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Abstract

The purpose of this paper is to explore the concept of asymptotic (respectively exponential) regional boundary detectability in connection
with the characterizations of sensors. We consider a class of parabolic distributed systems and we give various results related with different
types of measurements, of domains and boundary conditions. We also present some original results concerning diffusion systems which
allow the possibility to construct an asymptotic (respectively exponential) regional boundary observer. © 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The important problem of detecting distributed parameter
systems has received much attention in the literatures ([1]
and references therein) in order to determinate the asymp-
totic (respectively exponential) state of the considered sys-
tems. These systems are the general representation of several
physical systems described by partial differential equations
or differential equations with delays [2]. Many works are
devoted to the study of control problems of systems [3].
Later, the notion of asymptotic (respectively exponential)
regional w-detectability was developed by Al-Saphory and
El Jai [4,5] and was concentrated the detection in a part w of
the domain 2 by using characterizations of sensors. In this
paper, we study the concept of asymptotic (respectively
exponential) regional boundary detectability, in the case
of a given region I located on the boundary 0f2. Moreover,
we show that there is a link between this notion and the
number of sensors, their locations and the geometrical
domains. Section 2 concerns the formulation problem,
considered systems and strategic sensors. In Section 3,
we introduce regional boundary detectability problem. Then
we study the relationship between this notion and regional
boundary observability and sensors structures. Thus, we
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show that the asymptotic (respectively exponential) regional
boundary detectability on I can be extended from asymp-
totic (respectively exponential) regional detectability in .
In Section 4, we give an application to diffusion system and
in Section 5, we characterize an asymptotic (respectively
exponential) regional boundary observer on I' by the use of
asymptotic (respectively exponential) regional boundary
detectability on I" and we present an application of these
results.

2. Problem formulation

We consider a parabolic distributed parameter system and
we suppose that the following assumptions are given:

e An open regular and bounded set Q@ of R" with smooth
boundary 0Q.

e A non-empty subset I' C 0€2, with positive measurement.

e For a given T >0 let us set 2=0x]0,00[,0 =
002x]0, co].

e Separable Hilbert spaces X, U, (), where X is the state
space, U the control space and ( is the observation space.
We consider X =H'(Q), U=L*0,00,R”) and
O = L?(0,00, R?), where p and g hold for the number
of actuators and sensors.

e A second order linear differential operator A which gen-
erates a strongly continuous semi-group (S4()),s on the
Hilbert space H'(Q) and is self-adjoint with compact
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resolvent. The considered system is described by the
following parabolic equation:

Ox
5 (&,1) = Ax(&, 1) + Bu(t),
x(£,0) = xo(),

% (77’ t ) =0,
where Q holds for the closure of Q and x(&, 0) is supposed to
be in H' (Q) and unknown. The system (2.1) is defined with a
Neumann boundary condition, dx/dv holds for the outward
normal derivative. The measurements may be obtained by
the use of zone, pointwise or lines sensors which may be
located inside of © (or on the boundary 0€Q) (see [1,6]). Then
the output function can be written in the form

2(-,1) = Cx(-,1) 2.2)

where the operators Be€ Z(U,H'(Q)) and C¢
Z(H'(Q), 0) depend on the characterization of actuators
and sensors employed with u € L?(0,00,U) and z €
L?(0, 00, ©). The system (2.1) has a unique solution given by

@2.1)

@ Ol ts

x(&,1) = Sa(t)xo(&) + /OZSA(I — 7)Bu(t) dt (2.3)

The problem is how to detect asymptotically (respectively
exponentially) the current state on I', by using structures
sensors, i.e. to construct an asymptotic (respectively expo-
nential) estimation to the restriction of the state x(&,7) to I'.
We recall the following:

e A sensor is defined by any couple (D,f), where D, a
non-empty closed subset of Q, is the spatial support of
the sensor and f defines the spatial distribution of the
sensing measurements on D. Let us consider the following
points:

o The operator K defined by

K : H'(Q) — L*(0,00, R?)

x — CSs(0)x 24)

and in the case of internal zone sensors is linear and
bounded with an adjoint

K* : [2(0,00,R?) — H'(Q)

= [Sa(0)C (1) de 2.5)

o The trace operator of order zero
7o s H'(Q) — H'?(0Q)

is linear, subjective and continuous with adjoint
denoted by vy

o A subregion I" of 0Q and let y be the function defined
by

1 H'?(09Q) — HYA(I)

(2.6)
X —=)Ar = x|r

where x| is the restriction of the state x to I". We denote
by y;- the adjoint of yr.

o The operator Hy : L*(0, 00, R?) — H'/?(I') is given by
Hr = yr70K”

o The autonomous system associated to Egs. (2.1) and (2.2)
is said to be exactly (respectively weakly) regionally
boundary observable on I’ if

ImH = H'(I')  (respectively InH = H'/?(I))

e The suite (D;,f;), <<, of sensors is said to be I'-strategic if
the system (2.1) together with the output function (2.2) is
weakly regionally boundary observable on I" [7]. For the
dual results concerning the actuators structures, see [8—12].

3. Asymptotic (respectively exponential) regional
boundary detectability

The main reason for introducing asymptotic (respectively
exponential) regional boundary detectability in a given
region I is (see Fig. 1), the possibility to observe asympto-
tically (respectively exponentially) the current state of the
original system. This work is an extension of [5].

3.1. Definitions and characterizations

o The semi-group (S4(f)),~, is said to be asymptotically
(respectively exponentially) stable on the space H'/? (09Q),
if for every initial state xo € H'(2) the solution x corre-
sponding to the autonomous system associated to Eq. (2.1),
converges asymptotically (respectively exponentially) to
zero as ¢ tends to co. It is easy to see that the system (2.1)
is exponentially stable on 0Q if and only if, for some
positive constants M and «, we have

| voSa(®) [l < Me™, V=0

If (S4(7)),>¢ is an asymptotically (respectively exponen-
tially) stable semi-group on H'/2(9Q), then for all
xo € H'(Q), the solution of the associated autonomous
system satisfies

lim || X ||H]/2(89): lim || ’yOSA(l>)C0 HH]/Z(ag): 0 (31)
t—00 1—00

e The system (2.1) is said to be asymptotically (respectively
exponentially) 0Q-stable, if the operator A generates a
semi-group which is asymptotically (respectively expo-
nentially) stable on H'/2(9Q). In the finite dimensional

measurements

Fig. 1. How to detect regional boundary state on I'.
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linear systems, the concept of exponential boundary
stability is equivalent to asymptotic boundary stability.
It is not the case if the state space X is infinite dimen-
sional.

e The system (2.1) together with the output (2.2), is said
to be asymptotically (respectively exponentially) 0Q-
detectable, if there exists an operator Hpg = y,K* :
O — H'?(0Q) such that A — HyoC generates a strongly
continuous semi-group (Sg,,(f)),~, Which is asymptoti-
cally (respectively exponentially) stable on H'/?(0Q).

o If a system is asymptotically (respectively exponentially)
boundary detectable, then it is possible to construct an
asymptotic (respectively exponential) boundary observer
for the original system. If we consider the system

D (6.0 = Av(E ) + Bulr)
+H39(Z('7t) - Cy(éa t))v 2
¥(&0) = yo(&), Q (3.2)
Oy B
a(’??t) = 07 e

then y(&,¢) estimates asymptotically (respectively expo-
nentially) the state x(&,f) because the error e(&,t) =
x(&, 1) —y(&, 1) satisfies Je/0t(E,1)=(A — HpaC)e(E, 1)
with e(&,0) = xo(&, 1) — yo(&,1). Then if the system is
asymptotically (respectively exponentially) boundary
detectable, it is possible to choose Hyqo which realizes
lim,_m || e ||H‘/2(GQ): 0.

e The system (2.1) together with the output function (2.2) is
said to be asymptotically (respectively exponentially)
boundary observable if there exists a dynamical system
which is an asymptotic (respectively exponential) bound-
ary observer for the systems (2.1)—(2.2).

Remark 1. In this paper, we only need the relation (3.1) to
be true on a given subregion I" of the boundary 0Q:

[lgglc | x ||H1/2(r): tlgglo | 2rvoSa(t)xo ||Hl/2(r): 0 (3.3)

We may refer to this as asymptotic (respectively exponen-
tial) regional boundary stability on I" (or I'-stability).

Definition 1. The system (2.1) is said to be asymptotically
(respectively exponentially) regionally boundary stable on
I', if the operator A generates a semi-group which is
asymptotically (respectively exponentially) regionally I'-
stable.

Definition 2. The system (2.1) together with the output
function (2.2) is said to be asymptotically (respectively
exponentially) regionally boundary detectable on I" (or I-
detectable) if there exists an operator

Hr: 0 — HY*(I')

such that A — HrC generates a strongly continuous semi-
group (S, (t)),~o which is asymptotically (respectively

exponentially) stable on H'/?(I'). Hence, the following
are clear:

1. A system which is exponentially regionally I'-detect-
able, is asymptotically regionally I'-detectable.

2. A system which is asymptotically (respectively expo-
nentially) regionally [I'-detectable, is asymptotically
(respectively exponentially) regionally I'j-detectable,
for every subset I'; of I'.

However, one can deduce the following important results.

Corollary 1. If a system is exactly regionally observable in
, then it is asymptotically (respectively exponentially)
regionally observable in ©.

Corollary 2. If the system (2.1) together with output func-
tion (2.2) is exactly regionally I'-observable, then it is
asymptotically (respectively exponentially) regionally I -
detectable.

From this result, we can easily deduce that there exists
y > 0 such that

| CSa()x lz01.0)= 7 | 2rv0Sa @) [[mr2(rys
Vx € H'(I)

Thus, the notion of asymptotically (respectively exponentially)
regionally I'-detectability is a weaker property than the exact
regional observability on I'. For more details, see [4,5,17].

3.2. Sensors and regional boundary detectability

In this section, we study the relation between internal and
boundary regional detectability by using various sensors and
we give a sufficient condition of I'-detectability.

3.2.1. Preliminaries

In this subsection, we present a method which allows the
detection of the current state x(&, #) on I', based on the internal
regional detectability. This method is an extension to [1,5].
Suppose that the measurements are given by different sensors,
may be pointwise and zone (internal or on the boundary 0%2).
For the considered systems, we can show that it is possible to
link internal regional detectability and regional boundary
detectability on I'. In this case, we consider the following:

e The extension operator (see [13]).
% :H'?(0Q) — H'(Q)
is continuous, linear and is defined by
Yo Rh(E 1) = h(é 1), Vh e H'Y?(0Q) (3.4)

e Let r >0 be an arbitrary and sufficiently small real
number and let

E= UB(x,r) and o, =ENQ

xel
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Sensors

Fig. 2. Domain Q, subdomain ®,, considered region I" and sensors.

where B(x, r) is the ball of radius r centered in x(&, ¢), and
I' is a part of @ (Fig. 2).

Proposition 1. If the system (2.1) together with output
function (2.2) is asymptotically (respectively exponentially)
regionally @,-detectable, then it is asymptotically (respec-
tively exponentially) regionally I'-detectable.

Proof. Let x(¢,1) € H'/?(I') and X(&, ¢) be an extension to
H'/2(0Q). So, using Eq. (3.4) and the trace theorem, there
exists #x(¢,t) € H'(Q) with a bounded support such that

Yo(#x(C, 1) = X(E, 1) (3.5)

Since the systems (2.1)—(2.2) is asymptotically (respectively
exponentially) regionally w,-detectable, then it is asympto-
tically (respectively exponentially) regionally w,-detectable
[5]. Thus, there exists an operator y, K*: 0 — H'(w,)
defined by

H(U,Z(', t) = Xw,K*Z('v t)

such that A — H,, C generates a strongly continuous semi-
group (S, (1));>o which is asymptotically (respectively
exponentially) stable on H!(w,). For every z € (), we then
have

Yo, K25 1) = 10, 2%(E, 1)

and hence

21r (7010, K°2) (-, 1) = x(&, 1) (3.6)
Consequently there exists an operator

Hr = 11 (0010, K'2) : O — Hl/z(r)

such that A — HpC generates un semi-group (Sg, (7)),
which is asymptotically (respectively exponentially) stable
on H'/2(I'). Finally, the systems (2.1)~(2.2) is asymptoti-
cally (respectively exponentially) regionally I'-detectable.

3.2.2. Sufficient condition for I'-detectability

In this section, we characterize the concept of asympto-
tically (respectively exponentially) I'-detectability in con-
nection with sensors structures as in [5]. For that purpose, we
consider the system (2.1) with measurements taken by g
sensors. The output (2.2) is given by z(¢) = zi(1), ..., z4(1).

In the case of pointwise sensors, z;(t) = x(b;, t) with b; € Q

for 1<i<gqg, and in the case of zone sensors,
zi(1) = fDix(é,t)fi(é) d¢ with D; C Q. For boundary zone
sensors, we have z;(t) = frix(n, 1)fi(n) dn with I'; C 02, for
1 <i<gq. Assume that there exists a complete set of
eigenfunctions (¢,) of A, associated to the eigenvalues /;
with a multiplicity m; such that m = sup,; m; is finite. For
E=(&,...,¢)€eQ and i=(i1,...,0y) €IN", let
E=(&,...,&_1)and i = (iy,...,i,_1). Suppose that the
functions (y;) defined by Y:(&) = yxr709:(€), is a complete
setin H'/2(I"). If the system (2.1) has J unstable modes, then
we have the following result.

Theorem 1. Suppose that there are q sensors (Dj,f;),<;< g
and that the spectrum of A contains J eigenvalues with non-
negative real parts. The system (2.1) together with the output
function (2.2) is I'-detectable if and only if

l.g>m
2. rank G; =m;, Yi,i=1,...,J with
(@), fi)p, (zone sensor)
G =Gy =1 ¢;(bi) (pointwise sensor)
(@j.fi)r, (boundary zone sensor)
where j=1,...,m,.

Proof. For brevity, the proof is limited to the case of zone
sensors. In this case, the output function (2.2) is given by

a() = [ x@0A(e) az 6

Under the assumptions in Section 2, the system (2.1) may be
decomposed into the following forms:

%(m — A (¢,1) + PBu(r), 2

)51(570) = x1,(&), Q (3.8)
X1 o

E('%f) =0, (]

where x; (&, t) is the component state of the unstable part of
the system (2.1) and

% (&,1) = Apxs(E,1) + (I — P)Bu(t), 2

32(570) = x5, (&), Q (3.9)
2%) o

g('%f) =0, o

where x, (&, t) is the component state of the stable part of the
system (2.1), where P and I — P are the projections of the
unstable (respectively stable) subsystems of Eq. (2.1). Thus,
the state vector may be given by x(&,1) = [x(&,1) x2(&,1)]"
and the operator A; is represented by a matrix of order
(L mi, S0 m;) defined by Ay = diag[2i,. .., A1, 20, .. .,
A2y...2yy...,4j) and PB = [G],G],...,G}]. By using the
condition (2) of this theorem, we deduce that the suite
(Di,fi)1<i<, Of sensors is I'-strategic for the unstable part
of the system (2.1), the subsystem (3.8) is weakly regionally
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boundary observable on I', and since it is finite dimen-
sional, then it is exactly regionally boundary observable
on I'. Therefore, it is asymptotically (respectively exponen-
tially) regionally I'-detectable, and hence there exists an
operator H! such that A; — H-C which is satisfied the
following:

M}, > Osuch that || |z < Mbe 0, v
and then we have

| x1 g2y < Mp e 0 vr

Since the semi-group generated by the operator A, is
asymptotically (respectively exponentially) regionally
boundary stable, then there exist M%, oc% > 0 such that

_ w2
%2 ey < M50 | (1= Pxg ey

t
o2 (11
+/OM%6 DT = Phxo eyl ule) | de

and therefore x(&, t) converges to zero as t — co. Thus, the
system (2.1) together with the output function (3.7) is
asymptotically (respectively exponentially) regionally I'-
detectable.

Reciprocally, if the system (2.1) together with the output
function (3.7) is asymptotically (respectively exponentially)
regionally I'-detectable, there exists an operator Hp €
L (L*(0,00,R?), H'/2(I')), such that A — HrC generates
a strongly continuous semi-group (Sy, (7))~ asymptoti-
cally (respectively exponentially) regionally I'-stable on the
space H'/(I'), then there exists My and o > 0 such that

I 25908t (0) N2y < Mp e

Thus, the unstable subsystem (3.8) is asymptotically (respec-
tively exponentially) regionally I'-detectable. Since this sub-
system is of finite dimensional, then it is exactly regionally
boundary observable. Therefore, Eq. (3.8) is weakly region-
ally observable and hence the suite (D, fi), <, of sensors
is I-strategic, i.e. [Kyjy;x* =0 = x* = 0] [14]. For x* €
H'2(I'), we have

j=1

J
Kyorr<" = (Ze“tw’jv"/SX?X*>r<<Pj7ﬁ>D,->
1<i<q

If the suite (D, fi)<;< <, of sensors is not I'-strategic for the
unstable system (3.8), there exists (x* # 0) € H'/?(T'), such
that Kygxrx* = 0, this leads

J
Z (Xrvo®y,x

J=1

(pjafl>D - 0

The state vectors x; may be given by

Xi = [<w17X*>F<¢17X*>Di]T #0

we then obtain Gyx; = 0 foralli € {1, ...
rank G; # m;, Vi.

,J} and therefore

Remark 2. From this theorem, we can deduce the
following:

1. The number of sensors is greater than or equal to the
largest multiplicity of the eigenvalues.

2. The multiplicity of the eigenvalues may be reduced to
one [15]. Consequently, an asymptotically (respectively
exponentially) regionally I'-detectability can be guaran-
teed by using one sensor.

4. Applications to diffusion systems

In this section, we consider the distributed diffusion
systems defined on Q. We explore various results related
to different types of measurements, domains and boundary
conditions. However, if we suppose that

o2
E ¢ 10 “4.1)

then m = 1 and one sensor may be sufficient for I'-detect-
ability. The considered systems may be described in the
following forms.

Case of a rectangular domain Q =10,0[ % |0, B[:

2

Ox
5(617627 ) 861 (617627 )
2,
, aéz (él7£2a )+x(617627t)7 2
X

a(’hﬂ?zﬁ) =0, >0 (42)

x(81,62,0) =x0(&1, &), Q
with measurements obtained by the output function given as
inEq. (2.2). Let I'=]0, o[ x {f} be aregion of |0, o[ x ]0, ]

with o = ¢, + [, and f = &, + L. In this case, the eigen-
functions of the dynamic of the system (4.2) for Dirichlet
boundary conditions, are given by

2 & &
ij == — - 4.3
Ui, 2) = o <m a) cos <Jn ; 43
the associated eigenvalues are
) 2
hij = = (a—z + 2,—2) m? (4.4)

Case of a disk Q = D(0,1):
Ox >’x

E(rvevt) 62(r0[)
2
+§0’§ (r,0,1) +x(r,0,1), 2 (4.5)
x(1,0,1) =0, 0 €10,2n], t>0
x(r,0,0)  =xo(r,0), Q

In this case, I' = D(1,0;),.,., is a region of 0Q with
0; € [0,2n]. Thus, the eigenfunctions and eigenvalues
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concerning the dynamic of the system (4.5) are given by

dj=—P, >0, j>1 (4.6)
where f3;; are the zeros of the Bessel functions J; and
Yo;(r, 0) = Jo(Byr), Jj=>1
Vi, (r,0) = Ji(By,r) cos(il), i,j1>1 4.7)

Lj2=1

1//ij2(r, 0) = J,'(ﬁljzr) sin(if),

with the multiplicity m; = 2 for all i,j # 0 and m; = 1 for
i,j = 0. It is necessary therefore to consider at least two
sensors (D, fi)y<;<,» Where D; = (r;,0;),-;c, in order to
detect the system on I'. If we consider the case of Dirichlet
or mixed boundary conditions, we obtain different functions.
We give some practical examples, the results follow from
symmetry considerations.

4.1. Case of a boundary sensor

This section concerns the locations of the boundary
pointwise (respectively zone) sensor for ensuring I'-detect-
ability.

4.1.1. Pointwise sensor

Consider the system (4.2) with Neumann boundary con-
ditions. We then study the following cases.

Case of Fig. 3:

Suppose that the sensor (b, dp) is located on b = (by,0).
The output function is given by

()= [ sl 080 = brom) i (43)
Thus, we obtain the result.

Corollary 3. [f the sensor support b € 0%, then the systems
(4.2)—(4.8) is [I'-detectable if there exists an integer
i,1 <i<J such that 2iby /o is even.

Case of Fig. 4:
We consider the system (4.5) together with the output
function

zi(t):/ x(1,0,0)f(1,0,)d0;, 0<0; <27, t>0 (4.9)
oQ

P
B

0 ey

Fig. 3. Rectangular domain, region I" and location b of boundary
pointwise sensor.

Fig. 4. Circular domain, region I' and locations cj,c, of boundary
pointwise sensors.

where i = 2, ..., q. The eigenfunctions and eigenvalues are
given as in the Eqs. (4.6) and (4.7) with multiplicity m; = 2
for i,j # 0 and m; = 1 for all i,j = 0. In this case the I'-
detectability is required at least two pointwise sensors may
be located at the polar coordinates ¢; = (1,0;), where
0; € 10,2n] and 2 < i < g. We have the following result.

Corollary 4. The systems (4.5)—(4.9) is I'-detectable if for
every i,1 <i<J,i(0, — 0)/n is not an integer.

4.1.2. Zone sensor

Let us consider the system (4.2) with the Neumann
boundary conditions and output function (2.2). We study
this case with different geometrical domains.

Case of Fig. 5:

Now the output function (2.2) is given by

z(t) = /r x(M1,m2, 0)f (01, 1m) dipy dipy

where I'y C 0R is the boundary support of the sensor and
f € L*(Iy). In the case where the support of the sensor (D, f)
is on one side (see Fig. 5), i.e. supp (f) = {0} x [, — 11,
1y, — 2] = I'o, then we have the following corollary.

(4.10)

Corollary 5. If the function f is symmetric with respect to
Ny =1,,, then the system (4.2) together with the output
function (4.10) is I'-detectable if there exists an integer
i,1 <i<J such that in,, /a is even.

_ When the support of the sensor is on two sides, i.e.
=107, + 4] x {0} U{0} x [0,75, + L] = ' UT",
where I" C 0Q (see Fig. 5). We obtain the following result.

0\ Q 1:\ Q

0 0
a§1 o F,l

Fig. 5. Domain @, region I' and locations I'y, I of boundary zone sensors.
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Fig. 6. Domain €, region I' and locations I'j,I, of boundary zone
SEnsors.

Corollary 6. Suppose that the function f| r, is symmetric
with respect to 1, =1, k = 1,2. Then the system (4.2)
together with the output function (4.10) is I'-detectable if
there exist two integer i,j, 1 < i,j < J such that 2in, /o and
2ii,, /B are even.

Case of Fig. 6:
Here, we consider the system (4.5) with the output
function

() = [ 3(1,0,0/(1,0) 0,

0<0,<2rm, t>0 @.11)

In this case, it is necessary to have at least two boundary
zone sensors (I';, f;),<;, with I'; = (1,6;) and if the func-
tion |, is symmetric with respect to 6 = 0; as in (Fig. 6).
So, we have the following corollary.

Corollary 7. The system (4.5) together with the output
Sfunction (4.11) is I'-detectable if for every i, 1 <i<J,
i(6) — 6,)/m is not an integer.

4.2. Case of an internal sensor

4.2.1. Internal pointwise sensor

This section concerns the locations of the internal point-
wise (respectively zone) sensor may be discussed in the
following cases.

r
B
b
- Q
bz—~-
0 bi (IE"I

Fig. 7. Domain Q, region I" and locations b of internal pointwise sensors.

Case of Fig. 7:
The system (4.2) is augmented with the following output

z(t) = /X(flafza 1)0(&1 — by, & — by) A&y d&y (4.12)
Q

where b = (by, b,) is the location of the pointwise sensor in

Q, defined as in Fig. 7. Then we obtain the following result.

Corollary 8. If the sensor is located in b = (by,b,), then
the systems (4.2)—(4.12) is not I'-detectable if there exists
i,j € {1,...,J} such that ib, /o and jb, /o are integers.

Case of Fig. 8:
Consider the system (4.5) with the output function defined
by

ar) = / (i, 00, i, 01) dr O,
Q

1
0§0i§2n, O<ri<§

where 2 < i < g and ¢ > 0. The sensors may be located in
c)p = (I"],Q]) and ¢, = (r2,92) € Q (see Fig. 8).

4.13)

Corollary 9.

1. The systems (4.5)—(4.13) is I'-detectable if there exists
i,j €{l,...,J} such that i(0y — 0;) /% is an integer.

2. If ry = ry, the systems (4.5)—(4.13) is not I'-detectable if
there exists i,j € {1,...,J} such that i(0; — 0,) /7 is an
integer.

4.2.2. Filament sensors

We consider the case where Q =]0,a[x]0,[ and
I' =]0,a[x{f} C 0Q. If the observation recovered by the
filament sensor (¢, &, ), where ¢ = Im(I'g) with I’y € C'(0, 1)
(Fig. 9), then we have the following corollary.

Corollary 10. Ifthe curve o is symmetric with respect to the
line & = &, the systems (4.2)—(4.12) is not I'-detectable if
there exists i,j € {1,...,J} such that i&, /o and j&,, /B are
integers.

Fig. 8. Domain , region I' and locations c;,c; of internal pointwise
Sensors.
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0 {;0 o EJl

Fig. 9. Domain Q, region I" and location ¢ of internal filament sensor.

4.2.3. Internal zone sensor
In this case different domains are considered.
Case of Fig. 10:
The output function (2.2) can be written in the form

(1) = /Dx(éla52J).f(f1752)df1d§2 (4.14)

where D C Q is the location of the zone sensor and
f € [*(D). In this case (Fig. 10), the eigenfunctions and
the eigenvalues are given, respectively, in the Egs. (4.3) and
(44). If the measurement support is a rectangle
D =&, —Nh,&, + 1] x[&, — b, &, + ], we then have
the following result.

Corollary 11. Suppose that f; is symmetric with respect to
&k = &iy k = 1,2. The system (4.2) together with the output
function (4.14) is not [I'-detectable if there exists
i,j€{1,...,J} such that i&, /o and j&,, /B are integers.

Case of Fig. 11:

Consider the system (4.2) augmented by the following
output function:

alt) = / x(rs, 00, ) (13, 0,) dr; 46,
D;

1
0<0;<2m, 0<ri<5 2<i<q (4.15)

I
B
Dy Q
0 o {;1

Fig. 10. Domain ©, region I" and location D of internal zone sensor.

Fig. 11. Domain @, region I" and locations Dy, D, of internal zone sensors.

where D; = (r;, 6i)2§i§q C Q is defined as in (Fig. 11). In
this case, for the regional detectability in I', at least two zone
sensors are required. Thus, we have the following result.

Corollary 12. Suppose that f; and D;, are symmetric with
respectto 0 = 0;,foralli,2 < i < q. Then the systems (4.5)—
(4.15) is not I'-detectable if there exists i,j € {1,...,J}
such that io(6, — 6,) /7 is an integer.

Remark 3. The results given in this paper, can be extended
to the case of Dirichlet boundary conditions as in [5]. In the
next section, we illustrate an application regional boundary
observer to this case.

5. I'-observer and I'-detectability

In this section, we give an approach which allows to
determinate a regional asymptotic (respectively exponen-
tial) estimator of Tx(&, ¢) on I', based on the I'-detectability.
This approach derives from Luenberger observer type as
introduced in [16]. For that purpose, we recall some defini-
tions concerning the regional boundary observer on I' (see

[17]).
5.1. Definitions and characterizations

Definition 3. Suppose that there exists a dynamical system
with state y(&,f) € Y (a Hilbert space) given by

%(5, 1) =Fry(&,t) + Gru(t) + Hrz(-,t), 2
¥(£,0) = yo(&), g 6D
y(l’],t) =0, o)

where F generates a strongly continuous semi-group which
is asymptotically (respectively exponentially) regionally I'-
stable on the space Y, Gr € £(U,Y) and Hr € £(0,7Y).
The system (5.1) defines an asymptotic (respectively expo-
nential) regional I'-estimator for 7 = y7,Tx if the follow-
ing conditions hold:

1' limtﬂoo[Trx(évt) - y(éa t)] = Oa é S F
2. Tr maps D(A) into D(Fr), where x(&, 1) and y(&,¢) are
the solutions of Egs. (2.1), (2.2) and (5.1).
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Definition 4. The system (5.1) specifies an asymptotical
(respectively exponential) observer in I" (or I'-observer) for
the system (2.1) together with the output function (2.2) if the
following conditions hold:

1. There exists Rr € £(0,H"*(I')) and Sp € L (H'/*(T))
such that RC + SrTr = Ir.

2. T]"A — F]"Tr = GI"C and Hr = TrB

3. The system (5.1) defines an asymptotic (respectively
exponential) regional I'-estimator for Trx(&,¢).

Definition 5. The system (5.1) is said to be an identity I'-
observer for the system (2.1) together with the output
function (2.2) if Tr = Ir and X =Y.

Definition 6. The system (5.1) is said to be a reduced-order
a I'-observer for the system (2.1) together with the output
function 22) if X=0@Y.

Definition 7. The system (2.1) together with the output
function (2.2) is an asymptotically (respectively exponen-
tially) regionally I'-observable if there exists a dynamical
system which is I'-observer for the original system.

Proposition 2. Suppose that the system (2.1) together with
output function (2.2) is an asymptotically (respectively
exponentially) regionally I'-detectable then, the dynamical
system

D (1) = Av() + Bult) ~ Hr(CHE0) ~2(0), 2
¥(£,0) =0, Q
y(nvt) =0, (%

5.2)

is a I'-observer of the systems (2.1) and (2.2), if
lim[x(&,1) —y(& 0] =0, el

Proof. Let
¢(€a t) = X(é, t) - y(év t)

where y(&, ) is the solution of the system (5.2). Deriving the
above equation and using the Egs. (2.1) and (5.2), we obtain

1910 Ox Oy
E(fﬁ) :5(570 *E(fﬂ) = (A—HrC)¢(&,1)

The system (2.1) is I'-detectable, there exists an operator
Hr € #(0,H'*(I')), such that A — HrC generates a
strongly continuous semi-group (Sy,(f)),-, which is I'-
stable on H'/2(T'), that is N

M, ar >0suchthat || xryoS, (t) g2y < Mr e vy

Finally, we have

1 1y I 290w (0) Ny | bo (1< M e b |
(5.3)

with ¢ (&) = x0(&) — yo(&), and hence Eq. (5.3) allows the
following result:

lim(&0) (&0 =0, €T

The dynamical system (5.2) may be considered as an
(identity) I'-observer for the system (2.1)—(2.2) without
needing the stability on I' of the system (2.1).

Thus, the following statements are clear:

1. A system which is exactly regionally boundary ob-
servable on I, is asymptotically (respectively exponen-
tially) regionally boundary I'-observable.

2. A system which is asymptotically (respectively expo-
nentially) observable in @, is asymptotically (respec-
tively exponentially) regionally boundary I'-observable.

3. A system which is asymptotically (respectively expo-
nentially) regionally boundary I'-observable, is asymp-
totically (respectively exponentially) regionally
boundary I'j-observable for every subset I'y of I'. For
more details, see [5,17].

5.2. Application to I'-observer for diffusion systems

Consider the case of two-dimensional distributed para-
meter diffusion system defined in Q =]0,1[x]0, 1] and
described by

O (1 tat) = yAE Eot) Fx(Er, ), 2

x(¢1,62,0) = x0(&1, &), Q

x(’/’1>7]27t):07 t>0

5.4

where v is a real number and the above system represents the
heat-conduction problem (see [18]). and (&, ;) is a real-
valued function. Let I =]0, 1{x{0} be a subregion of 9Q
and suppose that there exists a sensor (b,0,) with
b = (b1,by) €]0, 1[x]0, 1] (see Fig. 12).

Thus, the augmented output function may be written in the
form

z(t) = x(b, 1) (5.5)

The eigenfunctions of the operator (yA + vl) for the Dirich-
let boundary conditions are defined by

V;(&1,&) = V2sinin(by)

0 ro, |:§1

Fig. 12. Domain €, region I" and sensor location b = (by,b,).
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associated with the eigenvalues
lij = v —yitn?

Thus, using Remark 3, the system

0
gﬁ(é],@,r) = 9A(E), & 1) +0y(E1, 1)

_HF(Cy(élv éth) - Z(t))7
y(élai%o) :}’0(51752);
y(”la"th) :07 ()

is a I'-observer for the systems (5.4)—(5.5) if this system is
I'-detectable, that means that ib; is not an integer and then
we have

lim[x(&, 1) = y(& 0] =0, ¢er

2 (56
Q

6. Conclusion

The concept developed in this paper is related to the
asymptotic (respectively exponential) regional boundary I'-
detectability, in connection with the sensors characteriza-
tions, based to the internal asymptotic (respectively expo-
nential) regional w-detectability. A sufficient condition for
this concept has been presented and applied to diffusion
distributed systems in various situations of structures sen-
sors. Moreover, these results are extended to the boundary
Dirichlet conditions and applied to the case of an asympto-
tical (respectively exponential) I'-observer. The dual results
concerning the choice of actuators structures for the regional
boundary stabilizability is under consideration.
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