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ABSTRACT 

 
The main objective of this paper is to study numerically a two-dimensional, steady and laminar viscous 
incompressible magneto-hydrodynamic (MHD) natural convection flow in a sinusoidal corrugated inclined 
enclosure. In this analysis, two sinusoidal corrugated side walls are maintained at a constant low temperature 
whereas a constant heat flux source whose length is varied from 20% to 80% of the total length of the enclosure is 
discretely embedded at the bottom wall. The finite volume method has been used to solve the governing Navier-
Stokes and energy conservation equations of the fluid medium in the enclosure in order to investigate the effects of 
the variation of inclination angles, the presence of a longitudinal magnetic field and different discrete heat source 
size ratios on heat transfer process for different values of Rayleigh and Hartmann numbers. Results are presented in 
the form of streamline and isotherm plots. It is concluded that the average Nusselt number increases as the heat 
surface length decreases and vice versa, while the enclosure inclination angle has a clear effect on the heat transfer 
process for low heat source lengths in case of low buoyancy and magnetic effects. The dominance of Hartmann 
number is found to be significant with the purpose of reducing heat transfer process as well as minimizing the 
influence of inclination angles at low Rayleigh number. 
KEYWORDS: Magnetohydrodynamic natural convection, longitudinal magnetic field, tilted corrugated enclosure, 

isoflux heat source, Hartmann number. 
 
Nomenclature 

Bo magnitude of the magnetic field [T] 
g gravitational acceleration [ms-2] 
Ha Hartmann number 
k thermal conductivity of fluid [Wm-1K-1] 
L length of the heat source [m] 
Nu average Nusselt number 
p pressure [Nm-2] 
P dimensionless pressure 
Pr Prandtl number 
q heat flux [Wm-2] 
Ra Rayleigh Number 
T temperature [K] 
Tc temperature of the cold surface (K) 
u, v velocity components in x and y-direction [ms-1] 
U, V dimensionless velocity components in X, Y-direction 
W length of the enclosure [m] 
X, y Cartesian co-ordinates [m] 
X, Y dimensionless Cartesian co-ordinates 
Greek symbols 
α thermal diffusivity [m2s-1] 
β coefficient of volumetric thermal expansion [K-1] 
ε discrete heat source size ratio 
θ dimensionless temperature 
µ dynamic viscosity of fluid [kgm-1s-1] 
ρ density of fluid [kgm-3] 
σe electric conductivity [Sm-1] 
υ kinematic viscosity of fluid [m2s-1] 
Ф inclination angle [deg] 
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1. INTRODUCTION 
 
Buoyant MHD flows occur, among other problems, in liquid metal blankets for nuclear fusion. Such flows 

present a great complexity since buoyant, viscous, inertia and MHD forces all play a role, and analytical or 
asymptotic solutions are known only for the simplest configurations [1]. In addition, the application of a magnetic 
field in various research areas has significantly increased in recent years. The development of super-conducting 
magnets has allowed the generation of magnetic fields up to 20 T (or higher with hybrid magnets) as reported by 
Teamah [2].However, due to the development of superconducting magnets, a new phenomenon called magnetic 
convection could be investigated. Braithwaite et al. [3] was the first researcher reported the influence of magnetic 
field on the natural convection of a paramagnetic fluid. Many investigators studied the simple rectangular and square 
cavities with temperature gradient experimentally and numerically. A good review was reported by Ostrach [4]. 
Ozoe and Okada [5] conducted a numerical analysis of the magnetic damping effect in a cubic cavity with two 
vertical walls at different temperatures. They found that the strongest damping effect was achieved with the magnetic 
field applied perpendicular to the hot wall. Tagawa et al. [6] employed a similar way to Boussinesq approximation 
for the magnetic force and carried out numerical analysis for natural convection of air in a cubic enclosure. Kaneda 
et al. [7] studied natural convection in a cubic enclosure filled with air. The cube was heated from above and cooled 
from bottom and the air was driven by a magnetic force. Experimental investigation of the thermally induced 
convection of molten gallium in magnetic fields was carried out by Xu et al. [8]. Seki et al. [9] studied the laminar 
natural convection of mercury subjected to a magnetic field parallel to gravity in a rectangular enclosure. Numerical 
results were found and compared to their experiment with which considered a partially heated vertical wall by a 
uniform heat generator. Rudraiah et al. [10] performed a numerical simulation about natural convection in a two- 
dimensional cavity filled with an electrically conducting fluid in the presence of a magnetic field aligned to gravity. 
They selected both Grashof and Hartmann numbers as controlling parameters to examine the effect of a magnetic 
field on free convection and associated flow dynamics.  

 
Recently, many researchers have taken an interest of the studying of magnetic convection in complex 

geometries of enclosures, by reason of its great importance in industrial fields. In fact, the study of heat transfer near 
irregular surfaces is of fundamental importance; that is because it is often met in many practical applications and 
devices such as flat-plate solar collectors and flat-plate condensers in refrigerators. The presence of roughness 
elements disturbs the flow past surfaces and alters the heat transfer rate. Yao [11] examined the natural convection 
heat transfer from isothermal vertical wavy surfaces, such as sinusoidal surfaces, in Newtonian fluids. He proposed a 
simple transformation to study the natural convection heat transfer from isothermal vertical wavy surfaces. Hady et 
al. [12] analyzed the problem of MHD free convection flow along a vertical wavy surface in presence of magnetic 
field and generation absorption. Berrahil and Bessaih [13] studied the magnetohydrodynamics stability oscillatory 
natural convection in a cylindrical enclosure filled with liquid metal whose Prandtl number equals to 0.015, having 
an aspect ratio equals to 2, and subjected to an axial temperature gradient and a constant magnetic field. The finite 
volume method was used in order to solve the governing equations. The results showed the dependence of the critical 
Grashof number with the increase of the Hartmann number. Ece and Buyuk [14] carried out numerical study of 
steady, laminer natural convection flow in the presence of a magnetic field in an inclined rectangular enclosure 
heated from one side and cooled from the adjacent side. The results showed that the orientation and the aspect ratio 
of the enclosure and the strength and the direction of the magnetic field had significant effects on the flow and 
temperature fields. They concluded that the circulation inside the enclosure became stronger as the Grashof number 
increased, while the magnetic field suppressed the convective flow and the heat transfer rate. Al-Najem et al. [15] 
numerically investigated the effect of the transverse magnetic field on flow field patterns and heat transfer processes 
in a tilted square cavity. The horizontal walls of the enclosure were considered to be insulated while the vertical 
walls were kept isothermal. The power law control volume approach was developed to solve the conservation 
equations at Prandtl number of 0.71. The study covered the range of the Hartmann number from 0 to 100, the 
enclosure inclination angle from 0° to -90° with Grashof number of 104 and 106. The effect of the magnetic field was 
found to suppress the convection currents and heat transfer inside the cavity. This effect was significant for low 
inclination angles and high Grashof numbers. Additionally, it was noted that there was no variation of average 
Nusselt number with respect to inclination angle for high Hartmann number. 
 

Cowley [16] investigated two-dimensional flow driven by buoyancy forces in tilted rectangular enclosures for 
the case of high Hartmann number and high interaction parameter. Two of the bounding walls were taken to be 
thermally insulated and the other two to have a constant heat flux. Ece and Buyuk [17] considered steady, laminar, 
natural-convection flow in the presence of a magnetic field in an inclined square enclosure differentially heated 
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along the bottom and left vertical walls while the other walls were kept isothermal. The results explained that the 
orientation of the enclosure changed the temperature gradient and had a significant effect on the flow pattern. Also, 
they noticed that the magnetic field suppressed the convective flow and its direction also influenced the flow pattern, 
causing the appearance of inner loops and multiple eddies. Venkatachalappa and Subbaraya [18] presented a 
numerical study for magnetohydrodynamic free convection of an electrically conducting fluid in a two-dimensional 
rectangular enclosure in which two side walls were maintained at uniform heat flux condition. The horizontal top and 
bottom walls were thermally insulated. Computations were carried out over a wide range of Grashof number and 
Hartmann number for an enclosure of aspect ratio 1 and 2. Numerical results showed that with the application of an 
external magnetic field, the temperature and velocity fields were significantly modified. When the Grashof number 
was low and the Hartmann number was high, the central streamlines were elongated and the isotherms were almost 
parallel representing a conduction state. For sufficiently large magnetic field strength, the convection was suppressed 
for all values of Grashof number. The average Nusselt number decreased with an increase of Hartmann number and 
hence a magnetic field can be used as an effective mechanism to control the convection in an enclosure. Saha et al. 
[19] studied numerically a two-dimensional, steady and laminar viscous incompressible flow in a sinusoidal 
corrugated inclined enclosure. In their analysis, two vertical sinusoidal corrugated walls were maintained at a 
constant low temperature whereas a constant heat flux source whose length was varied from 20 to 80% of the total 
length of the enclosure was discretely embedded at the bottom wall. Results were presented in the form of streamline 
and isotherm plots. It was concluded that the average Nusselt number increased as inclination angle increased for 
different heat source sizes. Further investigation of natural convection on the same geometry was recently performed 
by Saha [20], where he analyzed the effect of magnetic field on heat transfer without considering any inclination 
effects. It was useful to mention that a wide knowledge of the magnetic field effect on engineering processes was 
described in a book by Ozoe [21]. 
 

Motivated by the works mentioned above a steady, laminar, magneto-hydrodynamic natural convection 
problem has been solved for sinusoidal corrugated inclined enclosure and liquid gallium, whose Prandtl number is 
fixed to be 0.02, has been taken as a working fluid. The corrugation geometry and the coordinate systems are shown 
in Fig. 1. A Cartesian coordinate is used with origin at the lower left corner of the computational domain. The 
geometry consists of a wavy corrugated square enclosure of dimensions, (W × W). The shape of the wavy side walls 
is taken as sinusoidal. In the present paper, two sidewalls are maintained at a constant temperature Tc, a constant flux 
heat source, q of length L is discretely embedded at the bottom wall, and the remaining parts of the bottom wall and 
the upper wall are considered to be thermally insulated. The corrugated wall has a single corrugation frequency and 
the corrugation amplitude has been fixed at 10% of the enclosure length. The effects of various orientations on the 
heat transport process inside the sinusoidal corrugated enclosure are studied in the present work. The ratio of the size 
of the heating element to the enclosure width, ε = L/W is varied from 0.2 to 0.8 and the inclination angle of the 
enclosure (Φ), with the horizontal is varied from 0° to 45° in steps of 15°. The Rayleigh number, Ra is varied from 
103 to 106 while Hartmann number, Ha is varied from 0 to 100. The velocity and temperature fields inside the 
enclosure are presented in terms of a streamline and an isotherm maps and the effects of the magnetic field strength 
on transport phenomena are discussed. 
 

2. MATHEMATICAL ANALYSIS 
 

A steady two-dimensional magneto-hydrodynamic convective flow in an inclined sinusoidal corrugated square 
enclosure filled with an electrically conducting fluid is considered. The fluid properties are also assumed to be 
constant, except for the density in the buoyancy term, which follows the Boussinesq approximation. The gravity acts 
vertically downwards. A uniform external magnetic field Bo is applied perpendicularly to the left side wall. The fluid 
within the enclosure is assumed Newtonian while the effects of viscous dissipation, radiation and Joule heating are 
neglected. The viscous incompressible flow and the temperature distribution inside the enclosure are described by 
the Navier-Stokes and the energy equations, respectively. Under the above assumptions, the governing equations in 
terms of non-dimensional form as follows (Ece and Buyul [17]): 

0U V
X Y
 

 
 

 (1) 

 
2 2

2 2
U U P U UU V Pr Ra Pr sin Φ
X Y X X Y


     

      
     

 (2) 
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       
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2 2

2 2U V
X Y X Y
      
  

   
 (4) 

where U and V are the dimensionless velocity components in the X and Y directions, respectively, θ is the 
dimensionless temperature, P is the non-dimensional pressure. The effect of the electromagnetic field is introduced 
into the momentum equations (3)-(4) through the Hartmann number (Ha) which is defined as (Ece and Buyul [17]): 

e
oHa B W 


   

where σe is the electrical conductivity and µ is the dynamic viscosity. The other two important non-dimensional 
governing parameters appeared in Eqs. (2) and (3) are the Rayleigh number (Ra) and the Prandtl number (Pr) 
respectively and they are defined as: 

4
andg qWRa Pr

k
 
 

    

where k is the thermal conductivity of the fluid, g is the gravitational acceleration, β is the volumetric coefficient of 
thermal expansion, υ is the kinematic viscosity and α is the thermal diffusivity. The dimensionless parameters used in 
the governing equations (1-4) are expressed in the following forms: 

 
2

2
cT Tx y uW vW pWX ,Y ,U ,V ,P ,

W W qW / k


  


        

Non-dimensional forms of the boundary conditions for the present problem are specified as follows: 

All walls: U = 0, V = 0, Top wall: 0,
Y




 Right and left side walls: θ = 0, 

Bottom wall: 
   
   

0 0 5 1 0 5 1 10
0 5 1 0 5 11

X . and . Xfor
. X .forY

 
 

     
      

 

The averaged Nusselt number (Nu) at the heated surface can be written as (Saha et al. [19]): 

 0

1 1

S

Nu dX
X



 
    

where θs(X) is the local dimensionless temperature of the heated surface, The Simpson's 1/3 rule is used for 
numerical integration to obtain the average Nusselt number.  
 

3. NUMERICAL PROCEDURE 
 

The numerical technique used in the present study is similar to that of Hortmann et al. [22] based on the finite-
volume method (FVM). The solution domain is first subdivided into a finite number of control volumes (CV) where 
non-orthogonal grids are used. The grid generation calculation is applied to fluid flow. Grids are oriented in such a 
way that the number of CV is higher near the walls where higher gradients of variable values are expected. A 
collocated variable arrangement is used in the present investigation. All variables are calculated at the center of each 
CV. The SIMPLE algorithm is chosen to numerically solve the governing differential equations in their primitive 
form. The pressure correction equation is derived from the continuity equation to enforce the local mass balance. 
First, the momentum equations, Eqs. (2-3) are discretized and linearized. Central differencing is used to discretize 
the diffusion terms, whereas a blending of upwind and central differencing is used for the convection terms. The 
source terms in the governing transport equations are functions of the respective transported variables and are 
calculated implicitly. Linear interpolation and numerical differentiation are used to express the cell-face value of the 
variables and their derivatives through the nodal values. Discretized momentum equations lead to an algebraic 
system of equations for velocity components U and V where pressure, temperature, fluid properties are taken from 
the previous iteration except the first iteration where initial conditions are applied. These linear equation systems are 
solved iteratively (inner iteration) to obtain an improved estimate of velocity. The improved velocity field is then 

405 



J. Basic. Appl. Sci. Res., 3(10)402-415, 2013 

used to estimate new mass fluxes, which satisfy the continuity equation. The pressure-correction equation is then 
solved using the same linear equation solver and the same tolerance. The energy equation is then solved in the same 
manner to obtain a better estimate of the new solution. This completes one outer iteration and is repeated until the 
residual level is less than or equal to 10−6. In this study, the SIP (Strongly Implicit Procedure) solver based on lower-
upper decomposition [23] is used to solve the linear equation systems. To avoid divergence, an under-relaxation 
parameter with the value of 0.6 is used for velocity, 0.2 for pressure and 0.85 for temperature. 
 

4. GRID REFINEMENT CHECK 
 

In order to obtain grid independent solution, a grid refinement study is performed for a sinusoidal corrugated 
enclosure with the flat top and bottom walls and the shape of the wavy side walls is taken as sinusoidal. The same 
boundary conditions of the current study is considered here with Ra = 106, Pr = 0.02, Ha = 100, ε = 0.8 and Φ = 45°. 
In the present work, eight combinations (40 × 40, 50 × 50, 60 × 60, 70 × 70, 80 × 80, 100 × 100, 120 × 120 and 150 
× 150) of non-uniform grids are used to test the effect of grid size on the accuracy of the predicted results. Fig. 2 
shows the convergence of the average Nusselt number at the heated Surface of the sinusoidal corrugated enclosure 
with grid refinement. It is observed that grid independence is achieved with combination of (100 × 100) control 
volumes where there is insignificant change in Nu with improvement of finer grids. 
 

5. VERIFICATION OF RESULTS 
 

In order to make sure that the developed codes are free of error, a validation test is conducted. The present 
numerical approach is verified against the results published by Pirmohammadi and Ghassemi [24] for natural 
convection flows with the presence of a longitudinal magnetic field in a tilted square cavity that is heated from below 
and cooled from the top while other walls are adiabatic. Fig. 3 shows the streamlines and the isotherms calculated by 
Pirmohammadi and Ghassemi [24] as well as by employing the present code for Ra =105, Pr = 0.02 , Φ = 0°, 45°, 90° 
and 135° and Ha = 0, 50 and 70 considering the same boundary conditions but the numerical scheme is different. 
Excellent qualitative agreement is achieved between the results of Pirmohammadi and Ghassemi [24] and that of the 
present numerical scheme for both flow and thermal fields over the range of governing parameters. This validation 
makes a good confidence in the present numerical model to deal with the physical problem. Moreover, a quantitative 
agreement is made by comparing the results of the present numerical model with those reported by Corvaro and 
Paroncini [25], for square straight enclosure with different Raleigh number and ε = 0.2 as shown in Table 1. The 
comparison with those experimental data is found to be excellent which validates the present computations indirectly. 
 

6. RESULTS AND DISCUSSION 
 

In this research, a numerical study is carried out numerically for different discrete heat source size ratios ε = 
0.2, 0.4, 0.6 and 0.8, inclination angles of the sinusoidal corrugated enclosure Φ = 0º, 15º, 30º and 45º, Rayleigh 
number, Ra = 103, 104, 105 and 106 and Hartmann number, Ha = 0, 25, 50, 75 and 100.  

 
The main characteristics of the flow and the heat transport for sinusoidal corrugated horizontal enclosure (Φ = 

0º) are shown in Figs. 4 and 5 in terms of streamline and isotherm plots respectively for various values of Ra ranging 
from 103 to 106 and Ha from 0 to 100 with a discrete heat source size ratio of 0.2. Because of the symmetrical 
boundary conditions on the sinusoidal corrugated sidewalls, the temperature fields are almost symmetric about the 
vertical mid-plane of the enclosure, whereas the flow fields are asymmetric due to wavy sidewalls. The symmetrical 
boundary conditions in the vertical direction cause to produce a couple of asymmetrical anticlockwise and clockwise 
rotating cells in the left and the right halves of the enclosure. In most of the cases, the flow rises along the vertical 
center line from the middle part of the bottom wall and gets blocked at the top adiabatic wall, which turns the flow 
horizontally towards the isothermal cold sidewalls. After that, the flow moves downwards along the sinusoidal 
corrugated sidewalls and turns back horizontally to the central region after hitting the bottom wall. With the increase 
of Hartmann number, the viscous forces become more dominant than the buoyancy forces and the inner of the two 
symmetrical circulating cells of almost equal strength is directed towards the end points of the heat source. On the 
other hand, the isotherm graphs are nearly symmetric about the vertical centre line of the enclosure and the shape of 
the streamlines tend to follow the geometry of the enclosure as shown in Fig. 5; so heat transfer is essentially 
diffusion dominated. The temperature decreases from the bottom hot wall to the top adiabatic wall along the vertical 
centre line of the enclosure and concentrates towards the hot bottom wall indicating the existence of a large 
temperature gradient. Near the sidewalls of the enclosure, the isotherms are almost symmetrical, while the isotherms 
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in the middle of the enclosure take the shape of smooth curves which are symmetric with respect to the vertical mid-
plane of the enclosure. For high Rayleigh number, where buoyancy forces are more dominant than the viscous 
forces, the convection currents inside the enclosure become very strong. Since the cold fluid has a downward motion 
with an increase of circular flow, the convection becomes the basic mode of heat transfer. In this case, the 
anticlockwise and the clockwise rotating cells move up and become irregular in shape. Also, the isotherm pattern 
changes significantly. With the increase of Rayleigh number, the developing thermal boundary layer thickness at the 
bottom wall becomes thinner and thus refers high heat transfer rate. On the other hand, distortion of isotherms plots 
is reduced significantly with the increase of Hartmann number. The flow fields also take the shape of two circulating 
cells of same size from one dominated circulating cells at the center of the enclosure.  

The flow and the heat transport for sinusoidal corrugated geometry of heat source size ratio (ε) of 0.2, 0.4, 0.6 
and 0.8 are shown in Figs. 6 and 7 for different values inclination angles while keeping Ra (= 106) and Ha (= 0) are 
fixed. When Φ = 0º and ε = 0.2, a large rotating cell along with a couple of small eddies of opposite direction of 
motion occupy the whole cavity as mentioned earlier. When the inclination angle increases from 0º to 15º, the minor 
cell at lower right corner becomes smaller and further increases of tilt angle eventually allows the main circulating 
cell to be dominant which in turns spreads inside the sinusoidal corrugated enclosure. This results in higher 
recirculation strength and convection current becomes the dominant mode of heat transfer. With this high value of 
Ra and zero magnetic effect, the flow field is affected by a large rotating cell and becomes identical irrespective of 
discrete heat source size ratio. A careful observation near the bottom left corner indicate that due to the sinusoidal 
side wall, the flow gets entrapped by the local minor eddies in both clock wise and anti-clockwise direction. Now 
when the heat source size increases, the small clockwise rotating cell at the lower left corner expands, thus squeezing 
the small right circulating cell. At the inclination angle of 45º, the large circulating cell covers most parts of the 
sinusoidal corrugated enclosure with a large magnitude of circulation which indicates increasing the buoyancy effect. 
It then becomes dominating near the heat source while the small right circulating cell decreases in size and in general 
allows the main flow to move closer to the heat source. Moreover, at Φ = 45º a small minor cell is observed at the 
top corner of the left cold sidewall and the overall pattern of the stream lines on the upper part of the cavity is same 
as shown in Fig. 6. Now observing the isothermal profiles in Fig. 7, it is found that the angle of inclination as well as 
discrete heat source size ratio has noticeable effect on the heat transfer characteristics. At high Rayleigh and zero 
Hartmann number, the isotherm plots with temperature contours, θ = 0 – 0.03 occur asymmetrical about the vertical 
mid-plane of the enclosure. For low inclination angle (Φ ≤ 15º) and ε = 0.2, the temperature contours noticeably θ = 
0.02 move slightly from left to right and with the increase of inclination angle (Φ ≥ 30º), the isotherms are pushed 
towards the lower part of the right sidewall due to the expansion of main circulating cell. This behavior can be 
noticed at high heat source size ratio with different inclination angles. When ε = 0.8, the temperature contours are 
continuously compressed towards the cold right sidewall. As the non-linearity of the isotherms increases, the 
existence of a thin thermal boundary layer clusters near the lower part of the right sidewall with the increase of Φ. 
The reason of these phenomena is due to the division of the buoyancy force in both x- and y-directions. It is 
noteworthy to mention that increasing size of discrete heat source momentarily increases the maximum temperature 
inside the cavity and the small temperature gradient observed near the boundary layer produces low circulation of 
fluid flow inside the cavity. In all these cases, the convective current is responsible for the heat transfer mechanism 
due to the higher value of Rayleigh number.  

Figures 8(a), (b) and (c) depicts the variation of the average Nusselt numbers along the heated strip at the 
bottom wall with Rayleigh number from 103 to 106 for different values of Hartmann number, discrete heat source 
size ratio and enclosure inclination angle respectively. From these figures, it is observed that at any particular 
corrugated geometry with or without the presence of magnetic field, the average Nusselt number does not change up 
to Ra = 104 and then it increases significantly with the increasing of Rayleigh number due to convection dominated 
heat transfer. Additionally, it is noticed that there is no variation of average Nusselt number until Ra = 105 for Ha ≥ 
50. This is consistent with the results of Ece and Buyuk [14], Al-Najem et al. [15] and Ece and Buyuk [17]. As the 
magnetic field has a tendency to suppress the convective flow and heat transfer inside the cavity as observed in their 
results [14, 15, 17], similar pattern of average Nusselt number profiles for a sinusoidal enclosure confirms the 
influence of magnetic field on the thermal performance. The effects of discrete heat source size ratio on Nu without 
the presence of magnetic field (Ha = 0) at an inclination angle of 45º is presented in Fig. 8(b). It is observed that the 
heat transfer rate decreases with the increase of heat source size and the smaller size ratio produces the maximum 
value of Nusselt number for any value of Rayleigh number. Similar to the observation of Saha et al. [19], it is also 
concluded from Fig. 8(c) that the average Nusselt number significantly increases as the inclination angle increases to 
a certain value for low Rayleigh number. When the Rayleigh number increases from 104 to 106, the rate of increase 
of Nu with the change of inclination angles drops drastically. 
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Table 1. Comparison of average Nusselt number between the experimental and the numerical works for ε = 0.2 
Ra Average Nusselt number 

Experimental results of 
Corvaro and Paroncini [25] 

Present numerical results 
(FVM) 

Error (%) 

7.56 × 104 4.8 5.135 -6.97 
1.38 × 105 5.859 5.863 -0.06 
1.71 × 105 6.3 6.235 1.03 
1.98 × 105 6.45 6.385 1.00 
2.32 × 105 6.65 6.571 1.18 
2.50 × 105 6.81 6.669 2.07 

 
 

 

Fig. 1: Schematic configuration of the tilted sinusoidal corrugated cavity with coordinate system along with 
boundary conditions and longitudinal magnetic effect 

 
Fig. 2: Convergence of average Nusselt number (Nu) along the heated bottom wall with grid refinement at Ra = 106, 

Ha = 100, Pr = 0.02, ε = 0.8 and Φ= 45° 
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Fig. 3: Comparison of the streamlines and the isotherms at different inclination angles (Φ) and Hartmann numbers (Ha) between the results obtained by the 
present code (right) and that of Pirmohammadi and Ghassemi [24] (left) for Pr = 0.02 and Ra = 105. 
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Fig. 4: Streamlines for different Hartmann numbers (Ha) and Rayleigh numbers (Ra)  

with ε = 0.2 and Φ = 0º.
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Fig. 5: Isotherms for different Hartmann numbers (Ha) and Rayleigh numbers (Ra) with ε = 0.2 and Φ = 0º.
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Fig. 6: Streamlines for different discrete heat source size ratios (ε) and inclination angles (Φ) with Ha = 0 
and Ra = 106. 
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Fig. 7: Isotherms for different discrete heat source size ratios (ε) and inclination angles (Φ) with Ha = 0 and 
Ra = 106. 
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Fig. 8: Variation of the average Nusselt number (Nu) with Rayleigh number (Ra) along with (a) different 
Hartmann numbers (Ha) for Φ = 45º and ε = 0.2, (b) different discrete heat source size ratios (ε) for Φ = 45º 

and Ha = 0 and (c) different enclosure inclination angles (Φ) for Ha = 0 and ε = 0.2. 
 

7. CONCLUSIONS 
 

The effect of cavity inclination angle, longitudinal magnetic field and discrete is flux heat source size on 
natural convection inside a sinusoidal corrugated enclosure are investigated and analyzed in this study. The 
finite volume method helps to obtain numerical solution in terms of stream functions and temperature 
contours for Ra = 103 to 106 and Pr = 0.02. From the above discussion, following conclusions can be drawn: 

(i) The application of a longitudinal magnetic field results in a force opposite to the flow direction that 
leads to drag the flow and then reduces the convection currents by reducing the velocities. 

(ii) For low Rayleigh number and high Hartmann number, diffusion is the basic mode of heat transfer 
which results the minimum value of thermal performance from the heated wall. On the other hand, 
with the increase of Rayleigh number, the thermal boundary layer thickness decreases and it would 
become thinner when the effect of Hartmann number is going to cease on the flow and the thermal 
fields. Then convection becomes the main mode of heat transfer which in turns enhances the 
performance of heat transfer inside the sinusoidal enclosure. 

(iii) The average Nusselt number increases significantly with the increase of Rayleigh number and the 
decrease of Hartmann number and hence a magnetic field can be used as an effective mechanism to 
control the convection inside an enclosure. 

(iv) The average Nusselt number also increases as the discrete heat source size decreases and vice 
verse. The enclosure inclination angle has a clear effect on the heat transfer process as well. It is 
found that for small size of discrete heat source, the values of Nu increases significantly as soon as 
the cavity orientation changes from horizontal to any inclined position. Moreover, the effect of 
change of inclination angle on heat transfer is only dominant at higher value of Rayleigh number. 
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