ num2s t r (days) ’ days ’ num2s t r (f l o o r (

h o u r s)) ’ h o u r s ’ num2s t r (nMinutes) ’ m i n u t e s ’

num2s t r (nSeconds) ’ s e c o n d s ’]) ;

63 end

64

65

66 s ave p d e f f t f i l e f f t d a t a

67 s ave p d e d c t f i l e d c t d a t a

68 s ave p d e d w t f i l e d w t d a t a

69

70 c o p y f i l e (’ p d e f f t f i l e . mat ’ , [’ Data \ ’ p d e f f t f i l e ’ . mat ’

]) ;

71 c o p y f i l e (’ p d e d c t f i l e . mat ’ , [’ Data \ ’ p d e d c t f i l e ’ . mat ’

]) ;

72 c o p y f i l e (’ p d e d w t f i l e . mat ’ , [’ Data \ ’ p d e d w t f i l e ’ . mat ’

]) ;

73 d e l e t e (’ p d e f f t f i l e . mat ’) ;

74 d e l e t e (’ p d e d c t f i l e . mat ’) ;

75 d e l e t e (’ p d e d w t f i l e . mat ’) ;

76

77 i f N==0

78 l o a d Data \ p d e 0 f f t d a t a . mat

79 l o a d Data \ p d e 0 d c t d a t a . mat

229

80 l o a d Data \ pde0dwtda t a . mat

81 e l s e

82 l o a d Data \ p d e 3 f f t d a t a . mat

83 l o a d Data \ p d e 3 d c t d a t a . mat

84 l o a d Data \ pde3dwtda t a . mat

85 end

86

87 f o r i =1 : F

88 i f N==0

89 d a t a f i l e = ’ Data01 . t x t ’ ;

90 s c a l e f i l e = ’ D a t a 0 1 S c a l e . t x t ’ ;

91 e l s e

92 d a t a f i l e = ’ D a t a 0 1 s f . t x t ’ ;

93 s c a l e f i l e = ’ D a t a 0 1 s f S c a l e . t x t ’ ;

94 end

95

96 d a t a f i l e (6) = num2s t r (i) ;

97 s c a l e f i l e (6) = num2s t r (i) ;

98 d a t a = l o a d (d a t a f i l e) ;

99

100 f o r q u a l i t y = [100 90 80 70 60 50 40 30 20 10 5]

101 [R C] = s i z e (d a t a) ;

102 [r c] = s i z e (f f t d a t a { i }{ q u a l i t y }) ;

103 i f r<R R= r ; end

104 i f c<C C=c ; end

105

106 d a t a 1 = d a t a (1 : R , 1 :C) ;

107 d a t a 2 = f f t d a t a { i }{ q u a l i t y } (1 : R , 1 :C) ;

108

109 E f f t { i }{ q u a l i t y } = da ta2 − d a t a 1 ;

110 RMSEfft{ i }{ q u a l i t y } = gmprRMSE (da ta1 , d a t a 2)

230

;

111

112 [R C] = s i z e (d a t a) ;

113 [r c] = s i z e (d c t d a t a { i }{ q u a l i t y }) ;

114 i f r<R R= r ; end

115 i f c<C C=c ; end

116

117 d a t a 1 = d a t a (1 : R , 1 :C) ;

118 d a t a 2 = d c t d a t a { i }{ q u a l i t y } (1 : R , 1 :C) ;

119

120 Edct { i }{ q u a l i t y } = da ta2 − d a t a 1 ;

121 RMSEdct{ i }{ q u a l i t y } = gmprRMSE (da ta1 , d a t a 2)

;

122

123 [R C] = s i z e (d a t a) ;

124 [r c] = s i z e (d w t d a t a { i }{ q u a l i t y }) ;

125 i f r<R R= r ; end

126 i f c<C C=c ; end

127

128 d a t a 1 = d a t a (1 : R , 1 :C) ;

129 d a t a 2 = d w t d a t a { i }{ q u a l i t y } (1 : R , 1 :C) ;

130

131 Edwt{ i }{ q u a l i t y } = da ta2 − d a t a 1 ;

132 RMSEdwt{ i }{ q u a l i t y } = gmprRMSE (da ta1 , d a t a 2)

;

133

134 end

135 end

136

137 i f N==0

138 E f f t 0 = E f f t ;

231

139 s ave Data \ E f f t 0 E f f t 0

140 Edct0 = Edct ;

141 s ave Data \Edct0 Edct0

142 Edwt0 = Edwt ;

143 s ave Data \Edwt0 Edwt0

144 RMSEfft0 = RMSEfft ;

145 s ave Data \RMSEfft0 RMSEfft0

146 RMSEdct0 = RMSEdct ;

147 s ave Data \RMSEdct0 RMSEdct0

148 RMSEdwt0 = RMSEdwt ;

149 s ave Data \RMSEdwt0 RMSEdwt0

150 end

151 i f N==3

152 E f f t 3 = E f f t ;

153 s ave Data \ E f f t 3 E f f t 3

154 Edct3 = Edct ;

155 s ave Data \Edct3 Edct3

156 Edwt3 = Edwt ;

157 s ave Data \Edwt3 Edwt3

158 RMSEfft3 = RMSEfft ;

159 s ave Data \RMSEfft3 RMSEfft3

160 RMSEdct3 = RMSEdct ;

161 s ave Data \RMSEdct3 RMSEdct3

162 RMSEdwt3 = RMSEdwt ;

163 s ave Data \RMSEdwt3 RMSEdwt3

164 end

165

166 a d d p a t h = [pwd ’\Data ’] ;

167 p a t h (pa th , a d d p a t h) ;

168

169 N=0;

232

170 i f N==0

171 l o a d RMSEfft0

172 l o a d RMSEdct0

173 l o a d RMSEdwt0

174 RMSEfft=RMSEfft0 ;

175 RMSEdct=RMSEdct0 ;

176 RMSEdwt=RMSEdwt0 ;

177 end

178 i f N==3

179 l o a d RMSEfft3

180 l o a d RMSEdct3

181 l o a d RMSEdwt3

182 RMSEfft=RMSEfft3 ;

183 RMSEdct=RMSEdct3 ;

184 RMSEdwt=RMSEdwt3 ;

185 end

186

187 q u a l i t y =[100 90 80 70 60 50 40 30 20 10 5] ;

188 RR1 = [] ; RR2 = [] ; RR3 = [] ;

189 SS1 = [] ; SS2 = [] ; SS3 = [] ;

190 f o r i =1:5

191 S1 = [] ; S2 = [] ; S3 = [] ; R1 = [] ; R2 = [] ; R3 = [] ;

192 f o r k =1:11

193 S1 =[S1 num2s t r (RMSEfft{ i }{ q u a l i t y (k) }) ’ ’] ;

194 R1=[R1 RMSEfft{ i }{ q u a l i t y (k) }] ;

195 S2 =[S2 num2s t r (RMSEdct{ i }{ q u a l i t y (k) }) ’ ’] ;

196 R2=[R2 RMSEdct{ i }{ q u a l i t y (k) }] ;

197 S3 =[S3 num2s t r (RMSEdwt{ i }{ q u a l i t y (k) }) ’ ’] ;

198 R3=[R3 RMSEdwt{ i }{ q u a l i t y (k) }] ;

199 end

200 RR1=[RR1 ; R1] ; RR2=[RR2 ; R2] ; RR3=[RR3 ; R3] ;

233

201 SS1 =[SS1 S1] ; SS2 =[SS2 S2] ; SS3 =[SS3 S3] ;

202 end

203

204 c o m p r e s s i o n =[’ 100 ’ ; ’ 90 ’ ; ’ 80 ’ ; ’ 70 ’ ; ’ 60 ’ ; ’ 50 ’ ; ’ 40

’ ; ’ 30 ’ ; ’ 20 ’ ; ’ 10 ’ ; ’ 0 ’] ;

205 f i g u r e , p l o t (q u a l i t y , mean (RR1 , 1) , ’b− ’ , ’ L i n e w i d t h ’ , 2) ;

206 ho ld on

207 p l o t (q u a l i t y , mean (RR2 , 1) , ’ r − ’ , ’ L i n e w i d t h ’ , 2) ;

208 p l o t (q u a l i t y , mean (RR3 , 1) , ’g− ’ , ’ L i n e w i d t h ’ , 2) ;

209

210 x l a b e l ([’ Q u a l i t y o f c o m p r e s s i o n ’]) ;

211 y l a b e l ([’ E r r o r RMSE i n mm’]) ;

212 i f N==0

213 l e g e n d (’DFT ’ , ’DCT ’ , ’DWT’) ;

214 t i t l e (’ Average c o m p r e s s i o n e r r o r s ’) ;

215 e l s e

216 l e g e n d (’DFT wi th PDE ’ , ’DCT wi th PDE ’ , ’DWT wi th

PDE ’) ;

217 t i t l e (’PDE based a v e r a g e c o m p r e s s i o n e r r o r s ’) ;

218 end

219 ho ld o f f

220 d i s p (’ Done ! ! ! ’) ;

221

222 r e t u r n

223

224 % Compress ion r a t e s a s c a l c u l a t e d , s e e f i l e ”

f i l e s i z e s . x l s x ” :

225 % AVERAGE SIZE 4589

19125 1348 5349 473 425 378

331 284 237 190 143 96

49 25

234

226 % COMPRESSION RATE OBJ SPARSE

0 .897 0 .907 0 .918 0 .928

0 .938 0 .948 0 .959 0 .969 0 .979 0 .989

0 .994

227 % COMPRESSION RATE OBJ SF

0 .975 0 .978 0 .980

0 .983 0 .985 0 .988 0 .990 0 .993 0 .995

0 .997 0 .999

228 % COMPRESSION RATE TEXT SPARSE

0 .649 0 .685 0 .720 0 .755

0 .789 0 .824 0 .859 0 .894 0 .929 0 .964

0 .981

229 % COMPRESSION RATE TEXT SF

0 .912 0 .921 0 .929

0 .938 0 .947 0 .956 0 .964 0 .973 0 .982

0 .991 0 .995

230 %

231 % AVERAGE SIZE 4589

19125 1348 5349 472 424 377

330 283 236 189 142 95

47 24

232 % COMPRESSION RATE OBJ SPARSE

0 .897 0 .908 0 .918 0 .928

0 .938 0 .949 0 .959 0 .969 0 .979 0 .990

0 .995

233 % COMPRESSION RATE OBJ SF

0 .975 0 .978 0 .980

0 .983 0 .985 0 .988 0 .990 0 .993 0 .995

0 .998 0 .999

234 % COMPRESSION RATE TEXT SPARSE

0 .650 0 .685 0 .720 0 .755

235

0 .790 0 .825 0 .860 0 .895 0 .930 0 .965

0 .982

235 % COMPRESSION RATE TEXT SF

0 .912 0 .921 0 .929

0 .938 0 .947 0 .956 0 .965 0 .974 0 .982

0 .991 0 .996

236 %

237 % AVERAGE SIZE 4589

19125 1348 5349 475 433 392

351 309 268 226 185 144 102

81

238 % COMPRESSION RATE OBJ SPARSE

0 .897 0 .906 0 .915 0 .924

0 .933 0 .942 0 .951 0 .960 0 .969 0 .978

0 .982

239 % COMPRESSION RATE OBJ SF

0 .975 0 .977 0 .980

0 .982 0 .984 0 .986 0 .988 0 .990 0 .992

0 .995 0 .996

240 % COMPRESSION RATE TEXT SPARSE

0 .648 0 .679 0 .709 0 .740

0 .771 0 .801 0 .832 0 .863 0 .893 0 .924

0 .940

241 % COMPRESSION RATE TEXT SF

0 .911 0 .919 0 .927

0 .934 0 .942 0 .950 0 .958 0 .965 0 .973

0 .981 0 .985

242

243 %from f i l e ” f i l e s i z e s . x l s x ” :

244 cmpFFT=[

245 0 .897 0 .907 0 .918 0 .928 0 .938 0 .948 0 .959

236

0 .969 0 .979 0 .989 0 . 9 9 4 ;

246 0 .975 0 .978 0 .980 0 .983 0 .985 0 .988 0 .990

0 .993 0 .995 0 .997 0 . 9 9 9 ;

247 0 .649 0 .685 0 .720 0 .755 0 .789 0 .824 0 .859

0 .894 0 .929 0 .964 0 . 9 8 1 ;

248 0 .912 0 .921 0 .929 0 .938 0 .947 0 .956 0 .964

0 .973 0 .982 0 .991 0 . 9 9 5] ;

249

250 cmpDCT=[

251 0 .897 0 .908 0 .918 0 .928 0 .938 0 .949 0 .959

0 .969 0 .979 0 .990 0 . 9 9 5 ;

252 0 .975 0 .978 0 .980 0 .983 0 .985 0 .988 0 .990

0 .993 0 .995 0 .998 0 . 9 9 9 ;

253 0 .650 0 .685 0 .720 0 .755 0 .790 0 .825 0 .860

0 .895 0 .930 0 .965 0 . 9 8 2 ;

254 0 .912 0 .921 0 .929 0 .938 0 .947 0 .956 0 .965

0 .974 0 .982 0 .991 0 . 9 9 6] ;

255

256 cmpDWT=[

257 0 .897 0 .906 0 .915 0 .924 0 .933 0 .942 0 .951

0 .960 0 .969 0 .978 0 . 9 8 2 ;

258 0 .975 0 .977 0 .980 0 .982 0 .984 0 .986 0 .988

0 .990 0 .992 0 .995 0 . 9 9 6 ;

259 0 .648 0 .679 0 .709 0 .740 0 .771 0 .801 0 .832

0 .863 0 .893 0 .924 0 . 9 4 0 ;

260 0 .911 0 .919 0 .927 0 .934 0 .942 0 .950 0 .958

0 .965 0 .973 0 .981 0 . 9 8 5] ;

261

262 q u a l i t y = [100 90 80 70 60 50 40 30 20 10 5] ;

263

264 f i g u r e , p l o t (q u a l i t y , cmpFFT (1 , :) , ’ bo− ’ , ’ L i n e w i d t h ’ , 2) ;

237

265 ho ld on

266 p l o t (q u a l i t y , cmpDCT (1 , :) , ’ r *− ’ , ’ L i n e w i d t h ’ , 2) ;

267 p l o t (q u a l i t y , cmpDWT (1 , :) , ’ gd− ’ , ’ L i n e w i d t h ’ , 2) ;

268 x l a b e l ([’ Q u a l i t y o f c o m p r e s s i o n ’]) ;

269 y l a b e l ([’ Compress ion r a t e i n %’]) ;

270

271 p l o t (q u a l i t y , cmpFFT (3 , :) , ’ b− ’ , ’ L i n e w i d t h ’ , 2) ;

272 p l o t (q u a l i t y , cmpDCT (3 , :) , ’ r − ’ , ’ L i n e w i d t h ’ , 2) ;

273 p l o t (q u a l i t y , cmpDWT (3 , :) , ’ g− ’ , ’ L i n e w i d t h ’ , 2) ;

274 x l a b e l ([’ Q u a l i t y o f c o m p r e s s i o n ’]) ;

275 y l a b e l ([’ Compress ion r a t e i n %’]) ;

276

277 l e g e n d (’FFT (o b j) ’ , ’DCT (o b j) ’ , ’DWT (o b j) ’ , ’FFT (

t x t) ’ , ’DCT (t x t) ’ , ’DWT (t x t) ’) ;

278 t i t l e (’ Compress ion r a t e s compared t o OBJ and TEXT f i l e

f o r m a t s ’) ;

279 ho ld o f f

280

281 f i g u r e , p l o t (q u a l i t y , cmpFFT (2 , :) , ’ bo− ’ , ’ L i n e w i d t h ’ , 2) ;

282 ho ld on

283 p l o t (q u a l i t y , cmpDCT (2 , :) , ’ r *− ’ , ’ L i n e w i d t h ’ , 2) ;

284 p l o t (q u a l i t y , cmpDWT (2 , :) , ’ gd− ’ , ’ L i n e w i d t h ’ , 2) ;

285 x l a b e l ([’ Q u a l i t y o f c o m p r e s s i o n i n %’]) ;

286 y l a b e l ([’ Compress ion r a t e i n %’]) ;

287

288 p l o t (q u a l i t y , cmpFFT (4 , :) , ’ b− ’ , ’ L i n e w i d t h ’ , 2) ;

289 p l o t (q u a l i t y , cmpDCT (4 , :) , ’ r − ’ , ’ L i n e w i d t h ’ , 2) ;

290 p l o t (q u a l i t y , cmpDWT (4 , :) , ’ g− ’ , ’ L i n e w i d t h ’ , 2) ;

291 x l a b e l ([’ Q u a l i t y o f c o m p r e s s i o n ’]) ;

292 y l a b e l ([’ Compress ion r a t e i n %’]) ;

293 l e g e n d (’FFT wi th PDE (o b j) ’ , ’DCT wi th PDE (o b j) ’ , ’

238

DWT wi th PDE (o b j) ’ , ’FFT wi th PDE (t x t) ’ , ’DCT

wi th PDE (t x t) ’ , ’DWT wi th PDE (t x t) ’) ;

294 t i t l e (’PDE based c o m p r e s s i o n r a t e s compared t o OBJ and

TXT f i l e f o r m a t s ’) ;

295 ho ld o f f

296

297 l o a d Data \ E f f t 0

298 e r r o r s u r f a c e = E f f t 0 {1}{50} ;

299 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

300 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 S c a l e . t x t ’) ;

301

302 l o a d Data \Edct0

303 e r r o r s u r f a c e = Edct0 {1}{50} ;

304 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

305 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 S c a l e . t x t ’) ;

306

307 l o a d Data \Edwt0

308 e r r o r s u r f a c e = Edwt0 {1}{50} ;

309 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

310 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 S c a l e . t x t ’) ;

311

312 l o a d Data \ E f f t 3

313 e r r o r s u r f a c e = E f f t 3 {1}{50} ;

314 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

315 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 s f S c a l e . t x t ’)

;

316

317 l o a d Data \Edct3

318 e r r o r s u r f a c e = Edct3 {1}{50} ;

319 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

320 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 s f S c a l e . t x t ’)

239

;

321

322 l o a d Data \Edwt3

323 e r r o r s u r f a c e = Edwt3 {1}{50} ;

324 s ave e r r o r s u r f a c e . t x t e r r o r s u r f a c e −ASCII

325 gmprLoadData (’ e r r o r s u r f a c e . t x t ’ , ’ D a t a 0 1 s f S c a l e . t x t ’)

;

326

327 gmprLoadData (’ pde3cFFT50Data01 . t x t ’ , ’

pde3cFFT50Data01Scale . t x t ’) ;

328 gmprLoadData (’ pde3cDCT50Data01 . t x t ’ , ’

pde3cDCT50Data01Scale . t x t ’) ;

329 gmprLoadData (’ pde3cDWT50Data01 . t x t ’ , ’

pde3cDWT50Data01Scale . t x t ’) ;

330

331 gmprDrawPlane ;

332 d a t a = l o a d (’ Data \Data07 . t x t ’) ;

333 s c a l e = l o a d (’ Data \D a t a 0 7 S c a l e . t x t ’) ;

334 d e p t h S c a l e 1 = s c a l e (1) ;

335 d e p t h S c a l e 2 = s c a l e (2) ;

336 maxZ = max (max (d a t a)) ;

337 minZ = min (min (d a t a)) ;

338 X = s i z e (da t a , 1) ;

339 Y = s i z e (da t a , 2) ;

340 maxX = X* d e p t h S c a l e 1 ;

341 maxY = Y* d e p t h S c a l e 2 ;

342 minX = 0 ;

343 minY = 0 ;

344

345 box = [minX maxX minY maxY minZ maxZ] ;

346 gmprDrawBox3d (box) ;

240

347

348 d a t a = l o a d (’ Data01 . t x t ’) ;

349 s i z e (d a t a) ;

350 s i n g l e s t r i p e = d a t a (4 1 , :) ;

351 s i n g l e s t r i p e = s i n g l e s t r i p e (2 8 : 6 8 3) ;

352

353 f u n c t i o n [a0 , a6 , an , bn] = g e t f o u r i e r c o e f f (

s i n g l e s t r i p e)

354 L= l e n g t h (s i n g l e s t r i p e) −1;

355 x = 0 : 3 6 0 / L : 3 6 0 ;

356

357 d = f f t (s i n g l e s t r i p e) ;

358 m = l e n g t h (s i n g l e s t r i p e) ;

359 M = f l o o r ((m+1) / 2) ;

360

361 a0 = d (1) /m;

362 an = 2* r e a l (d (2 :M)) /m;

363 a6 = d (M+1) /m;

364 bn = −2* imag (d (2 :M)) /m;

365

366 n = 1 : l e n g t h (an) ;

367 y = a0 + an * cos (2* p i *n ’* x / 3 6 0) . . .

368 + bn* s i n (2* p i *n ’* x / 3 6 0) . . .

369 + a6 * cos (2* p i *6*x / 3 6 0) ;

370

371 f i g u r e , p l o t (x , s i n g l e s t r i p e , ’ bo ’) ,

372 t i t l e (’ {\ bf DFT r e c o n s t r u c t i o n } ’)

373 ho ld on

374 p l o t (x , y , ’ c− ’ , ’ L i n e w i d t h ’ , 2)

375 l e g e n d (’Raw d a t a ’ , ’DFT r e c o n s t r u c t e d ’)

376

241

377

378 f u n c t i o n B = g e t d c t c o e f f (s i n g l e s t r i p e)

379 L= l e n g t h (s i n g l e s t r i p e) −1;

380 x = 0 : 3 6 0 / L : 3 6 0 ;

381 f i g u r e , p l o t (x , s i n g l e s t r i p e , ’ ro ’)

382 t i t l e (’ {\ bf DCT r e c o n s t r u c t i o n } ’)

383 ho ld on

384

385 B = d c t (s i n g l e s t r i p e) ;

386 y = i d c t (B) ;

387

388 p l o t (x , y , ’k− ’ , ’ L i n e w i d t h ’ , 3)

389 l e g e n d (’Raw d a t a ’ , ’DCT R e c o n s t r u c t e d ’)

390 ho ld o f f

391

392

393 [C , L] = wavedec (s i n g l e s t r i p e , 3 , ’ db1 ’) ;

394 cA3 = a p p c o e f (C , L , ’ db1 ’ , 3) ;

395 cD3 = d e t c o e f (C , L , 3) ;

396 cD2 = d e t c o e f (C , L , 2) ;

397 cD1 = d e t c o e f (C , L , 1) ;

398 [cD1 , cD2 , cD3] = d e t c o e f (C , L , [1 , 2 , 3]) ;

399

400 A3 = wrcoef (’ a ’ ,C , L , ’ db1 ’ , 3) ;

401 D1 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 1) ;

402 D2 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 2) ;

403 D3 = wrcoef (’ d ’ ,C , L , ’ db1 ’ , 3) ;

404

405 f i g u r e , t i t l e (’DWT’)

406 s u b p l o t (2 , 2 , 1) ; p l o t (A3) ; t i t l e (’ Approx ima t ion A3 ’)

407 s u b p l o t (2 , 2 , 2) ; p l o t (D1) ; t i t l e (’ D e t a i l D1 ’)

242

408 s u b p l o t (2 , 2 , 3) ; p l o t (D2) ; t i t l e (’ D e t a i l D2 ’)

409 s u b p l o t (2 , 2 , 4) ; p l o t (D3) ; t i t l e (’ D e t a i l D3 ’)

410

411 A0 = waverec (C , L , ’ db1 ’) ;

412 f i g u r e , p l o t (x , s i n g l e s t r i p e , ’ go ’)

413 t i t l e (’ {\ bf DWT r e c o n s t r u c t i o n } ’)

414 ho ld on

415 p l o t (x , A0 , ’k− ’ , ’ L i n e w i d t h ’ , 2)

416 l e g e n d (’Raw d a t a ’ , ’DWT r e c o n s t r u c t e d ’)

417 ho ld o f f

===

1 f u n c t i o n r =gmprRMSE (da ta , e s t i m a t e)

2 % F u n c t i o n t o c a l c u l a t e r o o t mean s q u a r e e r r o r from a

d a t a v e c t o r o r m a t r i x

3 % and t h e c o r r e s p o n d i n g e s t i m a t e s .

4

5 I = ˜ i s n a n (d a t a) & ˜ i s n a n (e s t i m a t e) ;

6 d a t a = d a t a (I) ; e s t i m a t e = e s t i m a t e (I) ;

7

8 r = s q r t (sum ((d a t a (:) − e s t i m a t e (:)) . ˆ 2) / numel (d a t a)) ;

===

243

3D data compresssion file sizes

original file OBJ sparse OBJ SF TEXT TEXT SF

Data01.txt 4992 20879 1428 5667

Data02.txt 3903 16160 1110 4404

Data03.txt 5761 24224 1653 6567

Data04.txt 5063 21184 1446 5739

Data05.txt 3228 13180 1104 4368

AVERAGE SIZE 4589 19125 1348 5349

COMPRESSION RATE OBJ SPARSE

COMPRESSION RATE OBJ SF

COMPRESSION RATE TEXT SPARSE

COMPRESSION RATE TEXT SF

original file OBJ sparse OBJ SF TEXT TEXT SF

Data01.txt 4992 20879 1428 5667

Data02.txt 3903 16160 1110 4404

Data03.txt 5761 24224 1653 6567

Data04.txt 5063 21184 1446 5739

Data05.txt 3228 13180 1104 4368

AVERAGE SIZE 4589 19125 1348 5349

COMPRESSION RATE OBJ SPARSE

COMPRESSION RATE OBJ SF

COMPRESSION RATE TEXT SPARSE

COMPRESSION RATE TEXT SF

original file OBJ sparse OBJ SF TEXT TEXT SF

Data01.txt 4992 20879 1428 5667

Data02.txt 3903 16160 1110 4404

Data03.txt 5761 24224 1653 6567

Data04.txt 5063 21184 1446 5739

Data05.txt 3228 13180 1104 4368

AVERAGE SIZE 4589 19125 1348 5349

COMPRESSION RATE OBJ SPARSE

COMPRESSION RATE OBJ SF

COMPRESSION RATE TEXT SPARSE

COMPRESSION RATE TEXT SF

FFT 100 FFT 90 FFT 80 FFT 70 FFT 60 FFT 50 FFT 40

511 460 409 358 307 257 205

404 363 323 283 243 203 163

588 529 470 411 353 295 236

520 467 415 364 312 261 209

340 306 272 238 204 171 137

473 425 378 331 284 237 190

0.897 0.907 0.918 0.928 0.938 0.948 0.959

0.975 0.978 0.980 0.983 0.985 0.988 0.990

0.649 0.685 0.720 0.755 0.789 0.824 0.859

0.912 0.921 0.929 0.938 0.947 0.956 0.964

DCT 100 DCT 90 DCT 80 DCT 70 DCT 60 DCT 50 DCT 40

511 459 408 357 306 255 204

403 363 323 282 242 202 161

587 528 469 411 352 293 235

519 467 415 363 311 260 208

340 305 271 237 204 170 136

472 424 377 330 283 236 189

0.897 0.908 0.918 0.928 0.938 0.949 0.959

0.975 0.978 0.980 0.983 0.985 0.988 0.990

0.650 0.685 0.720 0.755 0.790 0.825 0.860

0.912 0.921 0.929 0.938 0.947 0.956 0.965

DWT 100 DWT 90 DWT 80 DWT 70 DWT 60 DWT 50 DWT 40

514 468 424 379 334 290 245

406 371 335 300 266 229 194

590 539 487 436 384 333 281

521 476 430 385 339 294 248

342 312 282 253 223 193 163

475 433 392 351 309 268 226

0.897 0.906 0.915 0.924 0.933 0.942 0.951

0.975 0.977 0.980 0.982 0.984 0.986 0.988

0.648 0.679 0.709 0.740 0.771 0.801 0.832

0.911 0.919 0.927 0.934 0.942 0.950 0.958

FFT 30 FFT 20 FFT 10 FFT 5

155 104 53 27

122 82 42 22

178 119 61 31

157 105 53 28

103 69 35 19

143 96 49 25

0.969 0.979 0.989 0.994

0.993 0.995 0.997 0.999

0.894 0.929 0.964 0.981

0.973 0.982 0.991 0.995

DCT 30 DCT 20 DCT 10 DCT 5

153 102 51 26

121 81 40 20

176 118 59 30

156 104 52 26

102 68 34 17

142 95 47 24

0.969 0.979 0.990 0.995

0.993 0.995 0.998 0.999

0.895 0.930 0.965 0.982

0.974 0.982 0.991 0.996

DWT 30 DWT 20 DWT 10 DWT 5

200 155 111 88

158 123 88 70

230 179 127 101

203 158 112 89

134 104 74 59

185 144 102 81

0.960 0.969 0.978 0.982

0.990 0.992 0.995 0.996

0.863 0.893 0.924 0.940

0.965 0.973 0.981 0.985

