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Abstract. In this paper, a new concept of generalized convexity is introduced for E-
differentiable vector optimization problems. Namely, the concept of KT -E-invexity is defined for
(not necessarily) differentiable vector optimization problems in which the functions involved are
E-differentiable. The sufficiency of the so-called E-Karush–Kuhn–Tucker optimality conditions
is established for the considered E-differentiable multiobjective programming problem under
assumption that is KT -E-invex at an E-Karush–Kuhn–Tucker point. Further, the examples of
KT -E-invex optimization problems with E-differentiable functions are constructed to illustrate
the aforesaid results. Moreover, the so-called vector Mond-Weir E-dual problem is also derived
for the considered E-differentiable vector optimization problem and several E-duality theorems
in the sense of Mond-Weir are derived under KT -E-invexity hypotheses.

Key words: KT -E-invex optimization problem; generalized convexity; E-differentiable function;
E-optimality conditions; E-duality.
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1. Introduction
The field of vector optimization, also known as multiobjective programming, has attracted a
lot of attention since many real-world problems in engineering problems, physics, economics,
management sciences, decision theory, game theory, optimal control can be modeled as nonlinear
vector optimization problems. Therefore, considerable attention has been given recently to
obtaining new optimality results for various classes of differentiable and non-differentiable
nonlinear nonconvex multiobjective programming problems (see, for example, [1], [2], [3], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [22], [28], [31], [32], [34], and
others). One of the most important of such generalizations of convexity is the invexity notion
introduced by Hanson [19] for differentiable scalar optimization problems. Martin [24] defined
the notion of a Kuhn-Tucker invex problem for differentiable scalar extremum problems. He
also showed that an optimization problem is Kuhn-Tucker invex if and only if each point which
satisfies the Kuhn-Tucker necessary optimality conditions is a global minimizer. In recent years,
several generalizations of the KT -invexity have been introduced to optimization theory, also in
a vectorial case (see, for example, [4], [26], [27], [28], [29], [30], and others).
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The concept of E-convexity, introduced by Youness [34], is one of the notions of generalized
convexity that weakens the convexity assumptions to prove the fundamental results in
optimization theory for a new class of nonconvex differentiable optimization problems. Megahed
et al. [21] presented a new concept of an E-differentiable convex function and they established
optimality conditions for mathematical programming problems in which the functions involved
are E-differentiable. Recently, Abdulaleem [7] introduced a new concept of generalized convexity.
Namely, Abdulaleem defined the concept of E-differentiable E-invexity in the case of (not
necessarily) differentiable vector optimization problems with E-differentiable functions.

In this paper, firstly, we characterize the class of E-differentiable E-invex functions by giving
its new property. Namely, we show that every E-stationary point of any E-differentiable E-invex
function is its global E-minimizer. Further, we consider a new class of E-differentiable vector
optimization problems with inequality constraints. Namely, we define the class of so-called
E-differentiable KT -E-invex multiobjective programming problems as a generalization of the
concept of differentiable KT -invex vector optimization problem introduced by Osuna-Gómez et
al. [26] and the definition of E-differentiable E-invex functions introduced by Abdulaleem [7].
Then, we prove the sufficient optimality conditions for this new class of E-differentiable vector
optimization problems, that is, E-differentiable KT -E-invex ones. This result is illustrated by
the examples of E-differentiable KT -E-invex optimization problems. Thus, we also show that
the optimality results established in the paper are applicable for a larger class of E-differentiable
vector optimization problems than under E-differentiable E-invexity hypotheses. Moreover,
so-called vector Mond-Weir E-dual problem is defined for the considered (not necessarily)
differentiable vector optimization problems with E-differentiable functions. Then, several E-
duality theorems are established between the considered E-differentiable vector optimization
problems and its vector E-duals under KT -E-invexity hypotheses.

2. Preliminaries
Let Rn be the n-dimensional Euclidean space and Rn

+ be its nonnegative orthant. The
following convention for equalities and inequalities will be used in the paper. For any vectors
x = (x1, x2, ..., xn)T and y = (y1, y2, ..., yn)T in Rn, we define: x > y ⇔ xi > yi, i = 1, 2, ..., n;
x = y ⇔ xi = yi, i = 1, 2, ..., n; x ≥ y ⇔ x = y, x 6= y.

We now give the definition of an E-differentiable function introduced by Megahed et al. [21].

Definition 1 [21] Let E : Rn → Rn and f : Rn → R be a (not necessarily) differentiable
function at a given point u ∈ Rn. It is said that f is an E-differentiable function at u if and
only if f ◦ E is a differentiable function at u (in the usual sense), that is,

(f ◦ E) (x) = (f ◦ E) (u) +∇ (f ◦ E) (u) (x− u) + θ (u, x− u) ‖x− u‖ , (1)

where θ (u, x− u)→ 0 as x→ u.

We now give the definitions of an E-invex set and an E-invex function introduced by Abdu-
laleem [7].

Definition 2 [7] Let E : Rn → Rn. A set M ⊆ Rn is said to be an E-invex set iff there exists
a vector-valued function η : M ×M → Rn such that the relation

E (u) + λη (E (x) , E (u)) ∈M

holds for all x, u ∈M and any λ ∈ [0, 1].
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Definition 3 [7] Let E : Rn → Rn, M ⊆ Rn be a nonempty open E-invex set with respect to
the vector-valued function η : Rn × Rn → Rn and f : Rn → Rk be an E-differentiable function
on M . It is said that f is a vector-valued E-invex function with respect to η at u on M if, for
all x ∈M ,

fi(E(x))− fi(E(u)) = ∇fi(E(u))η(E(x), E(u)), i = 1, ..., k. (2)

If inequalities (2) hold for any u ∈M , then f is E-invex with respect to η on M .

In this paper, we consider the following (not necessarily differentiable) multiobjective
optimization problem (VP):

minimize f(x) = (f1 (x) , ..., fp (x))

subject to gj(x) 5 0, j ∈ J = {1, ...,m} ,
(VP)

where fi : Rn → R, i ∈ I = {1, ..., p}, gj : Rn → R, j ∈ J , are real-valued functions defined
on Rn. We shall write g := (g1, ..., gm) : Rn → Rm for convenience. Let Ω denote the set of all
feasible solutions in problem (VP), that is,

Ω := {x ∈ Rn : gj(x) 5 0, j ∈ J} .

Further, we denote by J (x) the set of inequality constraint indices that are active at a feasible
solution x, that is, J (x) = {j ∈ J : gj(x) = 0} .

Definition 4 A point x is said to be a weakly efficient solution (weak Pareto solution) of (VP)
if there exists no x such that

f(x) < f(x).

Definition 5 A point x is said to be an efficient solution (a Pareto solution) of (VP) if there
exists no x such that

f(x) ≤ f(x).

Let E : Rn → Rn be a given one-to-one and onto operator. Now, for the considered
multiobjective programming problem (VP), we define its associated differentiable vector
optimization problem (VPE) as follows:

minimize f(E(x)) = (f1(E(x)), ..., fp(E(x)))

subject to gj(E(x)) 5 0, j ∈ J = {1, ...,m} .
(VPE)

The problem (VPE) is referred to as an E-vector optimization problem associated to (VP). Let
ΩE denote the set of all feasible solutions of (VPE), that is,

ΩE := {x ∈ Rn : gj(E(x)) 5 0, j ∈ J} .

Since the functions constituting (VP) are assumed to be E-differentiable at any feasible solution
of (VP), by Definition 1, the functions constituting (VPE) are differentiable at any its feasible
solution (in the usual sense). Further, we denote by JE (x) the set of inequality constraint in-
dices that are active at a feasible solution x ∈ ΩE , that is, JE (x) = {j ∈ J : (gj ◦ E) (x) = 0}.

Definition 6 A point E(x) is said to be a weakly E-efficient solution (weak E-Pareto solution)
of (VP) if there exists no E(x) such that

f(E(x)) < f(E(x)).
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Definition 7 A point E(x) is said to be an E-efficient solution (an E-Pareto solution) of (VP)
if there exists no E(x) such that

f(E(x)) ≤ f(E(x)).

Lemma 8 [5] Let E : Rn → Rn be a one-to-one and onto. Then E (ΩE) = Ω.

Lemma 9 [5] Let x ∈ ΩE be a Pareto solution (a weak Pareto solution) of the problem (VPE).
Then E (x) is an E-Pareto solution (a weak E-Pareto solution) of the problem (VP).

Theorem 10 Let E : Rn → Rn. f : Rn → R is an E-differentiable E-invex function with
respect to η on Rn, where η : Rn × Rn → Rn if and only if its every E-stationary point is a
global E-minimum of f.

Proof. “ ⇒ ” Let E : Rn → Rn. Clearly, if f is an E-differentiable E-invex vector-valued
function with respect to η on Rn and E(x) its E-stationary point, then ∇f(E(x)) = 0 implies
f(E(x)) 5 f(E(x)), ∀x ∈ Rn.
“⇐ ”
If ∇f(E(x)) = 0, take η(E(x), E(x)) = 0.
If ∇f(E(x)) 6= 0, take

η(E(x), E(x)) =
f(E(x))− f(E(x))

∇f(E(x))∇f(E(x))
∇f(E(x)).

Corollary 11 Let E : Rn → Rn. If f : Rn → Rk has no E-stationary points, then f is an
E-differentiable E-invex vector-valued function on Rn.

Example 12 Let E : R→ R, f : R→ R be an E-differentiable function on R defined by

f(x) = 3
√
x, E(x) = x9.

Note that f is not an E-differentiable E-invex function. Since the differentiable function
f(E(x)) = x3 has an E-stationary point at E(x) = 0, but it is not a global E-minimum.

Example 13 Let E : R2 → R2, f : R2 → R be an E-differentiable function on R2 defined by

f(x) = 3
√
x1 + 9

√
x1 − 10 3

√
x2 − 9

√
x2, E(x1, x2) = (x91, x

9
2).

Since the function f has no E-stationary points, then f is an E-differentiable E-invex function
with respect to η.

3. KT -E-invexity and optimality
In this section, for the considered vector optimization problem (VP), we define a new concept of
generalized convexity which is a generalization of a class of E-invexity defined by Abdulaleem
[7] and the class of differentiable KT -invex multiobjective optimization problems introduced by
Osuna-Gómez et al. [26].

Definition 14 Let E : Rn → Rn and the considered multiobjective optimization problem (VP)
is said to be an E-differentiable KT -E-invex vector optimization problem at E(x) ∈ Ω on Ω, if
there exists a vector-valued function η : Ω× Ω→ Rn such that

E(x) ∈ Ω,

gj(E(x)) 5 0,

gj(E(x)) 5 0

=⇒


fi(E(x))− fi(E(x)) = ∇fi(E(x))η(E(x), E(x)), i ∈ I,

−∇gj(E(x))η(E(x), E(x)) = 0, j ∈ J(E(x)).

(3)

If (3) is fulfilled at any point E(x) ∈ Ω on Ω, then the considered multiobjective optimization
problem (VP) is said to be an E-differentiable KT -E-invex vector optimization problem on Ω.
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Definition 15 Let E : Rn → Rn and the considered multiobjective optimization problem (VP)
is said to be E-differentiable strict KT -E-invex vector optimization problem at E(x) ∈ Ω on Ω,
if there exists a vector-valued function η : Ω× Ω→ Rn such that

E(x) ∈ Ω,

E(x) 6= E(x),

gj(E(x)) 5 0,

gj(E(x)) 5 0

=⇒


fi(E(x))− fi(E(x)) > ∇fi(E(x))η(E(x), E(x)), i ∈ I,

−∇gj(E(x))η(E(x), E(x)) = 0, j ∈ J(E(x)).

(4)

If (4) is fulfilled at any point E(x) ∈ Ω on Ω, then the considered multiobjective optimization
problem (VP) is said to be an E-differentiable strict KT -E-invex vector optimization problem
on Ω.

Now, we also give the definitions of KT -invexity and strict KT -invexity for the
differentiable E-vector optimization (VPE) which is associated to the considered E-differentiable
multiobjective programming problem (VP).

Definition 16 Let E : Rn → Rn and the E-vector optimization problem (VPE) is said to
be a differentiable KT -invex vector optimization problem at x ∈ ΩE on ΩE , if there exists a
vector-valued function ηE : ΩE × ΩE → Rn such that

x ∈ ΩE ,

gj(E(x)) 5 0,

gj(E(x)) 5 0

=⇒


fi(E(x))− fi(E(x)) = ∇fi(E(x))η(E(x), E(x)), i ∈ I,

−∇gj(E(x))η(E(x), E(x)) = 0, j ∈ J(E(x)).

(5)

If (5) is fulfilled at any point x ∈ ΩE on ΩE , then the E-vector optimization problem (VPE) is
said to be a differentiable KT -invex vector optimization problem on ΩE .

Definition 17 Let E : Rn → Rn and the E-vector optimization problem (VPE) is said to be
a differentiable strict KT -invex vector optimization problem at x ∈ ΩE on ΩE , if there exists a
vector-valued function ηE : ΩE × ΩE → Rn such that

x ∈ ΩE ,

x 6= x,

gj(E(x)) 5 0,

gj(E(x)) 5 0

=⇒


fi(E(x))− fi(E(x)) > ∇fi(E(x))η(E(x), E(x)), i ∈ I,

−∇gj(E(x))η(E(x), E(x)) = 0, j ∈ J(E(x)).

(6)

If (6) is fulfilled at any point x ∈ ΩE on ΩE , then the E-vector optimization problem (VPE) is
said to be a differentiable strict KT -invex vector optimization problem on ΩE .

Remark 18 If (VPE) is a differentiable KT -invex vector optimization problem on ΩE , then
(VP) is an E-differentiable KT -E-invex vector optimization problem on Ω and the converse is
true.

We now recall the E-Karush-Kuhn-Tucker necessary optimality conditions established by
Abdulaleem [7].

Theorem 19 [7] (E-Karush-Kuhn-Tucker necessary optimality conditions) Let x ∈ ΩE be a
weak Pareto solution of the problem (VPE) (and, thus, E (x) be a weak E-Pareto solution of the
problem (VP)). Further, let the objective functions fi, i ∈ I, the constraint functions gj , j ∈ J,
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be E-differentiable at x and the Guignard constraint qualification (GCQ) [7] be satisfied at x.
Then there exist Lagrange multipliers τ ∈ Rp, ξ ∈ Rm such that

p∑
i=1

τ i∇ (fi ◦ E) (x) +

m∑
j=1

ξj∇ (gj ◦ E) (x) = 0, (7)

ξj (gj ◦ E) (x) = 0, j ∈ J, (8)

τ ≥ 0, ξ = 0. (9)

Definition 20
(
E(x), τ , ξ

)
∈ Ω × Rp × Rm is said to be an E-Karush-Kuhn-Tucker point

for the considered constrained vector optimization problem (VP) if the E-Karush-Kuhn-Tucker
necessary optimality conditions (7)-(9) are satisfied at E(x) with Lagrange multiplier τ , ξ.

Definition 21
(
x, τ , ξ

)
∈ ΩE ×Rp ×Rm is said to be a Karush-Kuhn-Tucker point for the E-

vector optimization problem (VPE) if the Karush-Kuhn-Tucker necessary optimality conditions
(7)-(9) are satisfied at x with Lagrange multiplier τ , ξ.

Now, we prove the sufficiency of the E-Karush-Kuhn-Tucker optimality conditions for the
E-differentiable multiobjective optimization problem (VP) under KT -E-invexity hypotheses.

Theorem 22 Let the considered multiobjective optimization problem (VP) be a vector KT -
E-invex optimization problem on Ω. Then, every vector E-Karush-Kuhn-Tucker point of the
multiobjective optimization problem (VP) is its weakly E-efficient solution.

Proof. Let the considered multiobjective optimization problem (VP) be a vector KT -E-
invex optimization problem on Ω. Further, we assume that E(x) is an E-Karush-Kuhn-Tucker
point of the considered multiobjective optimization problem (VP). Then, by Definition 20, the E-
Karush-Kuhn-Tucker necessary optimality conditions (7)-(9) are satisfied at E(x) with Lagrange
multipliers τ ∈ Rp and ξ ∈ Rm. We proceed by contradiction. Suppose, contrary to the result,
that E(x) is not a weakly E-efficient solution of the problem (VP). Hence, by Definition 6, there
exists other E(x̃) ∈ Ω such that

f(E(x̃)) < f (E (x)) . (10)

Since τ ≥ 0, the above inequality yields

p∑
i=1

τ if(E(x̃)) <

p∑
i=1

τ if (E (x)) . (11)

Since the considered multiobjective optimization problem (VP) is an KT -E-invex vector
optimization problem on Ω, by Definition 14, the following inequalities

fi(E(x̃))− fi(E(x)) = ∇fi(E(x))η(E(x̃), E(x)), i ∈ I,

−∇gj(E(x))η(E(x̃), E(x)) = 0, j ∈ J(E(x)) (12)

hold. Multiplying the above inequalities by the corresponding Lagrange multipliers, respectively,
we obtain

τ ifi(E(x̃))− τ ifi(E(x)) = τ i∇fi(E(x))η(E(x̃), E(x)), i ∈ I,

−ξj∇gj(E(x))η(E(x̃), E(x)) = 0, j ∈ J(E(x)). (13)
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Adding both sides of the above inequalities, we obtain that the inequality

p∑
i=1

τ ifi(E(x̃))−
p∑

i=1

τ ifi(E(x)) =

[ p∑
i=1

τ i∇ (fi ◦ E) (x) +

m∑
j=1

ξj∇gj (E (x))

]
η (E (x̃) , E (x)) (14)

holds. Combining (11) and (14), we get that the inequality[ p∑
i=1

τ i∇ (fi ◦ E) (x) +
m∑
j=1

ξj∇gj (E (x))

]
η (E (x̃) , E (x)) < 0

holds, which is a contradiction to the E-Karush-Kuhn-Tucker necessary optimality condition
(7). Thus, the proof of this theorem is completed.

Theorem 23 Let the E-vector optimization problem (VPE) be a vector KT -invex optimization
problem on ΩE . Then, every vector Karush-Kuhn-Tucker point of the E-vector optimization
problem (VPE) is its weakly efficient solution.

Now, we present an example of an E-differentiable vector optimization problem in which the
considered multiobjective optimization problem (VP) is KT -E-invex.

Example 24 Consider the following nonconvex nondifferentiable vector optimization problem

minimize f(x) = ( 3
√
x21 + 3

√
x22 ,

3
√
x21 + 3

√
x22 + 3

√
x1)

subject to g(x) = x1 + 3
√
x22 5 0.

(VP1)

Note that Ω =
{

(x1, x2) ∈ R2 : x1 + 3
√
x22 5 0

}
. Let E : R2 → R2 be a one-to-one and onto

mapping defined as follows E (x1, x2) =
(
x31, x

3
2

)
. Now, for the considered E-differentiable vector

optimizations problem (VP1), we define its associated E-vector optimization problem (VP1E)
as follows

minimize f(E(x)) = (x21 + x22 , x
2
1 + x22 + x1)

subject to g(E(x)) = x31 + x22 5 0.
(VP1E)

Note that ΩE =
{

(x1, x2) ∈ R2 : x31 + x22 5 0
}

and x = (0, 0) is a Pareto solution in (VP1E),

where minimize x21 + x22 = 0 = f1(x). However, x̃ =
(
−1

2 , 0
)

is a Pareto solutions in (VP1E),

where minimize x21 + x22 + x1 = −1
4 = f2(x̃). Further, note that all functions constituting the

considered multiobjective optimization problem (VP1) are E-differentiable at x = (0, 0). It can be
shown, by Definition 16, that the E-vector optimization problem (VP1E) is KT -invex at Pareto
solutions x and x̃ on ΩE with respect to η(E(x), E(u)) = (−x21−u21, x22+u22). Since all hypotheses
of Theorem 23 are satisfied, therefore, x and x̃ are Pareto solutions to the E-vector optimization
problem (VP1E) and, thus, all hypotheses of Theorem 22 are satisfied, therefore, E (x) = (0, 0)
is an E-Pareto solution of the considered E-differentiable vector optimization problem (VP1)
and, by Definition 14, the vector optimization problem (VP1) is KT -E-invex at E(x) on Ω with
respect to η given above. Further, note that the constraint function g is not E-invex on ΩE .
This follows from the fact that a stationary points of the constraint function g are not its global
minimizer (see Theorem 10).
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Now, we consider the example of a KT -E-invex optimization problem (VP), which is not
KT -invex optimization problem given in [26].

Example 25 Consider the following nonconvex nondifferentiable vector optimization problem

minimize f(x) = ( 3
√
x41 + ( 3

√
x22 + 1)2 , 3

√
x21 + 3

√
x42)

subject to g(x) = x1 + x2 − 3
√
x1 5 0.

(VP2)

Note that Ω =
{

(x1, x2) ∈ R2 : x1 + x2 − 3
√
x1 5 0

}
. Let E : R2 → R2 be an one-to-one and onto

mapping defined as follows E (x1, x2) =
(
x31, x

3
2

)
. Now, for the considered E-differentiable vector

optimization problem (VP2), we define its associated E-vector optimization problem (VP1E) as
follows

minimize f(E(x)) = (x41 + (x22 + 1)2 , x21 + x42)

subject to g(E(x)) = x31 + x32 − x1 5 0.
(VP2E)

Note that ΩE =
{

(x1, x2) ∈ R2 : x31 + x32 − x1 5 0
}

and x = (0, 0) is a feasible solution of the
problem (VP2E) at which the Karush-Kuhn-Tucker necessary optimality conditions are satisfied.
Further, note that all functions constituting the considered vector optimization problem (VP2)
are E-differentiable at x = (0, 0). It can be shown, by Definition 14, that the vector optimization
problem (VP2) is KT -E-invex at E(x) on Ω with respect to η(E(x), E(u)) = (x21+u21, x

2
2+u22+1).

However, by the definition of a KT -invex optimization problem (see Osuna-Gómez et al. [26]),
it follows that the multiobjective optimization problem (VP2) is not KT -invex at x on Ω with

respect to η(x, u) = ( 3
√
x21 + 3

√
u21,

3
√
x22 + 3

√
u22 + 1).

4. Mond-Weir E-duality
In this section, for the considered E-differentiable multiobjective programming problem (VP),
we define its vector dual problem (VDE) in the sense of Mond-Weir [23].

Let E : Rn → Rn be a given one-to-one and onto operator. For the differentiable multicriteria
E-optimization problem (VPE), we define the following vector dual problem in the sense of
Mond-Weir:

(VDE) f(E(y)) = (f1(E(y)), ..., fp(E(y)))→ V −max (15)

subject to

p∑
i=1

τi∇fi(E(y)) +

m∑
j=1

ξj∇gj(E(y)) = 0, (16)

m∑
j=1

ξjgj(E(y)) = 0, (17)

τ ∈ Rp, τ ≥ 0 , ξ ∈ Rm, ξ = 0. (18)

Further, let

WE =

{
(y, τ, ξ) ∈ Rn ×Rp ×Rm :

∑p
i=1 τi∇fi(E(y))+

∑m
j=1 ξj∇gj(E(y)) = 0,

∑m
j=1 ξjgj(E(y)) = 0, τ ≥ 0, ξ = 0

}
be the set of all feasible solutions of the problem (VDE). Let us denote YE = {y ∈ Rn : (y, τ, ξ) ∈
WE}.
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Theorem 26 (Mond-Weir weak duality between (VPE) and (VDE)). Let x ∈ ΩE and
(y, τ, ξ) ∈WE . Further, assume that (VPE) is KT -invex on ΩE ∪ YE . Then

f(E(x)) ≮ f(E(y)). (19)

Proof. Let x ∈ ΩE and (y, τ, ξ) ∈ WE . We proceed by contradiction. Suppose, contrary to
the result, that the inequality

f(E(x)) < f(E(y)) (20)

holds. By the feasibility of (y, τ, ξ) in the problem (VDE), the above inequality yields

p∑
i=1

τifi(E(x)) <

p∑
i=1

τifi(E(y)). (21)

By assumption, x ∈ ΩE and (y, τ, ξ) ∈WE . Since the problem (VPE) is KT -invex on ΩE ∪ YE ,
by Definition 16, the inequalities

fi(E(x))− fi(E(y)) = ∇fi(E(y))η(E(x), E(y)), i ∈ I (22)

−∇gj(E(y))η(E(x), E(y)) = 0. j ∈ J(E(y)) (23)

hold. Multiplying above inequalities by the corresponding Lagrange multipliers, respectively,
and then summarizing the resulting inequalities, we obtain

p∑
i=1

τifi(E(x))−
p∑

i=1

τifi(E(y)) =
p∑

i=1

τi∇fi(E (y))η(E(x), E(y)), (24)

−
m∑
j=1

ξj∇gj(E(y))η(E(x), E(y)) = 0. (25)

From (24) and (25), we obtain that the following inequality

p∑
i=1

τifi(E(x))−
p∑

i=1

τifi(E(y)) =

 p∑
i=1

τi∇fi(E (y)) +

m∑
j=1

ξj∇gj(E(y))

 η(E(x), E(y)) (26)

holds. Thus, by (16), it follows that the inequality

p∑
i=1

τifi(E(x)) =
p∑

i=1

τifi(E(y)) (27)

holds, contradicting (21). This means that the proof of the Mond-Weir weak duality theorem
between the problems (VPE) and (VDE) is completed.

Theorem 27 (Mond-Weir weak E-duality between (VP) and (VDE)). Let E (x) ∈ Ω and
(y, τ, ξ) ∈ WE . Further, assume that (VP) is KT -E-invex on Ω ∪ YE . Then, the Mond-Weir
weak E-duality between (VP) and (VDE) holds, that is,

f(E(x)) ≮ f(E(y)).
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Proof. Let E (x) ∈ Ω and (y, τ, ξ) ∈ WE . We proceed by contradiction. Suppose, contrary
to the result, that the inequality

f(E(x)) < f(E(y)) (28)

holds. By the feasibility of (y, τ, ξ) in the problem (VDE), the above inequality yields

p∑
i=1

τifi(E(x)) <

p∑
i=1

τifi(E(y)). (29)

By assumption, E(x) and (y, τ, ξ) are feasible solutions of the problems (VP) and (VDE),
respectively. Since the problem (VP) is KT -E-invex on Ω∪YE , by Definition 14, the inequalities

fi(E(x))− fi(E(y)) = ∇fi(E(y))η(E(x), E(y)), i ∈ I (30)

−∇gj(E(y))η(E(x), E(y)) = 0. j ∈ J(E(y)) (31)

hold. Multiplying above inequalities by the corresponding Lagrange multipliers, respectively,
and then summarizing the resulting inequalities, we obtain

p∑
i=1

τifi(E(x))−
p∑

i=1

τifi(E(y)) =
p∑

i=1

τi∇fi(E (y))η(E(x), E(y)), (32)

−
m∑
j=1

ξj∇gj(E(y))η(E(x), E(y)) = 0. (33)

From (32) and (33), we obtain that the following inequality

p∑
i=1

τifi(E(x))−
p∑

i=1

τifi(E(y)) =

 p∑
i=1

τi∇fi(E (y)) +
m∑
j=1

ξj∇gj(E(y))

 η(E(x), E(y)) (34)

holds. Thus, by (16), it follows that the inequality

p∑
i=1

τifi(E(x)) =
p∑

i=1

τifi(E(y)) (35)

holds, contradicting (29). This means that the proof of the Mond-Weir weak E-duality theorem
between the problems (VP) and (VDE) is completed.

Theorem 28 (Mond-Weir strong duality between (VPE) and (VDE) and also strong E-duality
between (VP) and (VDE)). Let x ∈ ΩE be an efficient solution (a weakly efficient solution) of the
problem (VPE) (and, thus, E(x) ∈ Ω be an E-efficient solution (a weakly E-efficient solution)
of the problem (VP)). Further, assume that the Guignard constraint qualification (GCQ) [7] be
satisfied at x. Then there exist τ ∈ Rp, ξ ∈ Rm, ξ = 0 such that

(
x, τ , ξ

)
is feasible for the

problem (VDE). If all hypotheses of (Theorem 26) Theorem 27 are satisfied, then
(
x, τ , ξ

)
is an

efficient solution (a weakly efficient solution) of a maximum type in the problem (VDE).
In other words, if E(x) ∈ Ω is an E-efficient solution (a weakly E-efficient solution) of the
problem (VP), then

(
x, τ , ξ

)
is an efficient solution (a weakly efficient solution) of a maximum

type in the dual problem (VDE). This means that the Mond-Weir strong E-duality holds between
the problems (VP) and (VDE).



ICoFAST 2021
Journal of Physics: Conference Series 1900 (2021) 012001

IOP Publishing
doi:10.1088/1742-6596/1900/1/012001

11

Proof. Since x ∈ ΩE is an efficient solution (a weakly efficient solution) of the problem
(VPE) and the Guignard constraint qualification (GCQ) is satisfied at x, there exist τ ∈ Rp,
ξ ∈ Rm, ξ = 0 such that

p∑
i=1

τ i∇ (fi ◦ E) (x) +

m∑
j=1

ξj∇ (gj ◦ E) (x) = 0,

ξj (gj ◦ E) (x) = 0, j ∈ J,

τ ≥ 0, ξ = 0.

Thus,
(
x, τ , ξ

)
is a feasible solution for (VDE). If

(
x, τ , ξ

)
is not an efficient solution (a weakly

efficient solution) for (VDE), then there exists a feasible solution
(
x̃, τ̃ , ξ̃

)
of (VDE) such that

f(E(x̃)) < f(E(x)), which contradicts Theorem 26. Hence,
(
x, τ , ξ

)
is an efficient solution (a

weakly efficient solution) for (VDE). Moreover, we have, by Lemma 8, that E (x) ∈ Ω. Since
x ∈ ΩE is an efficient solution (a weakly efficient solution) of the problem (VPE), by Lemma
9, it follows that E (x) is an E-efficient solution (a weakly E-efficient solution) in the problem
(VP). Then, by the Mond-Weir strong duality between (VPE) and (VDE), we conclude that
also the Mond-Weir strong E-duality holds between the problems (VP) and (VDE). This means
that if E (x) ∈ Ω is a weak E-Pareto solution of the problem (VP), there exist τ ∈ Rp, ξ ∈ Rm,
ξ = 0 such that

(
x, τ , ξ

)
is a weakly efficient solution of a maximum type in the Mond-Weir dual

problem (VDE).

Theorem 29 (Mond-Weir converse duality between (VPE) and (VDE)) Let
(
x, τ , ξ

)
be a

(weak) efficient solution of a maximum type in the vector Mond-Weir dual problem (VDE)
such that x ∈ ΩE. Further, assume that problem (VPE) is KT -invex on ΩE ∪ YE . Then x is a
(weak) Pareto solution of the problem (VPE).

Proof. Proof of this theorem follows directly from Theorem 26.

Theorem 30 (Mond-Weir converse E-duality between (VP) and (VDE)) Let
(
E(x), τ , ξ

)
be a

(weakly) efficient solution of a maximum type in the vector Mond-Weir E-dual problem (VDE)
such that E(x) ∈ Ω. Further, assume that problem (VP) is KT -E-invex on Ω ∪ YE . Then E(x)
is a (weak) E-Pareto solution of the problem (VP).

Proof. Proof of this theorem follows directly from Theorem 27.

Theorem 31 (Mond-Weir restricted converse duality between (VPE) and (VDE)) Let x ∈ ΩE

and
(
y, τ , ξ

)
∈ WE . Moreover, assume that problem (VPE) is (strictly) KT -invex on ΩE ∪ YE .

Then x = y, that is, x is a weak Pareto solution (a Pareto solution) of the problem (VPE) and(
y, τ , ξ

)
is a weakly efficient solution (an efficient solution) of a maximum type for the problem

(VDE).

Proof. By means of contradiction, suppose that x is not a weak Pareto solution of the
problem (VPE). This means, by Definition 6, that there exists x̃ ∈ ΩE such that

f(E(x̃)) < f(E(x)). (36)

By assumption, f(E(x)) = f(E(y)). Hence, (36) yields

f(E(x̃)) < f(E(y)). (37)
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By assumption,
(
y, τ , ξ

)
is a feasible solution for (VDE). Then, it follows that τ ≥ 0. Hence,

the above inequality yields
p∑

i=1

τ ifi(E(x̃)) <

p∑
i=1

τ ifi(E(y)). (38)

Since the problem (VPE) is KT -invex on ΩE ∪ YE and by Definition 16, the inequalities

fi(E(x))− fi(E(y)) = ∇fi(E(y))η(E(x), E(y)), i ∈ I (39)

−∇gj(E(y))η(E(x), E(y)) = 0. j ∈ J(E(y)) (40)

hold. Multiplying above inequalities by the corresponding Lagrange multipliers, respectively,
the inequalities

p∑
i=1

τifi(E(x))−
p∑

i=1

τifi(E(y)) =
p∑

i=1

τi∇fi(E (y))η(E(x), E(y)), (41)

−
m∑
j=1

ξj∇gj(E(y))η(E(x), E(y)) = 0. (42)

hold for x ∈ ΩE ∪ YE . Thus, they are also fulfilled for x = x̃ ∈ ΩE . Hence, (41) and (42) yield,
respectively,

p∑
i=1

τifi(E(x̃))−
p∑

i=1

τifi(E(y)) =
p∑

i=1

τi∇fi(E (y))η(E(x̃), E(y)), (43)

−
m∑
j=1

ξj∇gj(E(y))η(E(x̃), E(y)) = 0. (44)

Combining (43) and (44) , the inequality

p∑
i=1

τifi(E(x̃))−
p∑

i=1

τifi(E(y)) =

 p∑
i=1

τi∇fi(E (y)) +

m∑
j=1

ξj∇gj(E(y))

 η(E(x̃), E(y)) (45)

holds. Thus, by (16), it follows that the inequality

p∑
i=1

τifi(E(x̃)) =
p∑

i=1

τifi(E(y)) (46)

holds, contradicting (38). Then, x = y and this means by weak duality (Theorem 26) that x
is a weak Pareto solution of the problem (VPE) and

(
y, τ , ξ

)
is a weakly efficient solution of a

maximum type for the problem (VDE). Thus, the proof of this theorem is completed.

Theorem 32 (Mond-Weir restricted converse E-duality between (VP) and (VDE)) Let E(x)
and

(
y, τ , ξ

)
be feasible solutions for the problems (VP) and (VDE), respectively. Moreover,

assume that problem (VP) is KT -E-invex on Ω ∪ YE . Then x = y, that is, E(x) is a weak
E-Pareto solution (an E-Pareto solution) of the problem (VP) and

(
y, τ , ξ

)
is a weakly efficient

solution (an efficient solution) of a maximum type for the problem (VDE).

Proof. Proof of this theorem is similar to that of Theorem 31.
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5. Concluding remarks
In this paper, a new class of nonconvex (not necessarily) differentiable vector optimization
problems has been defined. Namely, the concept of a KT -E-invex vector optimization problem
in which all involved functions are E-differentiable has been introduced. The sufficiency of the
so-called E-Karush-Kuhn-Tucker optimality conditions have been derived for such nonconvex
nondifferentiable multicrtieria optimization problems under assumptions that they are KT -E-
invex at an E-Karush-Kuhn-Tucker point. In order to illustrate the results established in the
paper, the suitable examples of KT -E-invex optimization problems have been presented. By
the help of these examples, we have shown that the sufficient optimality conditions established
in the paper are applicable for a significantly wider class of E-differentiable vector optimization
problems in comparison to E-differentiable multicriteria optimization problems with E-invex
functions introduced by Abdulaleem [7] and/or KT -invex functions introduced by Osuna-Gómez
et al. [26]. Moreover, the so-called vector Mond-Weir E-dual problem has been defined for the
considered (not necessarily) differentiable vector optimization problems. Then, several E-duality
theorems have been established between the considered (not necessarily) differentiable vector
optimization problems and its vector E-duals under KT -E-invexity hypotheses.

However, some interesting topics for further research remain. It would be of interest to
investigate whether it is possible to prove similar results under KT -E-invexity hypotheses
for other classes of E-differentiable vector optimization problems. We shall investigate these
questions in subsequent papers.
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