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We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here,
the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work,
the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite
during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification
Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test
suite is performed by selecting only mutant killing test cases from cumulating t-way test cases. As such, the proposed strategy can
potentially enhance the quality of product with minimal cost in terms of overall resource usage and time execution. As a case study,
this paper describes the step-by-step application of the strategy for testing a 4-bit Magnitude Comparator Integrated Circuits in a
production line. Comparatively, our result demonstrates that the proposed strategy outperforms the traditional block partitioning

strategy with the mutant score of 100% to 90%, respectively, with the same number of test cases.

1. Introduction

In order to ensure acceptable quality and reliability of any
embedded engineering products, many inputs parameters as
well as software/hardware configurations need to be tested
against for conformance. If the input combinations are large,
exhaustive testing is next to impossible due to combinatorial
explosion problem.

As illustration, consider the following small-scale prod-
uct, a 4-bit Magnitude Comparator IC. Here, the Magnitude
Comparator IC consists of 8 bits for inputs and 3 bits for
outputs. It is clear that each IC requires 256 test cases for
exhaustive testing. Assuming that each test case takes one
second to run and be observed, the testing time for each IC
is 256 seconds. If there is a need to test one million chips, the
testing process will take more than 8 years using a single line
of test.

Now, let us assume that we received an order of delivery
for one million qualified (i.e., tested) chips within two weeks.
As an option, we can do parallel testing. However, parallel
testing can be expensive due to the need for 212 testing lines.
Now, what if there are simultaneous multiple orders? Here, as

the product demand grows in numbers, parallel testing can
also become impossible. Systematic random testing could
also be another option. In random testing, test cases are
chosen randomly from some input distribution (such as a
uniform distribution) without exploiting information from
the specification or previously chosen test cases. More recent
results have favored partition testing over random testing in
many practical cases. In all cases, random testing is found
to be less effective than the investigated partition testing
methods [1].

A systematic solution to this problem is based on
Combinatorial Interaction Testing (CIT) strategy. The CIT
approach can systematically reduce the number of test cases
by selecting a subset from exhaustive testing combination
based on the strength of parameter interaction coverage ()
[2]. To illustrate the CIT approach, consider the web-based
system example (see Table 1) [3].

Considering full strength interaction ¢ = 4 (i.e., interac-
tion of all parameters) for testing yields exhaustive combina-
tions of 31 = 81 possibilities. Relaxing the interaction strength
to t =3 yields 27 test cases, a saving of nearly 67 percent. Here,
all the 3-way interaction elements are all covered by at least



TABLE 1: Web-based system example.

Parameter 1 Parameter 2 Parameter 3 Parameter 4

Netscape Windows XP LAN Sis
IE Windows VISTA PPP Intel
Firefox Windows 2008 ISDN VIA

one test. If the interaction is relaxed further to t = 2, then the
number of combination possibilities is reduced even further
to merely 9 test cases, a saving of over 90 percent.

In the last decade, CIT strategies were focused on 2-
way (pairwise) testing. More recently, several strategies (e.g.,
Jenny [4], TVG [5], IPOG [6], IPOD [7], IPOF [8], DDA
[9], and GMIPOG [10]) that can generate test suite for high
degree interaction (2 < t < 6).

Being predominantly black box, CIT strategy is often
criticized for not being efficiently effective for highly inter-
acting parameter coverage. Here, the selected test cases
sometimes give poor coverage due to the wrong selection of
parameter strength. In order to address this issue, we propose
to integrate the CIT strategy with that of fault injection
strategy. With such integration, we hope to effectively
measure the effectiveness of the test suite with the selection
of any particular parameter strength. Here, the optimal test
case can be selected as the candidate of the test suite only
if it can help detect the occurrence of the injected fault. In
this manner, the desired test suite is the most optimum for
evaluating the System Under Test (SUT).

The rest of this paper is organized as follows. Section 2
presents related work on the state of the art of the appli-
cations of t-way testing and fault injection tools. Section 3
presents the proposed minimization strategy. Section 4 gives
a step-by-step example as prove of concept involving the
4-bit Magnitude Comparator. Section 5 demonstrates the
comparison with our proposed strategy and the traditional
block partitioning strategy. Finally, Section 6 describes our
conclusion and suggestion for future work.

2. Related Work

Mandl was the first researcher who used pairwise coverage in
the software industry. In his work, Mandl adopts orthogonal
Latin square for testing an Ada compiler [11]. Berling
and Runeson use interaction testing to identify real and
false targets in target identification system [12]. Lazic and
Velasevic employed interaction testing on modeling and
simulation for automated target-tracking radar system [13].
White has also applied the technique to test graphical user
interfaces (GUIs) [14]. Other applications of interaction
testing include regression testing through the graphical user
interface [15] and fault localization [16, 17]. While earlier
work has indicated that pairwise testing (i.e., based on 2-way
interaction of variables) can be effective to detect most faults
in a typical software system, a counter argument suggests
such conclusion infeasible to generalize to all software system
faults. For example, a test set that covers all possible pairs of
variable values can typically detect 50% to 75% of the faults
in a program [18-20]. In other works it is found that 100% of
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faults are detectable by a relatively low degree of interaction,
typically 4-way combinations [21-23].

More recently, a study by The National Institute of
Standards and Technology (NIST) for error-detection rates in
four application domains included medical devices, a Web
browser, an HTTP server, and a NASA-distributed database
reported that 95% of the actual faults on the test software
involve 4-way interaction [24, 25]. In fact, according to the
recommendation from NIST, almost all of the faults detected
with 6-way interaction. Thus, as this example illustrates,
system faults caused by variable interactions may also span
more than two parameters, up to 6-way interaction for
moderate systems.

All the aforementioned related work in CIT applications
highlighted the potential of adopting the CIT strategies for
both software/hardware testing. While the CIT strategies can
significantly partition the exhaustive test space into man-
ageable manner, additional reduction can still be possible
particularly by systematically examining the effectiveness of
each test case in the test suite, that is, by exploiting fault
injection techniques.

The use of fault injection techniques for software and
hardware testing is not new. Tang and Chen [26], Boroday
[27], and Chandra et al. [28] study circuit testing in
hardware environment, proposing test coverage that includes
each 2! of the input settings for each subset of ¢ inputs.
Seroussi and Bshouty [29] give a comprehensive treatment
for circuit testing. Dumer [30] examines the related question
of isolating memory faults and uses binary covering arrays.
Finally, Ghosh and Kelly give a survey to include a number
of studies and tools that have been reported in the area of
failure mode identification [31]. These studies help in the
long-term improvement of the software development process
as the recurrence of the same failures can be prevented.
Failure modes can be specific to a system or be applicable
to systems in general. They can be used in testing for fault
tolerance, as realistic faults are needed to perform effective
fault injection testing. Additionally, Ghosh and Kelly also
describe a technique that injects faults in Java software by
manipulating the bytecode level for third party software
components used by the developers.

3. Proposed Strategy

The proposed strategy consists for two processes, namely,
Test Quality Signing (TQS) process and Test Verification
process (TV). Briefly, the TQS process deals with optimizing
the selection of test suite for fault injection as well as
performs the actual injection whilst the TV process analyzes
for conformance (see Figure 1).

As implied earlier, the TQS process aims to derive an
effective and optimum test suite and works as follows.

(1) Start with an empty Optimized Test Suite (OTS), and
empty Signing Vector (SV).

(2) Select the desired software class (for software testing).
Alternatively, build an equivalent software class for
the Circuit Under Test (CUT) (for hardware testing).

(3) Store these faults in fault list (FL).
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FIGURE 1: The quality signing and verification processes.

(4) Inject the class with all possible faults.

(5) Let N be maximum number of parameters.

(6) Initialize CIT strategy with strength of coverage (t)
equal one (i.e., r = 1).

(7) Let CIT strategy partition the exhaustive test space.
The portioning involves generating one test case at a
time for ¢ coverage. If ¢t coverage criteria are satisfied,
thent =t + 1.

(8) CIT strategy generates one Test Case (TC).
(9) Execute TC.

(10) If TC detects any fault in FL, remove the detected
fault(s) from FL, and add TC and its specification
output(s) to OTS and SV, respectively.

(11) If FLis not empty or t <= N, go to 7.

(12) The desired optimized test suite and its correspond-
ing output(s) are stored in OTS and SV, respectively.

The TV process involves the verification of fault free for each
unit. TV process for a single unit works as follows.

(1) for i = 1..Size(OTS) each TC in OTS do:

(a) Subject the SUT to TC[i], store the output in
Verification Vector VV[i].

(b) If VV[i] = SV [i], continue. Else, go to 3.

(2) Report that the cut has been passing in the test. Go to
4.

(3) Report that the cut has failed the test.

(4) The verification process ends.

As noted in the second step of the TQS process, the rationale
for taking equivalent software class for the CUT is to
ensure that the cost and control of the fault injection be
more practical and manageable as opposed to performing
it directly to a real hardware circuit. Furthermore, the
derivation of OTS is faster in software than in hardware.
Despite using equivalent class for the CUT, this verification

process should work for both software and hardware systems.
In fact, it should be noted that the proposed strategy could
also be applicable in the context of N-version programming
(e.g., the assessment of student programs for the same
assignment) and not just hardware production lines. The
concept of N-version programming was introduced by
Chen and Avizienis with the central conjecture that the
“independence of programming efforts will greatly reduce
the probability of identical software faults occurring in two
or more versions of the program” [32, 33].

4. Case Study

As proof of concept, we have adopted GMIPOG [10] as
our CIT strategy implementation, and MuJava version 3
(described in [34, 35]) as our fault injection strategy
implementation.

Briefly, GMIPOG is a combinatorial test generator based
on specified inputs and parameter interaction. Running on
a Grid environment, GMIPOG adopts both the horizontal
and vertical extension mechanism (i.e., similar to that of
IPOG [6]) in order to derive the required test suite for
a given interaction strength. While there are many useful
combinatorial test generators in the literature (e.g., Jenny
[3], TConfig [4], TVG [5], IPOG [6], IPOD [7], IPOF
[8], DDA [9]), the rationale for choosing GMIPOG is the
fact that it supports high degree of interaction and can be
run in cumulative mode (i.e., support one-test-at-a-time
approach with the capability to vary ¢ automatically until the
exhaustive testing is reached).

Complementary to GMIPOG, MuJava is a fault injection
tool that permits mutated Java code (i.e., based on some
defined operators) to be injected into the running Java
program. Here, the reason for choosing MuJava stemmed
from the fact that it is a public domain Java tool freely
accessible for download in the internet [35].

Using both tools (i.e., GMIPOG and MuJava), a case
study problem involving a 4-bit Magnitude Comparator IC
will be discussed here in order to evaluate the proposed
strategy. A 4-bit Magnitude Comparator consists of 8 inputs
(two four bits inputs, namely, a0...a3, and b0...b3. where
a0 and b0 are the most significant bits), 4 xnor gates (or
equivalent to 4xor with 4 not gates), five not gates, five
and gates, three or gates, and three outputs. The actual
circuit realization of the Magnitude Comparator is given
in Figure 2. Here, it should be noted that this version of
the circuit is a variant realization (implementation) of the
Magnitude Comparator found in [36]. The equivalent class
of the Magnitude Comparator is given in Figure 3 (using the
Java-programming language).

Here, it is important to ensure that the software imple-
mentation obeys the hardware implementation strictly. By
doing so, we can undertake the fault injection and produce
the OTS in the software domain without affecting the logical
of relation and parameter interactions of the hardware
implementation.

Now, we apply the TQS process; as illustrated in
Section 3. Here, there are 80 faults injected in the system. To
assist our work, we use GMIPOG [10] to produce the TC
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TaBLE 2: Derivation of OTS for the 4-bit Magnitude Comparator.

t= Cumulative Test Size Live Mutant Killed Mutant % Mutant Score Effective test size
1 2 15 65 81.25 2

2 9 5 75 93.75 6

3 24 78 97.50 8

4 36 80 100.00 9

TaBLE 3: OTS and SV for the 4-bit Magnitude Comparator.

#TC OTS TC (a0...a3, b0...b3) SV Outputs (A >B,A=B,A<B) Accumulative faults detected/80
1 FFFFFFFF FTF 53

2 TTTTTTTT FTF 65

3 FITTTTTT FFT 68

4 TTFTFTFT TFF 71

5 TTFFTFTT TFF 72

6 TTTFTTFF TFF 75

7 TTFTTTTF FFT 77

8 FFTTTTTF FFT 78

9 TFTTTFTF TFF 80

TaBLE 4: Cumulative faults detected when x = 7. bg AN gl (A>B)

#TC TC (a0...a3,b0...b3)  Cumulative faults detected /80 ’ %D

1 FFFFFFFF 53 bl

2 FFFFFTTT 54

3 FFFFTTTT 54 b2

4 FTTTFFEF 59 @

5 FTTTFTTT 67

6 FITTTTTT 70 Z%

7 TTTTFFFF 71

8 TTTTFTTT 71

9 TTTTTTTT 72 FIGURE 2: Schematic diagram for the 4-bit magnitude comparator.

TaBLE 5: Cumulative faults detected when x is randomly selective.

#TC TC (a0...a3, b0...b3) Cumulative faults detected /80

1 FFFFFFFF 53
2 FFFFFTTF 55
3 FFFFTTTT 55
4 TFTTFFFF 59
5 TFFTFTTT 61
6 TFTFTTTT 61
7 TTTTFFFF 61
8 TTTTTFFF 64
9 TTTTTTTT 72

in a cumulative mode. Following the steps in TQS process,
Table 2 demonstrates the derivation of OTS. Here, it should
be noted that the first 36 test cases can remove all the faults.
Furthermore, only the first 12 test cases when t = 4 are
needed to catch that last two live mutants. The efficiency of
integration GMIPOG with MuJava can be observed (by taken
only the effective TC) in the last column in Table 2.

Table 3 gives the desired OTS and SV, where T and
F represent true and false, respectively. In this case, TQS
process reduces the test size to nine test cases only, which
significantly improves the TV process.

To illustrate how the verification process is done (see
Figure 2), assume that the second output (i.e., A = B)
is out-of-order (i.e., malfunction). Suppose that A = B
output is always on (i.e., short circuit to “VCC”). This fault
cannot be detected as either TC1 or TC2 (according to
Table 2). Nevertheless, when TC3, the output vector (“VV”)
of faulty IC, is FT'T, and the SV is FFT, the TV process can
straightforwardly detects that the IC is malfunctioning (i.e.,
cut fails).

To consider the effectiveness of the proposed strategy in
the production line, we return to our illustrative example
given in Section 1. Here, the reduction of exhaustive test
from 256 test cases to merely nine test cases is significantly
important. In this case, the TV process requires only 9
seconds instead of 256 seconds for considering all tests. Now,
using one testing line and adopting our strategy for two
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public class Comparator {

//The function returns an output string that s
//the code symbols (!, A, |, and &)
public static String compare
boolean g1,g2,3;

boolean ml,m2,m3,m4;
String s = null;

ml =!(a0 A b0);
m2 =!(al A bl);
m3 =!(a2 A b2);
m4 =!(a3 A b3);

g2 = (ml&m2 &m3&m4);

83 =(g11g2);
= gl 4" +g2 4"
return s;

//Comparator takes two four bits numbers (A&B), where A = a0ala2a3
//B=b0b1b2b3. Here, a0 and b0 are the most significant bits.

//g1, g2, and g3 represent the logical outputs of A > B, A = B, and A < B respectively.
//represent the logical operator for Not, Xor, Or, and And respectively.

(boolean a0, boolean al, boolean a2, boolean a3,
boolean b0, boolean b1, boolean b2, boolean b3) {

g1 = (a0 &!b0)| (m1&al &!bl) |(m1&m2&a2 &!b2)| (m1&m2 &m3&a3 &!b3);

+g3; /1 just to return output strings for Mujava compatibility

FIGURE 3: Equivalent class Java program for the 4-bit magnitude comparator.

weeks can test (14X24X60X60/9 = 134400) chips. Hence,
to deliver one millions tested ICs’ during these two weeks,
our strategy requires eight parallel testing lines instead of
212 testing lines (if the test depends on exhaustive testing
strategy). Now, if we consider the saving efforts factor as
the size of exhaustive test suite minus optimized test suite to
the size of exhaustive test suite, we would obtain the saving
efforts factor of 256 — 9/256 = 96.48%.

5. Comparison

In this section, we demonstrate the possible test reduction
using block partitioning approach [1, 37] for comparison
purposes. Here, the partitions could be two 4-bit numbers,
with block values =0, 0 < x < 15, =15 and 9 test cases would
give all combination coverage. In this case, we have chosen
x = 7 as a representative value. Additionally, we have also
run a series of 9 tests where x is chosen at random between
0 and 15. The results of the generated test cases and their
corresponding cumulative faults detected are tabulated in
Tables 4 and 5, respectively.

Referring to Tables 4 and 5, we observe that block
partitioning techniques have achieved the mutant score of
90%. For comparative purposes, it should be noted that our
proposed strategy achieved a mutant score of 100% with the
same number of test cases.

6. Conclusion

In this paper, we present a novel strategy for automatic
quality signing and verification technique for both hardware
and software testing. Our case study in hardware production
line demonstrated that the proposed strategy could improve

the saving efforts factor significantly. In fact, we also
demonstrate that our proposed strategy outperforms the
traditional block partitioning strategy in terms of achieving
better mutant score with the same number of test cases. As
such, we can also potentially predict benefits in terms of
the time and cost saving if the strategy is applied as part of
software testing endeavor.

Despite giving a good result (i.e., as demonstrated in
earlier sections), we foresee a number of difficulties as far as
adopting mutation testing is concerned. In general, mutation
testing does not scale well. Applying mutation testing in
large programs can result in very large numbers of mutations
making it difficult to find a good test suite to kill all the
mutants. We are addressing this issue as part of our future
work by dealing with variable strength interaction testing.

Finally, we also plan to investigate the application of our
proposed strategy for computer-aided software application
and hardware design tool.
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