PAPER • OPEN ACCESS

Annual Committed Effective dose as a result of daily Consumption of Medicinal Herbs in Iraq

To cite this article: Abdulhussein A Alkufi et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 928 072054

View the article online for updates and enhancements.

This content was downloaded from IP address 37.236.142.3 on 19/11/2020 at 12:29

Annual Committed Effective dose as a result of daily **Consumption of Medicinal Herbs in Iraq**

Abdulhussein A Alkufi^{*1}, Shatha F. Alhous² and Shaymaa A. Kadhim³

^{1,2} Physics Department, Education faculty for Girl, University of Kufa, Al-Najaf, Iraq ³ Physics Department, Faculty of Science, University of Kufa, Al-Najaf, Iraq

*E-mail : husseinalkuf@gmail.com

Abstract. Knowledge Expertise of radioactivity levels in the human diet is very important to estimating potential radiological risks to human health. During this research gamma ray spectroscopy technique was used to measure the awareness and amount of the annual effective dose (Eave) due to Uranium, Thorium and Potassium and the lifetime risk factor for cancer (ELCR) in forty samples, of the most widely used medicinal herbs in Iraq and evaluation of ingested doses through herbs consumption, the estimated total annual effective dose received of Uranium, Thorium and Potassium due to the population's consumption of medicinal herbs ranges (0.0124-0.9632) with a mean (0.1502), (0.0024-5.7334) with a mean (0.4750), (0.8324-7.9970) with a mean (2.9349) in units (μ Sv/y) respectively, while the lifetime risk factor for cancer was ranges (0.0291-0.2798) with a mean (0.1026). All results indicate that they are within the permissible limits for medical and food use, and when comparing the results with IAEA publications and international and Arab research, it was found that they are significantly less than the permissible global range and therefore do not pose a threat to human health also can be considered as database of these herbs in the future.

Keywords: NORMs, herbs, Gamma spectroscopy, Iraq, ELCR.

1. Introduction

All living organisms, including plants, are constantly exposed to ionizing radiation resulting from natural radioactive sources. Therefore, the search for natural radioactivity has always receives great attention, see figure 1. the dose from The natural sources of radiation are the surface of the sun, cosmic rays, radionuclides of terrestrial origin found in the Earth's crust, building materials, water, air, and food of different types as well as the human body itself, the exposure to these nuclides varies greatly according to geographical location and according to food habits but some exposures are almost constant, as ingestion of Potassium-40 in foods. And cosmic rays are more effective at higher places, while Uranium and Thorium concentrations, it increases in local regions. The concentrations of radionuclides differ as a result of the different activities carried out by humans, especially building materials, as well as the ventilation system for homes greatly affects the level of radon gas and its degradation products which contributes greatly by inhaling it [1,2,3]. Medicinal herbs have played an important role in the past decades in human life, and through experience man was able to recognize their properties through their taste, some herbs were found that cause diseases and others treat diseases. The first herbal medical book to appear in China in 2700 BC. The book "The Classic Herbal" was trusted by medicinal herbs. As for the old Babylon, it was, Information relating to plants used in medicine is recorded on mud and stone cylinders, It is estimated that there are more than 350,000 plants in nature, and very few drugs have been scientifically studied for plants, which has led to serious and active active study and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{H}})$ of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

interest in plants, Its side effects are well known [4,5]. This seems to be a common problem Where there are a number of studies related to radioactivity in medicinal plants locally and globally using state nuclear track detectors (SSNTDs), and gamma-ray spectrometry such as high purity germanium (HPGe) detector and Sodium Iodide NaI (Tl) detector, but to our knowledge, no study has yielded Ingestion effective dose of medicinal herbs in 40 sample. [4,6,7,8,9,10] the aim of this work is to develop and a continuation of our previous work that studied the activity of Uranium-238, Thorium-232 and Potassium-40 in various models of medicinal herbs in Iraq and given the importance of medicinal herbs in medical treatment and food, where as it was benefiting from that previous work in extraction. [11] this study was conducted to find out Annual Committed Effective dose, risk cancer due in medical herb and the extent of its impact on human health.

Figure 1. The transport of radioactive elements from the soil to plants

2. Materials and methods

2.1. Collection samples

A total of 40 samples were collected randomly of medicinal herbs used in najaf city, Iraq from the local market and were conducted listed in table 1 according to the originator of each herb, with some medical uses mentioned in table 2.

No	ID	Common name	Scientific name	Part used	Country
1	P01	Ziziphus	Ziziphus spina-Christi L.	Leaves	
2	P02	Bepper mint	Mentha piperita L.	Leaves	
3	P03	Roselle	Hibiscuc sabddariffa L.	Flowers	
4	P04	Myrtle	Myrtus Communis L.	Leaves	Iraq
5	P05	Colocynth	Citrullus colocynthis (L.) Shradc	Fruits	
6	P06	Chicory	Cichorium intybus L.	Roots,Stalk &leaves	
7	P07	Aelchenan	Anabasis	Leaves	
8	P08	Ginger	Zingiber officinale Roscoe.	Roots	
9	P09	Black cumin	Nigella sativa L.	Seeds	
10	P10	Grea plantain	Plantago major L.	Peel fruits &seeds	
11	P11	Rose-Mallow	Althaea rosea L.	Flowers	India
12	P12	Sage	Salvia Officinalis	Leaves	
13	P13	Corn Mint	Mentha hapolcaltt	Aerial parts	
14	P14	Fenugreek	Trigonella foenum-graecum L.	Seeds	

15	P15	Hons	Humulus Lubulus L	Peduncle	
16	P16	Safflower	Carthamus tinctorius	Flowers	
17	P17	Blinko	Ocimumba silicum	Seeds	
18	P18	Yarrow	Achillea nillefolium (Forssk)Sh-Bin	Aerial parts	Iran
19	P19	Alkanet	Borago officinalis	Flowers	
20	P20	Flax	Linum Usitatissimum L	Seeds	
21	P21	White cedar	Thujaoccidentalis	Fruits	
22	P22	Bay leaves	Laurus nobilis	Leaves	Svria
23	P23	Chamomile	Matricaria chamomilla L.	Flowers	oynu
23	P24	Balanitea	Balanites aegyptiaca (L.) Del	Fruits	
25	P25	Horse tail	Fauisetium arvense L	Aerial parts	Egynt
26	P26	Cyperus	Cyperus esculentus	Seeds	1657
23	P27	Senna	Cassai senna L	Leaves	
28	P28	African rue	Ruta chalepensis L	Aerial parts	Saudi
29	P29	Nutgrass	Cyperus rotundus L.	Roots & leaves	Suudi
30	P30	Stout bien	Angelica archangelica L	Each herb	
31	P31	Leaf mustard	Brasica nigra (L.) Koch	Seeds	China
32	P32	Green tea	Camellia sinensis	Leaves	China
33	P33	Maidenhair fern	Abiantum capillus-Veneris L	Leaves & Stalk	
34	P34	Hawthorn	Crataegus spp	Leaves	USA
35	P35	Rose of jericho	Anastatica Hierochuntica L	Branches	Palestine
36	P36	Mahleh	Prunus vinginiana	Seeds	Azerbaijan
37	P37	Coltsfoot	Tassilago Farfar	Leaves & flowers	North Asia
38	P38	Primrose	Drimula vularia I Elowara		west Asia
20	D20	Sweet maria	Origanum mainrang	A orial parts	Middle oost
39	P 39	Decomposition	Driganum majvrand	Aerial parts	Maditarrangen ege
40	P40	Rosemary	Kosmarinus officinaiis L.	Aeriai parts	wiednen anean sea

Table 2. Uses of medicinal herps sample

No	ID	Medicinal uses
1	P01	Relieves muscle pain, joints, soothing nervousness, gums, teeth, asthma and chest problems
2	P02	Joints, rheumatism, antibacterial, reduce blood pressure, calm nerves, get rid of nervousness
3	P03	It reduces blood pressure, strengthens the heartbeat, stimulates digestion, relieves pain
4	P04	Cystitis, gland inflammation, respiratory problems, epilepsy, migraine, appetite suppressant,
5	P05	Intestinal problems, stimulates the work of the kidneys, anti-inflammatory
6	P06	Liver, kidneys, nausea, eye infections, strengthening the heart muscle and blood with iron
7	P07	Dermatology, respiratory disease, diuretic, leprosy, liver disease
8	P08	Relieve rheumatic pain, joints, muscles, headache and anti-inflammatory
9	P09	Cancer, ulcers, diabetes, high blood pressure, kidney infections, skin diseases and colon
10	P10	A good balm to the skin, reduces itching and irritation, sun protection, burn infections
11	P11	Minor wounds and burns, leg ulcers, treat cracks and irritation of the mucous membranes
12	P12	Improve digestive system performance, colic, diarrhea, and reduce blood sugar
13	P13	It fights breast and colon cancer, lowers blood pressure, treats fungal infections
14	P14	Reduces blood sugar, reduces harmful triglycerides, anabolic and milk-producing
15	P15	Anti-bloating, appetite-regulating, digestive, calming nerve, helps sleep
16	P16	Heart disorders, joints and bones, melts thrombosis, lowers cholesterol, stimulates the liver
17	P17	It cleans blood, reduces thirst, gives body vitality, maintains balance, headache, migraine
18	P18	Obesity, infections of the female reproductive system, bone, chest pain, respiratory system
19	P19	It breaks up sand and gravel in the body, treats kidney infections, treats stomach infections
20	P20	Reduces weight, relieves constipation, reduces heart disease, and protects against cancer

21	P21	It protects sensitive areas, vaginal diseases, hemorrhoids, varicose veins, and diarrhea
22	P22	Teeth cleaning, good for heart, blood circulation, improves digestion, diabetes, relieves pain
23	P23	Cold, peptic, calming and analgesic, respiratory infections, skin infections
24	P24	Immunosuppressant, a stimulant for body organs, expelling various waste and impurities
25	P25	Urinary tract infection, kidney and bladder stones, wound healing, fluid retention, gout
26	P26	digestivetreatment, it benefits sexual health, headache, itchy skin and eye diseases
27	P27	Chronic headache, migraine, skin diseases, regulate liver and gallbladder function
28	P28	Worms and gases repellent, blood diseases, damaged hair, uterine diseases, anti-spasticity
29	P29	Fever, headache, cardiovascular disease, lithotripsy, nausea and vomiting
30	P30	Aids digestion, promotes sexual health, good for skin and healthy hair
31	P31	Relieves colds, relieves back pain, joints, rheumatism, infections, and loses appetite
32	P32	StresStimulating the nervous system, improving heart health, preventing malignant diseases
33	P33	Intestinal colic, spleen, bronchitis, impotence, urinary tract, thyroid, anemia, scabies
34	P34	Angina, heart failure, atherosclerosis, hypotensive, migraine pain and cancer prevention
35	P35	Improve fertility for women, uterine diseases, acne, and enlarged prostate
36	P36	Long hair, as well as thickening and strengthening, helps protect it from hair fall
37	P37	Coughing, treating the respiratory system, relieving inflammation
38	P38	Get rid of pimples, acne, prevent skin diseases, delay signs of wrinkles, control blood sugar
39	P39	Brain and head diseases, nervous system stimuli, antispasmodic, coughing, choleretic
40	P40	Prevents blood clotting, tonic for the nerves, anti-inflammatory, depression and spasmodic

2.2. Preparation samples.

After collecting forty samples of herbs available in the Iraqi markets, these samples were put into sealed polyethylene bags and then transferred to the radiation detection and measurement laboratory in the physics department, Education faculty for Girl, university of Kufa, where a one-liter capacity polyethylene marinelli container was used to store and measure the samples. Before the containers were used, they were washed with dilute hydrochloric acid and then with distilled water. as for the samples, they were sieved with a sieve with a diameter of holes 0.8 (mm) to obtain a homogeneous powder, then dried completely from moisture by keeping them for a period of (6-8) days at a temperature of (40 -42) Celsius. The air is then removed completely from the samples by pressing the vessel with a light light cap of the marinelli beaker. After we place the sample in the container ,the weight of the container and the sample are measured together using the sensitive scale and then we subtract the weight of the container to get the net weight of the sample, then we tightly close the lid of the plastic container with adhesive tape so that radon does not leak (Rn) see figture 2. The sealed containers were kept for a period of 30 days to make sure the samples attained secular radioactive equilibrium between ²²⁶Ra and its decay products in the thorium series [6,12].

Figure 2. Samples are inside the marinelli beaker

2.3. Analysis of medicinal herp samples

To determine the concentration of radioactivity for each herbal sample placed on a NaI (Tl) reagent and calculated for 86400 seconds. An empty Counting Marinelli container was also used to calculate the radiological background. The detected gamma lines belong to the primary and main naturally occurring radionuclides ²³⁸U and ²³²Th and the non-sequential ⁴⁰K natural radionuclides due to poor accuracy of the NaI (Tl) detector, at low gamma energies that do not separate well between the photopeaks, Therefore, natural radioactivity concentrations can be measured at peaks of good images separated at high energy values as obtained in these results for gamma rays emitted from ²³⁸U and ²³²Th chains that are in a secular equilibrium condition, as well as ⁴⁰K was estimated directly with the gamma 1460 keV line. Therefore, the specific activity concentration of ²³⁸U was determined using the 1765 keV (²¹⁴Bi) gamma lines. The corresponding results for ²³²Th were also determined using 2614 keV (Gamma ray lines) (²⁰⁸Tl), an illustrative example of medicinal herb samples from the gamma ray spectrum obtained.On them in Figure 3 [11,13].

Figure 3. the obtained spectrum in medicinal herbs sample

2.4. Calculation of annual committed effective dose and excess lifetime cancer risk

Concentrations of Uranium, Thorium and Potassium were determined in (Bq/kg) were determined by the following equation [14,6]:

$$A = \frac{N_{count}}{\varepsilon \times I_{v} \times M \times t} \tag{1}$$

where: A is the radioactivity of measured radionuclides in (Bq/kg), N_{count} is the net count rate, ε is the efficiency of detector to emitted gamma rays, I_{γ} is the relative intensity of all gamma energy emitted, M is the mass of the sample in (kg), and t is the counting time of the measurement in (sec) [15]. The effective dose as a result of consuming medicinal herbs is very beneficial because of the possibility of collecting different radionuclides that come from different sources, these ingested radiation doses can be measured by measuring the activity concentration (Bq/kg) of radionuclides in herbal medicines from relationship (1), where The effective annual dose equivalent E_{ave} (Sv/y) is calculated by swallowing the radionuclides by the formula (2). [16,17]

$$E_{ave} = \sum_{i=1}^{3} [A_i \times I \times (DCF)_i]$$
⁽²⁾

Where A_i is Activity concentration of radionuclides in the sample (Bq/kg), I is is the annual intake of medicinal herps (kg/y), *DCF* is internal dose conversion factor by ingestion of the radionuclides (Sv/Bq), This is given as for ²³⁸U, ²³²Th and ⁴⁰K (4.5×10^{-8} , 2.3×10^{-7} and 6.2×10^{-9}) in (Sv/Bq) respectively [18,19].

The risks to the population can be estimated by assuming a linear relationship to dose effect with no threshold according to ICRP practice. For low doses, the risk factor for fatal cancer is ICRP $0.05(Sv^{-1})$, and the lifetime risk of cancer (ELCR) can be calculated using the following equation [13,16,20]:

$$ELCR = Cd \times RF \tag{3}$$

where: *ELCR* is Excess Lifetime Cancer Risk, *RF* is risk factor (Sv/y), *Cd* is the life time effective dose which is a measure of the total effective dose received over an average lifetime of 70 year following ingestion of a radionuclide was calculated using [13,16,20]:

$$Cd = 70 \times AACD \tag{4}$$

Where: *AACD* is the average annual committed effective dose.

3. Results and discussion

Given the lack of resources available by UNSCEAR to indicate the amount of daily consumption of adults in Iraq for medicinal herbs, we conducted a questionnaire in several pharmacies, drug stores, and herbal stores, as well as interviewed more than 100 people, so we found that each adult consumes annually an equivalent of 1.7 (kg/y) the results are as follows.

Table 3 shows that most of the doses taken were low for the studied herb samples (ND = not detected), presents the annual effective dose equivalent of ²³⁸U, ²³²Th and ⁴⁰K radionuclides and the total dose due to the three radionuclides in Iraq medical herb samples estimated and compared with the reported global dose due to ingestion of naturally occurring radionuclide, from Table 3, the annual effective ingestion doses due to intake of 238 U varied from 0.0124 (μ Sv/y) in (African rue) to 0.9632 (μ Sv/y) in (Grea plantain), the dose received from 232 Th due to consumption of medical herb varied from 0.0024 $(\mu Sv/y)$ in (Leaf mustard) to 5.7334 $(\mu Sv/y)$ in (Nutgrass), The values of effective dose from ingestion of 40 K ranged from 0.8280 in (Cyperus) to 6.1061(μ Sv/y) in (Chicory). Thus the contribution to dose from the ingestion of ⁴⁰K in medical herb with its relatively low dose conversion factor will be much higher than that for the 238 U and 232 Th. The mean annual effective dose from 238 U, 232 Th and 40 K in medical herb were estimated to be 0.1502, 0.4750 and 2.3095 (μ Sv/y) respectively. The highest mean annual internal dose was 40 K, The total effective dose ranged from 0.8324 (μ Sv/y) in (Flax) to 7.9970 $(\mu Sv/v)$ in (Nutgrass) with average value of 2.9349 ($\mu Sv/v$). The low values of effective dose due to intake of medical herb is due to low annual intake of only 1.7 (kg/y) when compared to a few hundred kg/y for the total food intake. The annual effective dose due to ingestion of the natural radionuclides in the medicinal plant samples are far below the world average annual committed effective dose of (0.3 mSv/y) for ingestion of natural radionuclides provided in UNSCEAR [18] report. figture 4 show below the mean annual effective dose distribution in medical herb samples. Finally table 3 shows the calculated cancer risk due to ingestion of medical herb which ranged from 0.0291×10^{-4} in (Flax) to 0.2798×10^{-4} in (Nutgrass) with an average value of 0.1026×10^{-4} , the mean value of ELCR is lower than the world average value of 2.9×10^{-4} based on annual dose limit of (1mSv) for general public by UNSCEAR ICRP [18,19].

Table 3. Ingestion effective dose and ELCR in medical h	erb
---	-----

Sample		$-$ ELCP $\times 10^{-4}$			
Code	238-U	232-Th	40-K	Totel	$-$ ELCK \times 10
P01	0.3135	N.D	2.7587	3.0722	0.1075
P02	0.2001	0.1444	2.4724	2.8170	0.0985
P03	0.1822	1.1810	2.9897	4.3529	0.1523
P04	0.0831	N.D	1.6310	1.7141	0.0599

IOP Publishing

IOP Conf. Series: Materials Science and Engineering **928** (2020) 072054 doi:10.1088/1757-899X/928/7/072054

P05	N.D	0.2854	4.6421	4.9275	0.1724		
P06	N.D	N.D	6.1061	6.1061	0.2137		
P07	0.3388	0.3738	3.0464	3.7591	0.1315		
P08	0.2396	1.2401	2.2532	3.7330	0.1306		
P09	N.D	0.3705	1.374E	1.7445	0.0610		
P10	0.9632	0.8787	1.9715	3.8134	0.1334		
P11	N.D	0.5078	3.251E	3.7588	0.1315		
P12	N.D	N.D	2.2011	2.2010	0.0770		
P13	N.D	0.5301	3.1317	3.6619	0.1281		
P14	0.1949	N.D	1.5241	1.7190	0.0601		
P15	0.2265	0.2029	1.1467	1.5762	0.0551		
P16	N.D	0.1323	2.8934	3.0257	0.1059		
P17	N.D	0.5723	1.4372	2.0094	0.0703		
P18	N.D	0.3245	3.1259	3.4504	0.1207		
P19	N.D	0.2515	4.3137	4.5652	0.1597		
P20	N.D	N.D	0.8324	0.8324	0.0291		
P21	N.D	N.D	0.9218	0.9218	0.0322		
P22	N.D	0.1575	1.4288	1.5864	0.0555		
P23	N.D	N.D	3.5725	3.5724	0.1250		
P24	0.1519	N.D	1.4120	1.5639	0.0547		
P25	N.D	0.6352	4.7349	5.3701	0.1879		
P26	N.D	0.5603	0.8280	1.3883	0.0485		
P27	0.2741	N.D	1.4746	1.7487	0.0612		
P28	0.0124	N.D	1.1483	1.1607	0.0406		
P29	0.6801	5.7334	1.5835	7.9970	0.2798		
P30	N.D	0.5829	3.9009	4.4838	0.1569		
P31	0.0898	0.0024	1.1179	1.2102	0.0423		
P32	0.5440	0.7273	1.7654	3.0367	0.1062		
P33	0.8775	0.8235	2.5071	4.2081	0.1472		
P34	N.D	0.2512	1.2546	1.5058	0.0527		
P35	0.2109	0.2803	3.3801	3.8714	0.1354		
P36	N.D	N.D	0.8865	0.8865	0.0310		
P37	0.3789	0.9346	1.9571	3.2706	0.1144		
P38	N.D	1.0711	2.2251	3.2962	0.1153		
P39	0.0479	0.2482	1.9607	2.2568	0.0789		
P40	N.D	N.D	1.2247	1.2246	0.0428		
Range	0.0124-0.9632	0.0024-5.7334	0.8280-6.1061	0.8324-7.9970	0.0291-0.2798		
Mean	0.1502	0.4750	2.3095	2.9349	0.1026		
ND							

Figure 4. Ingestion effective dose in medicinal herbs sample

4. Conclusions

The study estimated the calculation of the annual effective dose due to ingestion of radionuclides in medicinal herbs that are commonly used by the population in Iraq, where the results were less than the permitted safe value UNSCEAR [18]. and the risk of developing lifelong cancer is very low for safe value and therefore there is no health risk for human health ICRP [19]. In the end, this study finds that Forty forms of medicinal herbs are commonly used in the field of medicine and as a foodstuff that has been sampled safe for radioactive consumption IAEA [21]. We can consider this study on medicinal plants as a database to calculate the annual effective dose and lifetime cancer risk factor for future studies due to the use of a large number of models.

Acknowledgments. The researchers extend their sincere thanks and gratitude to everyone who contributed to the completion of this study, especially the teaching staff in the Department of Physics/Faculty of Education for girls/University of Kufa/Iraq.

References

[1] Bertolotti Mario, "Celestial messengers: cosmic rays: the story of a scientific adventure", Springer Science & Business Media, (2012).

[2] C. O'Connor, L. Currivan, N. Cunningham, K. Kelleher, M. Lewis, S. Long, P. McGinnity, V. Smith and C. McMahon, "Radiation doses received by the Irish population 2014", No. RPII--14-02, Radiological Protection Institute of Ireland, (2014).

[3] Alkhafaji, H. N., A. A. Abojassim, and A. A. Alkufi. "Effective radium activity, radon exhalation rate and uranium concentrations in medicinal plants" Journal of Physics: Conference Series, Vol. 1234. No. 1. IOP Publishing, (2019).

[4] M. Al-Masri, Y. Amin, B. Al-Akel, B. Safia, L.Massoh and N. Al-Grier, "Determination of Radioactivity in some Syria Medicinal Plans and their infusions", Atomic Energy Commission, Final Report on Scientific Research, Syrian Arab Rebablic, (2012).

[5] Alexander N. Shikov, Olga N. Pozharitskaya, Valery G. Makarov, Hildebert Wagner, Rob Verpoorte and Michael Heinrich, . "Medicinal plants of the Russian Pharmacopoeia; their history and applications." Journal of ethnopharmacology 154,(3), pp:481-536, (2014).

[6] Njinga, R. L., S. A. Jonah, and M. Gomina. "Preliminary investigation of naturally occurring radionuclides in some traditional medicinal plants used in Nigeria." Journal of Radiation Research and Applied Sciences 8.2, , pp:208-215, (2015).

[7] M. Sagiroun," Concentration of Some Radionuclides in Some Popular Sudanese Medicnal Plants", M . Sc Thesis , University of Sudan, (2012).

[8] L. Najam, N. Tafiq and F. Kitah, "Estimation of Natural Radioactivity of Some Medicinal or Herbal Plants Used in Iraq", Detection, Vol.3, pp. 1-7, (2015).

[9] R. Pourimani, M. Noori and M. Madadi , "Radioactivity Concentrations in Eight Medicinal and Edible Plant Species from Shazand, Iran", International Journal of Ecosystem, Vol.5, No.1, pp.22-29,(2015).

[10] Ali Abid Abojassim1, HeiyamNajy Hady and Abdulhussein Abdulameer Kareem, " Radon Levels in Different Types of Plants with Medicinal Properties", Journal of Food Technology, Vol.1, No.1, pp.18-21,(2016).

[11] Abdulhussein Abdulameer Kareem, Heiyam Najy Hady, and Ali Abid Abojassim. "Measurement of natural radioactivity in selected samples of medical plants in Iraq." International Journal of Physical Sciences 11.14, pp: 178-182,(2016).

[12] Tsuey-Lin Tsai, Chun-Chih Lin, Tzu-Wen Wang and Tieh-Chi Chu, "Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan", Journal of radiological protection 28,(3): 347, IOP Publishing, (2008).

[13] Envinna P. I. and U. G. Uboh, "Radionulide analyses of ingested water from some estuaries within the coastal area of Akwa Ibom State, Nigeria", Journal of Radiological Protection, 37,(1): 97, IOP Publishing, (2016).

[14] Jebur Jabbar H., Zahraa A. Ismail Al-Sudani, and Sawsan Sh. Fleifil, "Measure the rate of Radiation Activity in Soil sample from the depth of Sindbad land in Basrah Governorate", IOP Conference Series: Materials Science and Engineering, Vol. 571. No. 1. IOP Publishing, (2019).

[15] Hadi ALBIDHANI, Kadir GUNOGLU and Iskender AKKURT, "Natural radiation measurement in some soil samples from Basra oil field, IRAQ State", International Journal of Computational and Experimental Science and Engineering, 5.1, pp:48-51, (2019).

[16] Ononugbo C. P., G. O. Avwiri and S. O. Ikhuiwu, "Estimation of naturl radioactivity levels in some food spices commonly used in Nigeria and its radiological risks", Journal of Scientific Research and Reports, 16.(3), pp:1-9, (2017).

[17] C. Kansaana, E. O. Darko, O. K. Adukpo, A. Faanu, E. Shitsi, N.S. Opata and L. Tettey-Larbi, "Measurement of Activity Concentra-tions of 226Ra, 232Th, 40K and 137Cs in Some Common Spices Consumed By Inhabitants in Accra Metropolis, Ghana" Int J Food Sci Nutr Diet 2,(8), pp:75-80, (2013).

[18] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation,"Sources and Effects of Ionizing Radiation", United Nations, New York, (2000).

[19] ICRP, International Commission on Radiological Protection, Age-Dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilations of In-gestion and Inhalation Dose Coefficients (ICRP Publica-tion 72)". Pergamon Press, Oxford, (1996).

[20] Ali Abid Abojassim, Mohanad H. Oleiwi, and Mohammad Hassan. "Evaluation of Radiation Hazard Indicesduo to Gamma Radiation in Hattin Complex at Babylon Government", Middle-East Journal of Scientific Research, 24,(7),pp: 2196-203, (2016).

[21] International Atomic Energy Agency (IAEA), "Measurement of radionuclides in food and the environment", a guide book., Vienna, (1989). ISSN: 0074-1914