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Abstract: Surface Electromyography (SEMG) signal measurement technique in which an electrode connects
to the surface of human muscle skin was produced from the mechanics of human muscle contraction. This study
presents an off-line design for estimation of the actual joint angle of a human leg aftlicted by foot drop disease.
Flexion and extension of the leg are performed at low-speed and high speed movements. The design phases
(two) first have real human-leg EMG signal measured by SEMG and processed by filtering, amplification and
normalization with maximum amplitude, next an Artificial Neural Network (ANN) 1s trained to predict the jomt
angle from the parameters extracted from the SEMG signal. Three main parameters of the EMG signal are used
in the prediction: the number of tums in a specific period, duration of signal repetition and signal amplitude.
The ANN design includes two-speed (slow and fast) identification of the EMG signal and estimation
of the knee joint angle by a recognition process that depends on the parameters of the real EMG signal
measured from full leg-extension to full leg-flexion in slow motion (3 sec) and fast motion (1 sec). Root Mean
Square (RMS) errors were calculated between the actual angle (trigonometric formula applied to human leg gives
the real EMG signal measurement) and the angle predicted by the ANN. The design was simulated on MATLARB
Ver. R2018a. Satisfactory results obtained show possible estimation of human leg joint angle with RMS errors
of (0.065)-(0.015) mn fast leg flexion-extension and (0.018)-(0.0026) n slow leg flexion-extension.
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INTRODUCTION

The Surface Electromyography (SEMG) 13 a
non-invasive tool for investigation of skeletal muscle
properties. The potentials recorded have relatively narrow
bandwidth (50-500 Hz) and their amplitude is low
(50 pV-5 mV). The signals have been used not only to
monitor muscle behavior in rehabilitation programs but
also, in mechanical control of prostheses. Correct
prediction of the user-intended movement 1s mmportant.
SEMG suits such applications because it is noninvasive,
simple to use and intrinsically relates to user intention.
There are however, other useful variables especially
related to proprioception, e.g., joint angle, limb position
and force exerted (Delis et al, 2009, Geyer and Herr,
2010).

Development of active leg prosthesis with ankle and
foot axes necessitates use of information other than
SEMG signal. Myocelectric signals are thus used with
variables related to proprioception, to improve reliability
in clogsed-loop control systems. Figure 1 presents the
typical main components of general myoelectric pattern
recognition. SEMG signals are acquired by surface

electrodes placed on the skin of the user’s muscle
(sec). Signals from the electrodes are pre-amplified
to sift out the small signals of interest and then
amplified, filtered and digitized. The information is then
transferred to a myoelectric controller (Pate ef al,
2018).

Knee joint is one of the most complex synovial
joints in the human body. Its main functions are to
allow locomotive movement and a stable static. Knee
joint mobility 18 indispensable to human locomotion. It
helps correct foot orientation and positioning when
Knee articulation
has three motions: flexion, rotation and the shding of
the patella. The knee joint has
compartments: medial, lateral and patello-femoral; they
make the knee quite susceptible to injuries and chronic

overcoming ground irregularities.

three functional

diseases-displacement, arthritis, ligament rupture and
mermscl separation. Most injuries to human ligaments are
knee ligament njuries. The knee joint is swrounded
by a jomt capsule with ligaments strapping the inside
and the outside of the joint (collateral ligaments) as
well as crossing within the jomt (cruciate ligaments)
(Machado et al., 2010).
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Fig. 1: Typical mamm components of a general myoelectric controller based on pattern recognition
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Fig. 2: Human leg muscles that cause flexion/extension of the knee jomnt (Mader, 2004)

Knee joint 1s one of the most complex synovial joints
in the human bedy. Its main functions are to allow
locomotive movement and a stable static. Knee joint
mobility 18 indispensable to human locomotion. It helps
correct foot orientation and positioning when overcoming
ground uregularities. Knee articulation has three motions:
flexion, rotation and the sliding of the patella. The knee
joint has three functional compertments: medial, lateral
and patello-femoral; they malke the knee quite susceptible
to mjuries and chromc diseases-displacement, arthritis,
ligament rupture and menisci separation. Most injuries to
human ligaments are knee ligament injuries. The knee jomt
is surrounded by a joint capsule with ligaments strapping
the inside and the outside of the jomnt (collateral
ligaments) as well as crossing within the joint (cruciate
ligaments) (Machado et al., 2010).

The muscles of the lower limbs are larger and more
powerful than those of the upper limbs. They can be one
of three groups (Fig. 2) (Ellis, 2006; Lopez et al., 2018) that
move the thugh, the leg or the foot and toes.

MATERIALS AND METHODS

Movements of the knee: The principal movements of the
knee are flexion and extension. The capsule attaches to
the margins of the articular surfaces and above it to the
suprapatellar bursa (between the lower femoral shaft and
the quadriceps), posterior to the bursa under the medial
head of the gastrocnemius and often, through it with the
bursa under semimembranosus. It may also connect with
the bursa under the lateral head of the gastrocnemius. The
capsule is also perforated on its posterior by the popliteus
which emerges the way the long head of the biceps bursts
out of the shoulder joint.

The knee-joint capsule 1s reinforced on each side by
the medial and lateral collateral ligaments, the latter
passing to the head of the fibula, free of the capsule. On
its anterior, the capsule 18 strengthened mostly by the
ligamentum patellae which is strengthened on each side
by the medial and lateral patellar retinacula which are
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Fig. 3: Location of SEMG on a human leg

expansions from the vastus medialis and lateralis. On its
posterior, the tough oblique ligament arises as an
expansion from the insertion of the semimembranosus and
blends with the jomnt capsule (Bahadur and Rehman, 2018;

Bu et al., 2003; Bida, 2005; Khan et al., 2016).

Real EMG signal measurement: The procedure real
measurement of EMG signal in this research done by the
flowchart 1s shown m Fig. 3, three main steps m this
procedure as fellow.

Step 1; Select the positioning of the electrodes: Nine
muscles up and down the knee joint affect knee
movement. Clinical information and practical experience
show the best position is the one resulting in maximum
flexion/extension of the knee joint. Figure 3, S1 show the
practical experiment in selecting the best position for two
electrodes for the EMG signal to be obtained upon
movement of the joint. This research used four muscles
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that least affects flexion/extension of the knee joint. The
EMG signal recorded by the SEMG electrodes, therefore,
must use four electrodes simultanecusly (i.e., recording
four channels). This was not possible practically, so,
off-line technique was used mstead, to estimate the joint
angle through EMG signal (Reichl et al, 2010, Simsek,
2017).

Step 2; Real signal measurement by SEMG: The real
SEMG signals were in this research recorded as such:

»  (Spontaneous case) the knee jomnt relaxed and no
moverment in it

»  From full extension to full flexion of the knee jomnt in
slow motion (3 sec) of the leg

»  From full extension to full flexion of the knee jomnt in
fast motion (1 sec) of the leg

¢ The preceding two repeated with flexion angles 45,
90, 135° or the maximum humanly achievable
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Figure 3, 52 is a photo of the SEMG signal for the
main leg muscles that cause flexion/extension of the
knee jomt. They were as obtained using the instruments
m Baghdad’s Al-Yarmook Teaching Hospital The
experiment data was recorded by a single channel. This
problem caused the design to be achieved offline
where each movement needed four runs to obtain the full
data.

Step 3; Filtering signal and amplification: Figure 3 S3 is
a sample SEMG signal prepared through filtering and
amplification; these were achieved through EMGLab
Software which can process the real data recorded in the
TRC data format by the Micromed instruments.

Design of estimation joint angle: The knee joint angle
was in this research calculated by two methods. One uses
the trigonometric relationship with human leg posture to
get the knee-jomt angle before measuring the real SEMG
used in the second design estimating the joint angle.
Figure 4 shows the human-leg geometry used in
trigonometric form to calculate the joint angle. The
calculations assume the radius of the cross-sectional area
of the normal human leg aged 25 years to be r = 13 cm
(Simsek, 2017; Tarlochan et ai., 2002):

S:Reae:%;einmd;eozw (1)

Fig. 4: Geometry calculation of the knee joint angle

Where:
R = The length of the lower leg (from the knee jomt to the
ankle joint)

3 = The length of the arc from the mitial position of the
ankle joint to the second position of the ankle joint
6 = The angle of flexion/extension of the knee joint

The other method uses ANN (Fig. 5). The design has
two main stages, next described.

The identification stage: Knee-joint movement studies
show nine muscles effecting movement of the jomt,
four main muscles (vastus medialis, vastus lateralis for
extension and Semitendinosus, Gustrocomis for flexion)
causing jomt angle in jomt flexion/extension. The SEMG
signals of the four muscles will be used n estimating the
angle at leg movement.

This research used Recurrent Multilayer Perception
(RMLP) Neural Network (NN) in identifying the SEMG
signals of the four main muscles. Figure 6 block-diagrams
the identification stage (Goodfellow and O’ Connor, 1978).
The NN structure is (3%2R =2 (2)) (Fig. 7), i.e., three units
in layer 1 (the input layer), two recurrent units in layer 2
and 2 units in layer 3. The network has external feedback
with 2 umt delays. Sigmoidal activation functions were
used for all umts in both the hidden and the output
layers. The emor function measuring the difference

Lextension
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Fig. 6: The NN 1identification of the SEMG signal in human leg muscles
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between the neural net approximation and the desired
trajectory (Al Mashhadany and Abd Ralum, 2013;
Kulpa and Multon, 2005) 1s (Fig. 8):
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Fig. 7: Recurrent multilayer perception neural network
with structure (3x2Rx2(2)) (Sato et al, 2018, The recognition and decision stage: The test signal
Shrirao et al., 2009) recorded from the same type of muscles 1s used in
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estimating the joint angle. The database isformatted by
recording the SEMG signal of the muscles with joint
angles 0 (no command from the brain), n/4, ©/2 and 37/4
(maximum movement). After reconstructing the same
features for the test signal will be entered to the same
structure of RMLP-NN with identification data base by
feed forward training only the output of these networks is
recognizing the muscles and the amplitude of SEMG with
each sample. Through the following relation with the
SEMG signal over tume and averaging the results from
vastus medialis, vastus lateralis for extension and
Semitendinosus, Gustrocomis for flexion, first the jomt
angle at flexion is obtained and then the complement
angle (the extension angle). Figure 8 shows the second
design stage in estimating knee-joint angle.

RESULTS AND DISCUSSION

Simulation results: The estimation design was simulated
on MATLAB VarR2018a. Figure 9 shows identification
of human-leg SEMG signals relating to knee-joint

@

flexion/extension. It shows almost zero error after about
nine iterations, after which there was no local minimum or
increase in error. This i1s therefore, the best results for
1dentification post trial adjustment of the learning rate and
momentum (Sato et al., 2018; Shrirao ef al., 2009).

Low-speed leg movement: the leg was moved from full
extension to full flexion with a speed of about 3 sec per
cycle. Figure 10 shows the estimated values for knee
flexion/extension joint angle. Accurate jomnt angle was
achieved by calculating the RMS error between the
estimated values and the experiment value measured n
the first stage of the design. The RMS error values were
0.065-0.015.

High-speed leg movement: The same procedure as in low
speed was repeated, Fig. 11 gives the results. The RMS
errors were 0.018-0.0026 at fast leg flexion/extension.
Figure 12 shows the RMS values for two movement
speeds (low and high) with the time for low speed being
180 sec and for high speed 60 sec.
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Fig. 9: a-d) Error signal for identification of the SEMG signal of four muscles
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CONCLUSION

The results show the RMLP-NN capable of simple but
accurate 1dentification and solving of the IK of human leg.
The highly accurate estimation of the knee-joint angle
based on SEMG can benefit many applications. All these
signals measurement under constrain of foot drop disease
with this afflicting very difficult extracts the features from
EMG signal to get the leg posture. Also, many critical
coefficients in knee-joint movement must be considered
in estimating the joint angle. The results were obtained
off-line because multi-channel SEMG recording was
not possible practically, so, the SEMG signals were
mdividually recorded with the same command repeated
each time. Available measurements, savable SEMG
signals, online implementation and portability of the unit
will expand its use to many applications.
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