Constant curvature of a locally conformal almost cosymplectic manifold

Cite as: AIP Conference Proceedings 2086, 030003 (2019); https://doi.org/10.1063/1.5095088 Published Online: 02 April 2019

Habeeb M. Abood, and Farah Hassan Al-Hussaini

View Online
\qquad

Constant Curvature of A Locally Conformal Almost Cosymplectic Manifold

Habeeb M. Abood $\left.{ }^{1, \mathrm{a}, \mathrm{b}}\right)$ and Farah Hassan Al-Hussaini ${ }^{2, \mathrm{c})}$
${ }^{1}$ University of Basrah, Basrah, Iraq.
${ }^{2}$ University of Basrah, Basrah, Iraq.
${ }^{\text {a) }}$ iraqsafwan2006@gmail.com
${ }^{\text {b }}$ URL: http://www.aip.org
${ }^{\text {c) }}$ farahalhussaini14@yahoo.com

Abstract

The purpose of the present paper is to discuss the geometrical properties of a locally conformal almost cosymplectic manifold of constant curvature. In particular, the necessary and sufficient conditions for the aforementioned manifold to be of constant curvature have been determined.

Keywords: Locally conformal almost cosymplectic manifold; constant curvature.
PACS: 02.40.Ky

INTRODUCTION

The concept of a constant curvature is one of the important concepts in contact geometry. Blair [2] established that a cosymplectic manifold of constant curvature is locally flat. Moreover, Goldberg and Yano [5] obtained that an almost cosymplectic manifold of constant curvature is cosymplectic if and only if it is locally flat. Seo [11] exclusively, determined a classification of the translation hypersurfaces with a constant mean curvature in an Euclidean space.

PRELIMINARIES

This section provides a summary of the basic concepts and facts which are related to the discussion of our results.
Definition 0.1 [2] Let M be a $2 n+1$ dimensional smooth manifold , η be a differential 1-form called the contact form, ξ be a vector field called the characteristic vector field, Φ be an endomorphism of the module of the vector fields $X(M)$ called a structure endomorphisim, then the triple (η, ξ, Φ) is called an almost contact structure if the following conditions hold
(1) $\eta(\xi)=1$; (2) $\Phi(\xi)=0$; (3) $\eta \circ \Phi=0$; (4) $\Phi^{2}=-i d+\eta \otimes \xi$.

Moreover, if there is a Riemannian metric $g=\langle.,$.$\rangle on M$ such that $\langle\Phi X, \Phi Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y), X, Y \in X(M)$, then the set of the tensors (η, ξ, Φ, g) is called an almost contact metric structure. In this case the manifold M equipped with this structure is called an almost contact metric manifold.

Definition 0.2 [9] At each point $p \in M^{2 n+1}$, there is a frame in $T_{p}^{c}(M)$ of the form $\left(p, \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{\hat{1}}, \ldots, \varepsilon_{\hat{n}}\right)$, where $\varepsilon_{a}=\sqrt{2} \pi\left(e_{a}\right), \varepsilon_{\hat{a}}=\sqrt{2} \bar{\pi}\left(e_{a}\right), \hat{a}=a+n, \varepsilon_{0}=\xi_{p}$. The frame $\left(p, \varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{\hat{1}}, \ldots, \varepsilon_{\hat{n}}\right)$ is called an A-frame. The set of such frames defines a G-structure on M with the structure group $1 \times U(n)$. This G-structure is called an adjoined G-structure space.

Lemma 0.1 [9] The matrices components of the tensors Φ_{p} and g_{p} in an A-frame have the following forms, respectively: $\left(\Phi_{j}^{i}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \sqrt{-1} I_{n} & o \\ 0 & 0 & -\sqrt{-1} I_{n}\end{array}\right),\left(g_{i j}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -I_{n} \\ 0 & I_{n} & 0\end{array}\right)$, where I_{n} is the identity matrix of order n.

Definition 0.3 [5] An almost contact metric structure $S=(\eta, \xi, \Phi, g)$ is called an almost cosymplectic structure ($\mathcal{A C}_{\int}$-structure) if the following conditions hold:

1. $d \eta=0$;
2. $d \Omega=0$.

Definition 0.4 [10] A conformal transformation of an $\mathcal{A C} C$-structure $S=(\eta, \xi, \Phi, g)$ on a manifold is a transformation from S to an $\mathcal{A C}$-structure $\widetilde{S}=(\widetilde{\eta}, \widetilde{\xi}, \widetilde{\Phi}, \widetilde{g})$ such that $\widetilde{\eta}=e^{-\sigma} \eta, \quad \widetilde{\xi}=e^{\sigma} \xi, \quad \widetilde{\Phi}=\Phi, \quad \widetilde{g}=e^{-2 \sigma} g$, where σ is a determining function of the conformal transformation.

Definition 0.5 [10] An $\mathcal{A C}$-structure S on a manifold M is said to be a locally conformal almost cosymplectic ($\mathcal{L C A C}{ }_{j}$-structure) if the restriction of this structure to some neighborhood U of an arbitrary point $p \in M$ admits a conformal transformation of an almost cosymplectic structure. This transformation is called a locally conformal. A manifold M equipped with an $\mathcal{L C A} C_{f^{-}}$-structure is called a locally conformal almost cosymplectic manifold ($\mathcal{L C A} C_{f^{-}}$ manifold).

Lemma 0.2 [6] In the adjoined G-structure space, the Cartan structural equations of $\mathcal{L C \mathcal { A } C}{ }_{f}$-manifold have the following forms:

1. $d \omega^{a}=-\omega_{b}^{a} \wedge \omega^{b}+B_{c}^{a b} \omega^{c} \wedge \omega_{b}+B^{a b c} \omega_{b} \wedge \omega_{c}+B_{b}^{a} \omega \wedge \omega^{b}+B^{a b} \omega \wedge \omega_{b}$;
2. $d \omega_{a}=\omega_{a}^{b} \wedge \omega_{b}+B_{a b}^{c} \omega_{c} \wedge \omega^{b}+B_{a b c} \omega^{b} \wedge \omega^{c}+B_{a}^{b} \omega \wedge \omega_{b}+B_{a b} \omega \wedge \omega^{b}$;
3. $d \omega=C_{b} \omega \wedge \omega^{b}+C^{b} \omega \wedge \omega_{b}$;
4. $d \omega_{b}^{a}=-\omega_{c}^{a} \wedge \omega_{b}^{c}+A_{b}^{a c d} \omega_{c} \wedge \omega_{d}+A_{b c d}^{a} \omega^{c} \wedge \omega^{d}+A_{b d}^{a c} \omega^{d} \wedge \omega_{c}+A_{b c 0}^{a} \omega \wedge \omega^{c}+A_{b}^{a c 0} \omega \wedge \omega_{c}$.

Here, $B^{a b c}, B_{a b c} ; B^{a b}, B_{a b} ; B_{b}^{a}, B_{a}^{b} ; C^{a b}, C_{a b} ; C^{b}, C_{b} ; A_{b}^{a c d}, A_{a c d}^{b} ; A_{b d}^{a c} ; A_{b}^{a c 0}, A_{a c 0}^{b} ; B^{a b c i}, B_{a b c i} ; D^{a b i}, D_{a b i}$ and $\sigma_{i j}$ are smooth functions in the adjoined G-structure space. $B^{a b c}$ are the components of the second structure tensor.

Lemma 0.3 [7] In the adjoined G-structure space, the components of the Riemannian curvature tensor of $\mathcal{L C A} C_{j}$-manifold have the following forms:

1. $R_{b c d}^{a}=2\left(A_{b c d}^{a}+4 \sigma^{[a} \delta_{[c}^{h]} B_{d] h b}-\sigma_{0} B_{b[d} \delta_{c]}^{a}\right)$;
2. $R_{\hat{b} c d}^{a}=2\left(2 \delta_{[c}^{[b} \sigma_{d]}^{a]}+2 B^{h a b} B_{h d c}-\delta_{[c}^{a} \delta_{d]}^{b} \sigma_{0}^{2}\right)$;
3. $R_{b c \hat{d}}^{a}=A_{b c}^{a d}+4 \sigma^{[a} \delta_{c}^{h]} \sigma_{[h} \delta_{b]}^{d}-4 B^{d a h} B_{c h b}+B^{a d} B_{b c}-\delta_{c}^{a} \delta_{b}^{d} \sigma_{0}^{2}$;
4. $R_{b c d}^{\hat{a}}=2\left(2 B_{[c|a b| d]}-2 \sigma_{[a} B_{b] c d}+B_{a[c} B_{d] b}\right)$;
5. $R_{0 c d}^{a}=2\left(\sigma_{0[c} \delta_{d]}^{a}+B^{a b} B_{b c d}-2 \sigma^{[a} \delta_{[c}^{h]} B_{d] h}\right)$;
6. $R_{b \hat{c} 0}^{a}=A_{b}^{a c 0}+\sigma_{b} B^{a c}-\delta_{b}^{c} \sigma_{0} \sigma^{a}$;
7. $R_{b c 0}^{\hat{a}}=2 B_{c a b 0}+2 B_{c a b} \sigma_{0}$;
8. $R_{0 b 0}^{a}=-\delta_{b}^{a} \sigma_{00}-\delta_{b}^{a} \sigma_{0}^{2}-B_{c b} B^{a c}-\sigma_{b}^{a}-\sigma^{a} \sigma_{b}+2 \sigma^{[a} \delta_{b}^{c]} \sigma_{c}$;
9. $R_{0 \hat{b} 0}^{a}=2 \sigma_{0} B^{a b}-D^{a b 0}-\sigma^{a b}-\sigma^{a} \sigma^{b}+2 B^{b a c} \sigma_{c}$.
and the other components are conjugate to the above components or can be obtained by the properties of symmetry for R or are equal to zero.

Definition 0.6 [7] An almost contact manifold is called a Kenmotsu manifold if the equality

$$
\nabla_{X}(\Phi) Y=\langle X, Y\rangle \xi-\eta(Y) X
$$

holds for each $X, Y \in X(M)$
Definition 0.7 [4] The Ricci tensor is a tensor of type $(2,0)$ which is defined by $r_{i j}=-R_{i j k}^{k}$.
Lemma 0.4 [1] In the adjoined G-structure space, the components of the Ricci tensor of $\mathcal{L C A} C_{f}$-manifold are given as follows:

$$
\text { 1. } \quad r_{a b}=2\left(-2 A_{(a b) c}^{c}-4\left(\sigma^{[c} \delta_{[b}^{h]} B_{c] h a}+\sigma^{[c} \delta_{[a}^{h]} B_{c] h b}\right)+\sigma_{0} B_{a[c} \delta_{b]}^{c}+\sigma_{0} B_{b[c} \delta_{a]}^{c}+2 \sigma_{0} B_{a b}-D_{a b 0}-\sigma_{a b}-\sigma_{a} \sigma_{b}+2 B_{b a h} \sigma^{h} ;\right.
$$

2. $r_{\hat{a} b}=-4\left(\delta_{[b}^{[a} \sigma_{c]}^{c]}-\sigma_{[c} \delta_{h]}^{b} \sigma^{[h} \delta_{c}^{a]}-\frac{1}{2} \sigma^{[a} \delta_{b}^{h]} \sigma_{h}+B^{h c a} B_{h c b}+B^{b c h} B_{c h a}\right)+\left(B^{c b} B_{a c}-B_{h b} B^{a h}\right)+A_{a c}^{c b}-\delta_{b}^{a} \sigma_{00}-2 n \sigma_{0}^{2}-$ $\sigma_{b}^{a}-\sigma^{a} \sigma_{b}$;
3. $r_{a 0}=-A_{a c 0}^{c}-\sigma^{c} B_{a c}+n \sigma_{0} \sigma_{a}+2\left(\sigma_{0[c} \delta_{a]}^{c}+B^{c b} B_{b c a}-2 \sigma^{[c} \delta_{[c}^{h]} B_{a] h}\right)$;
4. $r_{o o}=-2 n\left(\sigma_{00}+\sigma_{0}^{2}\right)-2 B_{h c} B^{c h}-2\left(\sigma_{c}^{c}+\sigma^{c} \sigma_{c}\right)+4 \sigma^{[c} \delta_{c}^{h]} \sigma_{h}$.
and the other components can be obtain by taking the conjugate operator to the above components.
Definition $0.8 \quad[8]$ An $\mathcal{A C}$-manifold is said to be of constant curvature k, if the Riemannian curvature tensor satisfies the relations $R_{i j k l}=k\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)$.

Lemma 0.5 [8] In the G-adjoined structure space, the nonzero components of the Riemannian curvature tensor of a manifold M of constant curvature have the forms

$$
R_{\hat{a} \hat{b} c d}=k \delta_{c d}^{a b} \quad R_{\hat{a} b c \hat{d}}=k \delta_{c}^{a} \delta_{d}^{b} \quad R_{\hat{a} 0 c 0}=k \delta_{c}^{a} .
$$

Definition 0.9 [8] The manifolds of constant curvature are called the special forms. The manifolds of zero constant curvature are said to be planes.
Definition 0.10 [3] A pseudo-Riemannian manifold M is called an η-Einstein manifold of type (α, β) if its Ricci tensor satisfies the equation $r=\alpha g+\beta \eta \otimes \eta$, where α and β are suitable smooth functions. If $\beta=0$, then M is called an Einstein manifold.

Definition 0.11 The Riemannian curvature tensor of $\mathcal{L C A} C_{f}$-manifold has the first special property, if

$$
\eta \circ R\left(\Phi^{2} X, \Phi^{2} Y\right) \Phi^{2} Z=\eta \circ\left(R(\Phi X, \Phi Y) \Phi^{2} Z+R\left(\Phi^{2} X, \Phi Y\right) \Phi Z+R\left(\Phi X, \Phi^{2} Y\right) \Phi Z\right)
$$

hold for each $X, Y, Z \in X(M)$.
Definition 0.12 The Riemannian curvature tensor of $\mathcal{L C A} C_{f}$-manifold has the second special property, if

$$
\eta \circ\left[R\left(\Phi^{2} X, \xi\right) \Phi^{2} Y+\eta \circ(R(\Phi X, \xi) \Phi Y]=0\right.
$$

hold for each $X, Y, \in X(M)$.

THE MAIN RESULTS

Theorem 0.1 The necessary and sufficient conditioni for a $\mathcal{L C A C} C_{f}$ to be a manifold of constant curvature k is $A_{b c}^{a d}=B^{a b c}=B^{a b}=\sigma^{a}=\sigma_{00}=0$. Moreover, $k=-\sigma_{0}^{2}$.

Proof. Comparing the components of the Riemannian curvature tensor in the Lemmas 0.3 and 0.5 , we have

$$
2\left(2 \delta_{[c}^{[b} \sigma_{d]}^{a]}+2 B^{h a b} B_{h d c}-\delta_{[c}^{a} \delta_{d]}^{b} \sigma_{0}^{2}\right)=k \delta_{c d}^{a b}
$$

Consequently, we get

$$
k=-\sigma_{0}^{2}
$$

Moreover, we have

$$
A_{b c}^{a d}+4 \sigma^{[a} \delta_{c}^{h]} \sigma_{[h} \delta_{b]}^{d}-4 B^{d a h} B_{c h b}+B^{a d} B_{b c}-\delta_{c}^{a} \delta_{b}^{d} \sigma_{0}^{2}=k \delta_{c}^{a} \delta_{d}^{b}
$$

Making use of the equality $R_{b c d}^{\hat{a}}=0$, consequently we obtain

$$
A_{b c}^{a d}=0 .
$$

Now, according to the Lemma 0.3 , item 3, it follows that $B^{a b c}=0$.
According to the relation $R_{0 c 0}^{a}=R_{\hat{a} 0 c 0}$, we get

$$
-\delta_{c}^{a} \sigma_{00}-\delta_{c}^{a} \sigma_{0}^{2}-B_{h b} B^{a h}-\sigma_{c}^{a}-\sigma^{a} \sigma_{c}+2 \sigma^{[a} \delta_{c}^{h]} \sigma_{h}=k \delta_{c}^{a}
$$

Now, making use of $R_{0 \hat{b} 0}^{a}=0$, we get $\sigma^{a} \sigma^{b}=0$ and according to the Lemma 0.2 , items 9 and 10 , we have $\sigma_{a}^{a}=0$, which means

$$
\sigma_{00}=0 .
$$

Conversely, we can get the requirement directly from the lemmas 0.2 and 2.3.

Theorem $0.2 \quad$ The $\mathcal{L C A} C_{f}$-manifold M which is a special form has nonpositive curvature. Moreover,
(1) M is a conformally flat Kenmotsu manifold if and only if $k=-1$;
(2) If $k=0$, then M is a locally flat cosymplectic manifold.

Theorem 0.3 Suppose that a $\mathcal{L C A C} C_{f}$-manifold M is an η-Einstein manifold of type (α, β), then $\alpha=\frac{1}{n} A_{a c}^{(c a)}-\sigma_{00}-$ $2 n \sigma_{0}^{2}-\frac{1}{n}\left(\sigma_{a}^{a}+\sigma^{a} \sigma_{a}\right)$ and $\beta=-\frac{1}{n} A_{a c}^{(c a)}-(2 n-1) \sigma_{00}+\left(\frac{1}{n}-2\right)\left(\sigma_{a}^{a}+\sigma^{a} \sigma_{a}\right)$ hold. In addition, if M is a manifold of constant curvature, then M is an Einstein manifold with a cosmological constant $\alpha=-2 n \sigma_{0}^{2}$.
Proof. Comparing the components of the Ricci tensor in the Lemma 0.3 and 0.5 , we have

$$
\begin{array}{r}
-4\left(\delta_{[b}^{[a} \sigma_{c]}^{c]}-\sigma_{[c} \delta_{h]}^{b} \sigma^{[h} \delta_{c}^{a]}-\frac{1}{2} \sigma^{[a} \delta_{b}^{h]} \sigma_{h}+B^{h c a} B_{h c b}+B^{b c h} B_{c h a}\right) \\
+\left(B^{c b} B_{a c}-B_{h b} B^{a h}\right)+A_{a c}^{c b}-\delta_{b}^{a} \sigma_{00}-2 n \sigma_{0}^{2}-\sigma_{b}^{a}-\sigma^{a} \sigma_{b}=\alpha \delta_{b}^{a} . \tag{0.1}
\end{array}
$$

Symmrtrizing and antisymmrtrizing (0.1) by the indices (a, h) and then symmrtrizing by the indices (b, c), we get

$$
\begin{equation*}
A_{a c}^{(c b)}+B^{c b} B_{a c}-\delta_{b}^{a} \sigma_{00}-2 n \sigma_{0}^{2}-\sigma_{b}^{a}-\sigma^{a} \sigma_{b}=\alpha \delta_{b}^{a} \tag{0.2}
\end{equation*}
$$

Contracting (0.2) by the indices (a, b), we obtain

$$
\alpha=\frac{1}{n} A_{a c}^{(c a)}+\frac{1}{n} B^{c a} B_{a c}-\sigma_{00}-2 n \sigma_{0}^{2}-\frac{1}{n}\left(\sigma_{a}^{a}+\sigma^{a} \sigma_{a}\right) .
$$

Moreovere, we have

$$
\begin{equation*}
-2 n\left(\sigma_{00}+\sigma_{0}^{2}\right)-2 B_{h c} B^{c h}-2\left(\sigma_{c}^{c}+\sigma^{c} \sigma_{c}\right)+4 \sigma^{[c} \delta_{c}^{h]} \sigma_{h}=\alpha+\beta . \tag{0.3}
\end{equation*}
$$

Symmrtrizing and antisymmrtrizing (0.3) by the indices (c, h), we conclude

$$
\beta=-\frac{1}{n} A_{a c}^{(c a)}-\frac{1}{n} B^{c a} B_{a c}-(2 n-1) \sigma_{00}+\left(\frac{1}{n}-2\right)\left(\sigma_{a}^{a}+\sigma^{a} \sigma_{a}\right) .
$$

Now, if M is of constant curvature, then by the Theorem 0.1, directly we get that M is an Einstein manifold with a cosmological constant α.
Theorem 0.4 The Riemannian curvature tensor of $\mathcal{L C A} C_{j}$-manifold M has the first special property, if M has the constant curvature k.

Theorem 0.5 The Riemannian curvature tensor of $\mathcal{L C A} \mathcal{A}_{f}$-manifold M has the second special property, if M has the constant curvature $k=0$.

REFERENCES

[1] Abood H. M., Al-Hussaini F. H., Locally conformal almost cosymplectic manifold of Φ-holomorphic sectional conharmonic curvature tensor, European Journal of Pure and Applied Mathematics, 11(3), 671-681, 2018.
[2] Blair D.E., The theory of quasi-Sasakian structures, J. Differential Geometry, N. 1, 331-345, 1967.
[3] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, in Progr. Math. Birkhauser, Boston, MA, Vol. 203, 2002.
[4] Cartan E., Riemannian Geometry in an Orthogonal Frame, From lectures Delivered by E. Lie Cartan at the Sorbonne 1926-27, Izdat. Moskov. Univ., Moscow, 1960; World Sci., Singapore, 2001.
[5] Goldberg S.I., Yano K., Integrabilty of almost cosymplectic structures, Pacific Journal of Mathematics, 31, 373-382, 1969.
[6] Kharitonova S.V., On the geometry of locally conformal almost cosymplectic manifolds, Mathematical Notes, 86(1), 126-138, 2009.
[7] Kenmotsu K., A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24(1972), 93-103, 1972.
[8] Kirichenko V.F., Kharitonova S.V., On the geometry of normal locally conformal almost cosymplectic manifolds, Mathematical Notes, 91(1), 40-53, 2012.
[9] Kirichenko V.F., Rustanov A. R., Differential geometry of quasi Sasakian manifolds, Sbornik: Mathematics, 193(8), 71-100, 2002.
[10] Olszak Z., Locally conformal almost cosymplectic manifolds, Collq. Math. 57(1), 73-87, 1989.
[11] Seo K., Translation hypersurfaces with constant curvature in space forms, Osaka J. Math. 50, 631-641, 2013.

