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Abstract  

 In the present work, we extend the Hermann and Al-Rashid  works to the problem of 
particle in a double oscillators potential. In this problem, one can  take a special case when 
oscillation quantum number (ν ) is none negative integer. Computer programming is built to 
make numerical simulations to this problem. The probability density of finding particle in a 
double oscillators potential is calculated without using Schrödinger equation or any conventional 
quantum mechanics. This probability is compared  with probability of conventional quantum 
mechanics. 
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Introduction 
               Hermann [1] shows 

quantum behavior of particle in a box [2,3] 
by a numerical simulation process to fractal 
position equation of this problem without 
using Schrödinger equation and any 
conventional quantum mechanics .This 
approach is based on Scale Relativity 
Theory by Nottale [4,5,6,7].  Al-Rashid [8] 
extended Hermann’s work to other quantum 
systems such as : Finite square well , simple 
harmonic oscillator and double well 
potentials. Al-Rashid [8] found that there 
was a connection between Scale Relativity 
Theory and Riccati equation [8,9], in 
addition he showed the quantum behavior of 
these quantum systems. 

                The model of double 
oscillators potential by consideration two 

masses 1m  and 2m , constrained to move in a 
straight line and connected with each other 

by a spring whose force constant is k  and 
whose length at equilibrium is q . The scalar 
potential of this problem is 

2)(
2
1 qxku −=

 [10],  as shown in 
fig.(1),where .This  example comes from 
molecular physics . There , one frequently 
encounters motion in the neighborhood of a 
state equilibrium configuration, 
approximated by harmonic potential [ 10 ]. 

                In the present work, we will 
apply Hermann[1] and Al-Rashid [8] 
approach  to solve equation of motion and 
reveal  quantum behavior of double 
oscillator potential without using 
Schrödinger equation and any conventional 
quantum mechanics. The aim of the present 
work is extending  Hermann and Al-Rashid 
works to another quantum system in one-
dimensional  by calculation probability 
density of finding particle in a double 
oscillator potential so that these results will 
be compared with the results of conventional 
quantum mechanics. 
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Solution of Equation of Motion 
     Nottale [4,5,7] , in his theory (Scale 

Relativity), rewrites Newton’s fundamental 
equation of dynamics by complex forms  
such as: 

           
Vmu

dt
ð

=∇
                    -----

-----(1) 
where u is scalar potential ,V is 

complex velocity which is define as 
iUvV −=  where v is classical velocity  

and U is an imaginary part of complex 

velocity  , and dt
ð

 is complex derivative 
operator [4,5,6] which is 

∆−∇+
∂
∂ iD

t V .
 where D is diffusion 

constant , m
D

2
η

=
. 

As for Hermann [1] and Al-Rashid 
[7] works , one may start from eqn.(1) to 
solve equation of motion of double oscillator 
problem but here replacing µ→m  , 

where µ  ( )/( 2121 mmmm +=µ ) is reducing 
mass. By using the definition of complex 
velocity, one can separate eqn.(1) in two real 
and imaginary parts as[1,7]: 
                        

⎪⎭

⎪
⎬
⎫

=
∂

−∇=∇−∆−

0

).(

U
dt

uUUUD           
---(2) 

2nd equation of eqn.(2) shows that 
the imaginary part of complex velocity 
depends on position only [1].Eqn.(2) can be 
written in one-dimensional as: 

)(1))(
2
1)(( 2 xu

x
xUxDU

xx ∂
∂

=+
∂
∂

∂
∂

µ   --(3) 

then, by integration, one obtains: 

   )(1)(
2
1)( 1

2 xucxUxU
x

D
µ

=++
∂
∂

    ----(4) 

where  c1  is a constant of integration. 
The constant of integration was defined by 

Hermann [1] and Al-Rashid [8] as µ/E  
where E is the total energy of system.  
Eqn.(4), then, becomes:  

)(1)(
2
1)( 2 xu

DD
ExU

D
xU

x µµ
=++

∂
∂

  -----(5) 

By rearrangement of eqn.(5) and 

using the definition of  µ2
η

=D
 , eqn.(5) 

becomes: 

 ))((2)()( 2 ExuxUxU
dx
d

−+−=
ηη

µ
-----(6) 

 eqn.(6) has the form of Riccati 
equation [8,9] as Al-Rashid found [7]. 
Riccati equation can be solved by 
transforming it into a 2nd  order differential 
equation [8,9] which is: 

 0)()()( 2 =+′′ xyxgrxyr         ----(7) 

where  

  
)(
)(1)(

xy
xy

r
xU

′
−=     ---------(8) 

and  )(xy  is an arbitrary  function of  x . 

From eqn.(6), one can define:     

))((2)(; Exuxgr −=−=
ηη

µ
-----(9) 

By using eqns. (7),(8) and (9), eqn.(6) 
becomes: 

0)())(2)( 22

2

=−− xyExuxy
dx
d ( 

η
µ

--(10) 

Now, for the problem of double 
oscillator potential , the potential is 

( )2

2
1)( qxkxu −=

for οuE < [10] . Then, 
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eqn.(10) can be written as:                   

( ) 0)()((2)( 22
22

2

=−−− xyEqxxy
dx
d ωµµ

2
1 

η --(11) 

where  
2ωµ=k  , ω  is angular 

frequency. Here, there are two cases 
depending on x value which are [11]: 

for x is positive , then, eqn.(11) 
becomes: 

) )(2)(()( 2
2

2

22

2

2

xyExyqxxy
dx
d

ηη
µωµ

=−− --(12) 

Let   

0)()2( ;2
1

>−= xforqxz
η
µω , 

eqn.(12) becomes: 

 )(1)(
4

)(
2

2

2

zyEzyzzy
dz
d

ωη
=− ----  (13) 

Total energy for oscillator is defined as , 

)
2
1( += νων ηE [10], then, one can write 

eqn. (13) as: 

  0)()
4
1

2
1()( 2 =−++′′ zyzzy ν ----(14) 

This equation is called Weber 
differential equation [11] which has even 
and odd  solutions : 

for even solutions ,the solution is [11]: 

   )
2
1;

2
1;

2
()( 2

114
1

2

zFezy
z ν−

=
−

  ---(15) 

from the table [12], the confluent 

hypergeometric function is : 

)()
4
1exp(2)

2
1;

2
1;

2
( 22

1
2

11 zzzF ν
ν D

−

=
−

--(16) 

then, eqn.(16) becomes: 

        )(2)( 2
1

1 zzy νD 
−

= ----(17) 

where )( zνD  is parabolic cylinder 
function [11]. By using eqn.(8) ,one can 

writte:  
)

)(
)(

()( dz
z
z

zU
ν

ν

µ D
D ′

=
η

  ------(18) 
From recurrence relations [11]: 

)()(
2
1)(' zzzz 1-DDD νν νν +−=

 --
-(19) 

then eqn.(18) becomes: 

  
dz

z
z

zzU )
)(
)(

2
1()( 1

ν

νν
µ D

D −+−=
η

--
----(20) 

Finally, we can write )(xU  for 
double oscillator in this case as : 

    

dx
x
x

qxxU )
)(
)(

2)(()( 1

ν

νν
D

D −+−−=
--(21) 

where 1=== ωµη . 
In special cases, one can consider ν  

is a nonnegative  integer n ,then, can  reduce 
nD  to   [11]: 

)()
2

(2)( 442

22

zHeezHz en

zz

n

n

n

−−−

==D
-

(22) 

where )(zH n is a Hermit polynomial 

and )(zH en  is modified Hermit polynomial. 
Then, eqn.(21) becomes: 

0)
)(
)(

2)(()( 1
1 >

−
−

+−−= − xfor
qxH
qxH

nqxxU
n

n

--(23) 
if  one compare eqn.(23) with Al-

Rashid’s work [8] for simple harmonic 
oscillator, we can see that eqn.(23) goes to 
simple harmonic when q=0.This is similar to 
Ψ wave function which goes to simple 
harmonic when q=0 in conventional 
quantum mechanics[10]. 
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(ii)      the odd solutions for 0>x  
take a similar way for even solutions, then 
one can write [11]: 

)
2
1;

2
3;

22
1()( 2

114
2

2

zFezzy
z ν

−=
−

---(24) 
and from table[12] , one can find 

[12]: z
z

ezF
z

2
)(

)
2
1;

2
3;

22
1( 42

11

2

νν D
=−

  --
-(25) 

This leads to : 

         
)(

2
1)(2 zzy νD=

       ------(26) 
so: 
       

dz
z
z

zzU )
)(
)(

2
1()( 1

ν

νν
µ D

D −+−=
η

 
which is similar to even solutions. 

Again, for special cases when ν  is non-
negative integer, one can writ : 

0)
)(
)(

2)(()( 1
2 >

−
−

+−−= − xfor
qxH
qxH

nqxxU
n

n

-(27) 
Eqn.(27) , is exactly eqn.(23). 
(b)    the solutions for  0<x  are in 

similar way for 0>x  , then,  )(xU  is: 

0)
))((
))((

2)(()( 1 <
+−
+−

++−= − xfor
qxH
qxH

nqxxU
n

n

--(28) 
for even and odd solutions. 
Nottale [4,5,6], proves that the 

position vector x (t) is assimilated into a 
stochastic process which satisfies the 
relation, so Hermann [1] and Al-Rashid [7] 
found that : 

         

⎪
⎪
⎭

⎪⎪
⎬

⎫

<+=

>+=

−−

++

)(0)()()(

)(0)()()(

backwarddtfortddtxUtdx

and
forwarddtfortddtxUtdx

ξ

ξ

-- (29) 

where dξ(t) is  a random variable of 
Gaussian distribution and is of width 

dtD2 [1].By using values of  )(xU  ,one 
can write : 

0)())
)(
)(

2)((()( 1 >+
−
−

+−−= − xfortddt
qxH
qxH

nqxtdx
n

n ξ --(30) 

and  

0)())
))((
))((

2)((()( 1 <+
+−
+−

++−= − xfortddt
qxH
qxH

nqxtdx
n

n ξ - (31) 

Numerical Simulations  
As Hermann [1] and Al-Rashid [8], 

eqns. (30) and (31) represent a stochastic 
process. Here, in the problem of double 
oscillators , it was found that the assumption 
2Ddt=1 is not useful for the present 
simulations since it gives bad results for the 
present application. Then, one starts to 
adjust the value of dt until one approaches a 
specific value for which meaningful results 
are obtained. It was found that a value of 

dt=10-3( η
m

) is suitable for the present 
simulations [8]. It seems that this value of dt 
is related to the period of the motion in the 
double oscillators potential. It is expected 
that a suitable value which gives meaningful 
numerical simulation results is that which 
leads to a sufficient number of time steps 
during one period so as to give meaningful 
counts. This is a consequence of the 
statistical nature of these simulations which 
requires better statistics to be meaningful. 
Then, eqns. (30) and (31) become: 

010)1,0(10))
)(
)(

2)((()( 331 >×+×
−
−

+−−= −−− xforN
qxH
qxH

nqxtdx
n

n

--(32) 
and  

010)1,0(10))
))((
))((2)((()( 331 <×+×

+−
+−

++−= −−− xforN
qxH
qxHnqxtdx

n

n

--(33) 
where N(0,1) is a normalized random 

variable [1] and 1=== ωµη . 
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The numerical simulations were 

performed using eqns. (32) and (33). The 
output of these simulations give the 
probability density ƒ( x ) of the presence of 
the particle in the double oscillators 
potential. These simulations were done by 
dividing the box of size a  into 1200 pieces 
and counting the number of time steps the 
particle is in each specific sub box. In 
scheme, the x  position in the one-
dimensional box is drawn horizontally, and 
number of occurrences vertically. The 
results are then compared with conventional 
quantum mechanics [10] which also 
approximate in this special case( n→ν ) 

into  
2

2

)(2

2
)(

2

))((2))((

))((2))(())((

qx
n

n

qx

n

n

n

eqxHqxP

and

eqxHqxqx

−−−

−−−

−=−

−=−=−Ψ D

   -
- (34) 

for  0>x  and  

2

2

)(2

2
)(

2

))((2))((

))((2))(())((

qx
n

n

qx

n

n

n

eqxHqxP

and

eqxHqxqx

+−−

+−−

+−=+

+−=+−=+Ψ D

  --- (35) 

for 0<x  ,where 1=== ωµη and 
P is probability in conventional quantum 
mechanics. 

 
This comparison is by calculating the 

standard deviation σ and the correlation 
coefficient ρ which are defined as [1]: 

N

ifiP
N

i
2

1 ))()(( −
=

∑ =

σ
 ------ (36) 

and

2
1

2
1i

1

)ƒƒ(i)())((

)ƒ ƒ(i))()((

><−><−

><−><−
=

∑∑

∑

==

=

N

i

N

N

i

PiP

PiP
ρ

-- (37) 

where N is the number of pieces(no. 

of boxes) , P( i ) ≡ P( x ) and f( i ) ≡ f( x ). 
In this work, the results of applying a 

computer program built following the 
Hermann [1] and Al-Rashid [7] approaches 
are presented. Fig.(2) shows a first attempt 
of modeling for n = 0 and 1 when q = 4. 
Here, the time step(cc) has been chosen as 
108. The numerical simulations start with 
arbitrary point which is x =2 . The 
continuous curves indicate the results of the 
present simulations and the dashed curves 
the results of conventional quantum 
mechanics. The output of the simulations 
was normalized by multiplying it with a 
constant  z whose value depends on the 
number of divisions of the region (here, 
z=50) In these figures, there is a clear 
difference between the present results and 
the results of quantum mechanics, that is 
measured by σ (approaching zero) and ρ 
(approaching one ). 

There are three ways to improve the 
results suggested [1,7]. They are:  

using more steps in time . 
restarting the simulation after many 

steps in time with a new starting position . 
This leads to a better thermalization of the 
system . 

increasing numbers of  pieces (boxes). 
Fig. (3) shows the improved results 

obtained in the present work with n=0 and 
n=1 when q= 4 for 108 steps by using the 
thermalization process, starting points(ss) 
are 25 and 31. The convergence between the 
simulation results and conventional 
quantum mechanics is clear by the values of 
σ and ρ. 

Fig. (4) shows the improved 
numerical results by increasing the number 
of steps time for n=0 to cc=5*108. It was also 
found that, in the present problem, 
convergence between the results of 
numerical simulations and those of 
conventional quantum mechanics can be 
improved by increasing the number of 
boxes. This is clear in Fig. (5), where it 
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appears that there is better agreement 
between the two results for n=0 when the 
number of boxes was increased to 2200. 

  To test our work the numerical 
results go may back to simple harmonic 
oscillator results when q=0 [10]. Fig.(6) 
shows the numerical results for n=0 and 1, 
which coincide with simple harmonic 
oscillator results by Al-Rashid [7]. 
Discussion and Conclusion 

 The present work was an attempt to 
expand the works of Hermann [1] and Al-
Rashid [8] by performing similar 
simulations for other quantum-mechanical 
problems not treated by them or by others. 
However, as it appears from the work in this 
paper which is considering a special case for 
ν  is non-negative integer, there are many 
difficulties that should be overcome to 
obtain meaningful results that can be 
compared with conventional quantum 
mechanical results. On the mathematical 
side, Riccati equation has helped in solving 
some of these difficulties[7]. While, on the 
numerical side, special attempts to optimize 
the solution parameters for the problems 
treated in this paper were needed to obtain 
the required results.  

In this paper, Quantitative correct 
prediction of the behavior of a quantum 
particle in a double oscillators one-
dimensional potential can be obtained 
without explicitly writing the Schrödinger 
equation nor using any conventional 
quantum axiom[1,7]. It can be concluded 
from the present work that this fact is even 
correct for one-dimensional quantum 
mechanical problems. This leads one to 
conclude from the present work that Scale 
Relativity is a well-founded theory for 
deriving quantum mechanics from the 
concept of fractal space-time. 
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Fig.(1)  Potential for a double oscillator [10]. 
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(b) 

Fig. (2) Probability density for a particle in a double oscillators potential (a) n= 0 and (b) n= 1, 
without thermalization process. 

n = 0   a =1200  q=4  cc=108    x =2   σ =0.1489  ρ=0.9757 

n = 1   a =1200  q=4  cc=108   x= 2   σ =0. 0558  ρ=0.9758 

  2

2
1 kqu =ο
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(b) 

Fig.(3) Probability density for a particle in a double oscillators potential (a) n=0 and (b) n=1 with 
thermalization process. 
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Fig. (4) Probability density for a particle in a double oscillators potential with n=0 for longer 

time steps (cc=5×108). 
 

n = 0   a =1200  q=4  cc=108   ss= 31   σ =0. 0454  ρ=0.9993 

n = 1   a =1200  q=4  cc=108   ss= 25   σ =0. 0174  ρ=0.9989 

n = 0   a =1200  q=4  cc=5*108   x= 2   σ =0. 0418  ρ=0.9993 
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Fig. (5) Probability density for a particle in a double oscillators potential with n=0 after 

increasing the number of boxes.   
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(b) 

Fig. (6) Probability density for a particle in a double oscillators potential (a) n=0 and (b) n= 0 

when q=0. 

n = 0   a =2200  q=4  cc=108   x= 2   σ =0. 0353  ρ=0.9994 

n = 0   a =1200  q=0  cc=108   ss= 31   σ =0. 0209  ρ=0.9998 

n = 1   a =1200  q=0  cc=108   ss= 25   σ =0. 0230  ρ=0.9998 
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 الخلاصة

تـم فـي هذا البحث توسيع عمل هيرمان والراشد لأنظمه كميه أخرى وهو حركة جسيم في جهد توافقي ثنائي ، وفي هذا                              

فقد بني برنامج حاسوبي لغرض     . عدد صحيح غير سالب   ) ν(الـنظام تم اخذ حاله خاصة والتي يكون فيها العدد التذبذبي الكمي             

كثافة الاحتمالية لهذا الجسيم تم حسابها عن طريق المحاكاة العددية من دون استخدام             .ية لهذا النظام    أجراء عمليه المحاكاة العدد   

معادلة شرودينجر أو أي فرضية من فرضيات ميكانيك الكم، وتم مقارنه هذه الاحتمالية مع الاحتمالية التي تم الحصول عليها من                    

 .ميكانيك الكم

 
 


