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ABSTRACT
The main objective of this paper is to develop the Bayesian analysis for Constant Stress
Accelerated Life Test (CSALT) under time censoring scheme of  the Generalized Logistic
(GL) Failure times. The power law function is used to represent the relationship between
the stress and the scale parameters of a test unit. Bayes estimates are obtained using
Markov Chain Monte Carlo (MCMC), simulation algorithm based on Gibbs sampling.
Then, Monte Carlo error (MC error), credible intervals, and predicted values of the two
scale parameters and the reliability function under design stress are obtained. Numerical
illustration is addressed for illustrating the theoretical results. Win-Bugs software package
is used for implementing Markov Chain Monte Carlo (MCMC) simulation and Gibbs
sampling.

KeyWords:Accelerated Life Test; Constant Stress; Time Censoring; Power Law Function,
Bayesian Method; Generalized Logistic Distribution; Markov Chain Monte Carlo; Gibbs
Samples, Win-Bugs.

1. INTRODUCTION
Inmany industrial fields, the need for highly reliable components and

materials are widely required for long-term performance. In particular, the

extremely high reliability is essential in aviation and aerospace industries

and also strongly required in automobile industry, electronic industry,

semiconductor industry, and many others in the fields beyondengineering,

such as medical science. The high reliability, however, brings about

unacceptable length of time and cost of product life testing experiments
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under use-condition since many such products are usually operated for years

or more without failures. In Accelerated Life Testing (ALT) components

and materials are tested under more severe conditions (or stresses) than use-

condition and thus induce early failures; i.e., it provides significant

reduction in time and cost of reliability testing.

There are two types of ALT: Constant-Stress ALT (CSALT) and Step-

Stress ALT (SSALT). In constant-stress ALT the units are placed only

under one higher than normal stress level, i.e, stress applied to the products

is time-independent. Test units are subjected at a constant, higher-than-usual

level of stress until either all units fail (without censoring) or the test is

terminated, resulting in censored test data. Commonly all available test data

obtained from ALT is used in analysis of life data. However, the obtained

data may be incomplete or it may include uncertainty about the failure time.

Therefore, life data could be separated into two categories: complete (all

failure data are available) or censored (some of failure data are missing).

Complete data consist of the exact failure time of test units, which means

that the failure time of each sample unit is observed or known. In many

cases when life data are analyzed, all units in the sample may not fail. This

type of data is commonly called censored or incomplete data. Due to

different types of censoring, censored data can be divided into time-

censored data and failure-censored data. Time censored data is also known

as type I censored. This type of data is usually obtained when censoring

time is fixed, and then the number of failures in that fixed time is a random

variable. Data are failure censored (or type II censored) if the test is
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terminated after a specified number of failures, where, the time to the fixed

number of failures is a random variable. Considering the censoring type,

constant-stress ALT can also be divided into time censored CSALT and

failure-censored CSALT. In this paper, time-censored CSALT is

considered.

Generalized Logistic Distribution (GLD) is useful family of distributions in

many practical situations. There are some who argue that the GLD is an

inappropriate for modeling lifetime data because the left-hand limit of the

distribution extends to negative infinity. This could conceivably result in

modeling negative times-to-failure. However, provided that the distribution

in question has a relatively high scale parameter and a relatively small

scale parameter , the issue of negative failure times should not present

itself as a problem, [Mathai and Provost (2004)]. The probability density

function of the GLD of Molenberghs and Verbeke [3], has the following

form( ) = (1 + ) ( ) , − ∞ < < ∞, , ,> 0 … (1)
where the parameters , are referred to as the two scale parameters

and the shape parameter of  the GLD. The reliability function of Eq.(1) is

given by ( ) = (1 + ) , − ∞ < < ∞, , , > 0
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For the special case = = = 1 , the GLD is the standard logistic

distribution. For = 1, = is the Type-I GLD.  Moreover, many

distributions can be obtained by making some transformations on the pdf

(1), for = is the generalized log logistic distribution. For =, = is the Burr III distribution. For = , = is the

generalized Burr XII distribution.

The maximum likelihood method of estimation of distribution parameters

assumes that the parameters are unknown, but fixed. The Bayesian

approach, however, assumes that the parameters are random, and

uncertainties on the parameters are described by a joint prior distribution,

which is formulated before the failure data are collected, and is based on

historical data, experience with similar products, design specifications, and

experts’ opinions. The capability of incorporating prior knowledge in the

analysis makes the Bayesian approach very valuable in the reliability

analysis because one of the major challenges associated with the reliability

analysis is the limited availability of data. Inference on the model

parameters is made in terms of probability statements, which are conditional

on the observed data .

The Bayesian approach has not been widely applied to analyze data from

CSALT.  Achcar [5] used Bayesian approach and assumed non-informative

priors for the parameters of the exponential, Weibull, Birbaum-Saunders,

and Inverse Gaussian distributions. He You [4] used Bayesian approach to

estimate the parameters of the exponential distribution under different priors

and different censoring schemes. Zhong and Meeker [9] estimated the
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parameters of Weibull distribution assuming log-normal prior density. Liu

and Tang [8] constructed a sequential CSALT scheme and its Bayesian

inference using Weibull distribution and Arrhenius relationship. Aly and

Bleed [2] developed  Bayesian analysis for  CSALT under Type-II

censoring scheme with inverse power law model.

The inference on each parameter ( , , ) is based on its marginal

posterior density. To obtain the marginal posterior densities,multiple levels

of integration are necessary. So, Markov chain Monte Carlo (MCMC)

simulation is the easiest way to get reliable results without evaluating

integrals, Gelman, et al. [1].

A MCMC algorithm that is particularly useful in high dimensional problems

is the alternating conditional sampling called Gibbs sampling. Each iteration

of the Gibbs sampling cycles through the unknown parameters, drawing a

sample of one parameter conditioning on the latest values of all the other

parameters. When the number of iterations is large enough, the samples

drawn on one parameter can be regarded as simulated observations from its

marginal posterior distribution. Functions of the model parameters, such as

the pth percentile of the lifetime distribution at the normal stress condition

can be conveniently sampled. Posterior inference can be computed also

using sample statistics.

In this paper, it is assumed that the test is done at high constant

stresses , = 1, 2, … , where < < < ⋯ < , and be the

normal stress. A total of units are divided into , = 1, 2, … , units
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where = ∑ , and the stress affected on the two scale parameters of

the GLD. Then, the scale parameters and at the stress level , =1, 2, … , of a test unit is a power law function of stress which is defined by

Eq.(2), see Mann, Schafer and Singurwalla [6],= , = 1, 2; = 1, 2, … , … (2)
Where , and constants to be estimated. Let , = 1, 2, … , be the

life times of units put to test under model (1). Then under time censored

data, where the test is terminated at a pre-specified censored time the

likelihood function of this censored is given by

= 1 + ( )

. 1 + … (3)
Such that, = 1 , ≤0, >

2. THE BAYES ESTIMATORS
The likelihood function of Eq.(3) under the power law function of Eq.(2)

can be re-written as
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= 1 + ( )

. 1 + … (4)
and the log-likelihood function of Eq.(4) will be

= ln +ln +2 ln
+ − (
+ 1) ln(1 + )
− 1 − 1 +

The Bayesian inference for two cases will be presented as follows:

Case I: If  the parameters and are unknown, then the natural family of

the conjugate prior of is taken as the Gamma distribution with probability

density function,
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( ) ∝ , , > 0, > 0
and  the natural family of the conjugate prior of given is taken as

Gamma ( , ), then the prior density for and is given by( , ) ∝ ( ) , , , , > 0, , > 0 … (5)
Therefore, the posterior density of and given based on Eq.(4) and

Eq.(5) is given by( , ⁄ )
∝ ( ∑ ∑ ) . [ . ∗ . . ∗ ] … (6)
Where,

= , ∗ = , = ,
= 1 + ( )

,

∗ = 1 + .
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Complicated integrations are often analytically intractable for Eq.(6). So,

Markov Chain Monte Carlo (MCMC) simulation is the easiest way to get

reliable results Gelman, et al. [1].  Through the MCMC approach, a sample

of the posterior distribution can be used to obtain the Bayes estimators of

and . From the sample, approximations of moments and an approximation

of the posterior distribution may be derived using Gibbs sampling. Gibbs

sampling is used to draw a random sample of the parameters and from

their own marginal posterior distribution π( /t), and π(p/t), respectively,

then estimate the expected value of the parameters and using the sample

mean. Therefore Bayesian estimate of the scale parameter and the

reliability function ( ) at the mission time under the normal stress

can be obtained.

Case II: If  the parameters and are unknown, then the natural family of

conjugate prior of is taken as the Gamma distribution with probability

density function,( ) ∝ , ℎ, > 0, > 0 … (7)
and  the natural family of conjugate prior of given is taken as Gamma( , ), then the prior density for and is given by( , ) ∝ ( ) , , , , > 0, , > 0 … (8)
Therefore, the posterior density of and given based on Eq.(4) and



Journal of Humanities and Applied Science (JHAS) Issue No. (28) June 2016

- 175 -

Eq.(8) is given by

( , ⁄ ) ∝ ( ) . [ . ∗ . . ∗ ] … (9)
Where, . ∗ . . ∗ are defined in Eq.(6). Similarly, MCMC  simulation

is used to get reliable results of the Bayes estimator of the parameters , ,

under the normalstress and ( )at the mission time and under the

normal stress . Win-Bugs is used, a specialized software package for

implementing MCMC simulation and Gibbs sampling.

3. NUMERICAL ANALYSIS
1.Consider four accelerated stress levels = 2, = 3, = 4, =5, and = 1.

2.Assume that the test is terminated at a specified failure times , =1, 2,3, 4 where 1 = 11, 2 = 25, 3 = 33, 4 = 39.
3.Accelerated life data from the GLD are generated using Math-Cad

software.

4.The K-S test is used for assessing that the data set follows the GLD.

5.The posterior estimation of the parameters by applying Bayesian are

gotten using generating data of the GLD under CSALT time censoring.

6.The parameters of interest are estimated as well as the scale parameters

and the reliability function under normal stress are predicted.

The Case of unknown and

1.Start with three Markov chains with different initial values ( = 0.05,= 0.05), ( = 0.05, = 0.001), ( = 0.05, = 0.15).
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2.Assume that the values of ( 2, ) are known and set ( = 0.05,= 0.5) .

3.Assume the prior of is Gamma (0.5, 0.75).

4.The conditional distribution of given is Gamma (0.5, 0.05).

5.Run 15,000 iterations for each Markov chain.

6.The trace plots of and for 15,000 iterations are presented in Figure

(1).

Figure 1: The trace plots of and [case I]

7. To check convergence: Gelman-Rubin convergence statistic, R, is

introduced, Figure (2) shows that the Gelman-Rubin statistic of ( , ) are

believed to have converged, i.e., R is close to be one, Luo [7].

Figure 2: The Gelman-Rubin convergence statistic of and [case I]
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8.The sampling results of the unknown parameters and : it can be

generated showing posterior mean, median and standard deviation with a

95% posterior credible interval, see Table (1).

TABLE 1: THE SAMPLING RESULTS AND [CASE I]

Parameter Mean S.D MC error 2.50% Median 97.50%

0.6631 0.9341 0.004168 6.804E-4 0.2979 3.333

10.12 14.47 0.07214 0.01057 4.542 51.22

9.The estimated values of and ( ) under the normal stress : the

estimated values of the scale parameter under the normal stress  is 0.6631,

and notes that the reliability function decreases when the mission time

increases, see Table (2).

TABLE 2: THE SAMPLING RESULTS OF AND ( ) [CASE I]

Parameter
( )

=3 =2 =1 =0.05 =0.005

Mean 0.66310 0.744600 0.813500 0.894100 0.952000 0.953300

S.D 0.93410 0.286400 0.223700 0.116500 0.002205 0.000204

MC error 0.00417 0.001326 0.001014 0.000518 0.000010 0.000001

Median 0.29790 0.896400 0.920000 0.938800 0.952800 0.953400

2.50% 0.00068 0.021310 0.112100 0.512800 0.945700 0.952700

97.50% 3.33300 0.953400 0.953400 0.953400 0.953500 0.953500
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10. The accuracy of the posterior estimate:  The accuracy is calculated in

terms of Monte Carlo standard error (MC error) of the mean according to

Gelman, et al. [1]. The simulation is  run until the MC error for each node is

less than 0.05 of the sample standard deviation.

11. According to point (10), also the rule of MC error has been achieved in

this paper. Table (1)  and Table (2) show that , the MC error for each node

is less than 0.05 of the sample standard deviation.

12. The shape of the posterior density of ( , ) can be shown from Figure

(2).

Figure 3: The posterior density of and [case I]

The Case of unknown and

1.Start with three Markov chains with different initial values ( = 0.15,= 0.5),( = 0.15, = 0.01), ( = 0.15, = 0.15).
2.Assume that the values of ( , ) are known and set ( = 0.05, =0.5) .

3.Assume the prior of is Gamma (0.15, 0.05).

4.Assume the conditional distribution of given is Gamma (0.05, 0.15).
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5.Run 15,000 iterations for each Markov chain.

6.The trace plots of and for 15,000 iterations are presented in Figure

(4).

Figure 4: The trace plots of and [case II]

7.To check convergence: Figure (5) shows that the Gelman-Rubin statistic

of ( , ) are believed to have converged, i.e., R is close to be one, Luo

[7].

Figure 5: The Gelman-Rubin convergence statistic of and [case II]

8.The sampling results: it can be generated showing posterior mean, median

and standard deviation with a 95% posterior credible interval, see Table (3).
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TABLE 3: THE SAMPLING RESULTS AND [CASE II]

Parameter Mean S.D MC error 2.50% Median 97.50%

3.021 7.861 0.03564 2.73E-10 0.1198 25.73

0.3418 1.538 0.007162 5.176E-32 3.559E-6 3.875

9.The estimated values of and ( ) under the normal stress : the

estimated values of the scale parameters under the normal stress  is 2.6830,

and notes that the reliability function decreases when the mission time

increases, see Table (4).

TABLE 4: THE SAMPLING RESULTS OF AND ( ) [CASE II]

Parameter
( )

=3 =2 =1 =0.05 =0.005

Mean 2.6830 0.82360 0.83020 0.83660 0.84270 0.84300

S.D 7.2710 0.19390 0.18940 0.18490 0.18060 0.18040

MC error 0.0335 0.00085 0.00083 0.00081 0.00079 0.00079

Median 0.0810 0.91530 0.92330 0.93060 0.93700 0.93730

2.50% 8.50E-11 0.43790 0.44770 0.45770 0.46710 0.46760

97.50% 23.6800 1.00000 1.00000 1.00000 1.00000 1.00000

10. The simulation is  run until the MC error for each node is less than 0.05

of the sample standard deviation.

11. According to point (10), also the rule of MC error has been achieved in

this paper. Table (3) and Table (4) show that , the MC error for each node is

less than 0.05 of the sample standard deviation.
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12. The shape of the posterior density of ( , ) can be shown from Figure

(6).

Figure 6: The posterior density of and [case II]
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