
A Note On q-Integral Operators

Huda Aldweby 2

Department of Mathematics, Faculty of Science

AL Asmaraya Islamic University

Libya

Maslina Darus 1,3

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia

Abstract

In this article, a q-integral operator which is analogue to the well known Bernardi
integral operator is investigated. Integral preserving property for a subclass of

analytic functions defined by this q-operator is proved. Moreover, special new q-
integral operators are obtained as consequences.
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1 Introduction

Let A denote the usual class of analytic functions of the form

f(z) = z +
∞∑

k=2

akz
k (1)

which are analytic in the unit disk U = {z ∈ C : |z| < 1} and normalized with
f(0) = 0 and f ′(0) − 1 = 0. Also, we denote the subclass of A consisting of
analytic and univalent functions f(z) in the unit disk U by S.

In [1], [2], Jackson defined the q-derivative operator Dq of a function as
follows:

Dqf(z) =
f(qz)− f(z)

(q − 1)z
(z �= 0, q �= 0) (2)

and Dqf(z) = f ′(0). In case f(z) = zk for k is a positive integer, the q-
derivative of f(z) is given by

Dqz
k =

zk − (zq)k

z(1− q)
= [k]qz

k−1.

As q → 1− and k ∈ N, we have

[k]q =
1− qk

1− q
= 1 + q + ... + qk → k. (3)

The q-Jackson definite integral of the function f is defined by

∫ z

0

f(t)dqt = (1− q)z

∞∑
n=1

f(zqn)qn, z ∈ C,

provided that the series converges. For a function h(z) = zk, we observe that∫ z

0

h(t)dqt =

∫ z

0

tkdqt =
zk+1

[k + 1]q
(k �= −1)

lim
q→1

∫ z

0

h(t)dqt = lim
q→1

zk+1

[k + 1]q
=

zk+1

k + 1
=

∫ z

0

h(t)dt,

where
∫ z

0
h(t)dt is the ordinary integral.
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The following q-starlike class of functions has been studied by Aldweby
and Darus in [3], [4] and Seoudy and Aouf in [5], [6].

S∗

q (α) =

{
f ∈ A : Re

(
zDq(f(z))

f(z)

)
> α, z ∈ U

}
(4)

2 Main results

Theorem 2.1 Let the function f be defined by (1) be in the class S∗

q (α) and
μ be a real number such that μ > −1. Then the q-integral operator F μ

q (z)
defined by

F μ
q (z) =

[μ + 1]q
zμ

∫ z

0

tμ−1f(t)dqt (μ > −1), (5)

also belongs to the class S∗

q (α) .

Proof. It follows from (5) that

F μ
q (z) =

[μ + 1]q
zμ

∫ z

0

(
tμ + a2t

μ+1 + a3t
μ+2 + · · ·

)
dqt

=
[μ + 1]q

zμ

[∫ z

0

tμdqt + a2

∫ z

0

tμ+1dqt + a3

∫ z

0

tμ+2dqt + · · ·

]

=
[μ + 1]q

zμ

{[
(1− q)z

∞∑
m=0

(zqm)μqm

]
+

[
(1− q)z

∞∑
m=0

(zqm)μ+1qm

]
+ · · ·

}

=
[μ + 1]q

zμ

{[
1− q

1− qμ+1
zμ+1

]
+

[
1− q

1− qμ+2
a2z

μ+2

]
+ · · ·

}

= z +

∞∑
k=2

[μ + 1]q
[μ + k]q

akz
k,

then, we have

dk =
[μ + 1]q
[μ + k]q

ak ≤ ak (k ≥ 2).

Hence, F μ
q ∈ S

∗

q (α).

Remark 2.2 When q → 1 in (5), the q-integral operator F μ
q (z) reduces to the

well known Bernardi integral operator (see [7])

For μ = 0, we obtain the following corollary

Corollary 2.3 Let the function f defined by (1) be in the class S∗

q (α). Then
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the q-analogue of Alexander integral operator Fq(z) defined by

Fq(z) =

∫ z

0

f(t)

t
dqt = z +

∞∑
k=2

1

[k]q
akz

k, (6)

also belongs to the class S∗

q (α) .

For μ = 1, we obtain the following corollary

Corollary 2.4 Let the function f defined by (1) be in the class S∗

q (α). Then
the q-analogue of Libera integral operator Lq(z) defined by

Fq(z) =
[2]q
z

∫ z

0

f(t)dqt = z +
∞∑

k=2

[2]q
[k + 1]q

akz
k (7)

also belongs to the class S∗

q (α) .

Theorem 2.5 Let F μ
q be defined by (5). If f of the form (1), α > 0 and

Re[Dq(f(z))] ≥ α|zD2

q(f(z))|, for all z ∈ U,

then∣∣∣∣∣
μ∑

i=0

qiDq(F (z)) + qμ+1zD2

q (F (z))

∣∣∣∣∣ ≥ α

∣∣∣∣∣
μ+1∑
i=0

qizD2

q(F (z)) + qμ+2z2D3

q(f(z))

∣∣∣∣∣ .

Proof. Since we have

zμ

[μ + 1]q
Fq(z) =

∫ z

0

tμ−1f(t)dqt

By taking the q-derivative, we have

1

[1 + μ]q

[
qμzμDq(Fq(z)) + [μ]qz

μ−1Fq(z)
]

= zμ−1f(z).

This relation equivalent to

[μ]q
[1 + μ]q

Fq(z) +
qμ

[1 + μ]q
zDq(Fq(z)) = f(z),
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which implies that

[μ]q
[1 + μ]q

Dq(Fq(z)) +
qμ+1

[1 + μ]q
zD2

q(Fq(z)) +
qμ

[1 + μ]q
Dq(Fq(z)) = Dq(f(z)),

and this is equivalent to

Dq(Fq(z)) +
qμ+1

[1 + μ]q
zD2

q (Fq(z)) = Dq(f(z)).

We obtain that

[μ]q + qμ[2]q
[1 + μ]q

D2

q(Fq(z)) +
qμ+2

[1 + μ]q
zD3

q(Fq(z)) = D2

q (f(z)).

If Re(Dq(f(z))) ≥ α|zD2
qf(z)|, for all z ∈ U this implies that |Dq(f(z))| ≥

α|zD2
qf(z)|. In this relation, we put the expression of Dqf and D2

qf obtaining
that:

∣∣∣∣∣Dq(Fq(z))+
qμ+1

[1 + μ]q
zD2

q(Fq(z))

∣∣∣∣∣ ≥ α

∣∣∣∣∣ [μ]q + qμ[2]q
[1 + μ]q

zD2

q (Fq(z))+
qμ+2

[1 + μ]q
z2D3

q (Fq(z))

∣∣∣∣∣

⇔
1

|[1 + μ]q|

∣∣∣∣∣[1 + μ]qDq(Fq(z)) + qμ+1zD2

q (Fq(z))

∣∣∣∣∣
≥

α

|[1 + μ]q|

∣∣∣∣∣([μ]q + qμ[2]q)zD2

q(Fq(z)) + qμ+2z2D3

q (Fq(z))

∣∣∣∣∣

⇔

∣∣∣∣∣[1+μ]qDq(Fq(z))+qμ+1zD2

q (Fq(z))

∣∣∣∣∣ ≥ α

∣∣∣∣∣([μ]q+qμ[2]q)zD2

q(Fq(z))+qμ+2z2D3

q(Fq(z))

∣∣∣∣∣
Hence, the proof is complete.

3 Summary and Remarks

These are just small part of the results. More problems can be solved such as
the Hankel determinant, subordination problems and few other results related
to integral operators.
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