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Abstract 

This paper deals with the application of Neutrosophic Crisp sets 

(which is a generalization of Crisp sets) on the classical probability, 

from the construction of the Neutrosophic sample space to the 

Neutrosophic crisp events reaching the definition of Neutrosophic 

classical probability for these events. Then we offer some of the 

properties of this probability, in addition to some important theories 

related to it. We also come into the definition of conditional 

probability and Bayes theory according to the Neutrosophic Crisp 

sets, and eventually offer some important illustrative examples. This 

is the link between the concept of Neutrosophic for classical events 

and the neutrosophic concept of fuzzy events. These concepts can 

be applied in computer translators and decision-making theory. 
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Neutrosophic logic; fuzzy logic; classical logic; classical 
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1 Introduction 

The Neutrosophic logic is non-classical and new logic founded by the 

philosopher and mathematical American Florentin Smarandache in 1999. In [6] 

Salama introduced the concept of neutrosophic crisp set Theory, to represent any 

event by a triple crisp structure. Moreover the work of Salama et al.  [1-10] 

formed a starting point to construct new branches of neutrosophic mathematics 

and computer sci. Hence, Neutrosophic set theory turned out to be a 

generalization of both the classical and fuzzy counterparts. When he presented it 
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as a generalization of the Fuzzy logic, and an extension of the Fuzzy Sets Theory 

[9] presented by Zadeh in 1965 Played an important role in expanding our 

scientific and practical approach and reducing the degree of randomization in data 

that helps us reach high-resolution results. An extension of that logic was 

introduced by A.A. Salama, the Neutrosophic crisp set theory   as a generalization 

of classical set theory and Neutrosophic logic is a new branch that studies the 

origin, nature, and field of indeterminacy, as well as the interaction of all the 

different spectra imaginable in a case. This logic takes into account each idea 

with its antithesis with the indeterminacy spectrum. The main idea of 

Neutrosophic logic is to distinguish every logical statement in three 

dimensions[3.10] are truth in degrees (T) , false in degrees (F) and indeterminacy  

in degrees (I)  we express it in form (T, I, F) and puts them under the field of 

study, which gives a more accurate description of the data of the phenomenon 

studied, as this reduces the degree of randomization in the data, which will reach 

high-resolution results contribute to the adoption of the most appropriate 

decisions among decision makers. The Neutrosophyis a word composed of two 

sections :Neutro (in French Neutre, in  LatinNeuter ) meaning Neutral, and 

SophyIt is a Greek word meaning wisdom and then the meaning  ofthe word in 

its entirety (knowledge of neutral thought). We note that classical logic studies 

the situation with its opposite without acknowledging the state of indeterminacy, 

which is an explicit quantity in the logic of Neutrosophic  and one of its 

components, which gives a more accurate description of the study and thus obtain 

more correct results.  -In this paper we present a study of the application of the 

Neutrosophic logic to the classical possibilities ،from the occurrence of the 

experiment to the creation of probability and then to study its properties. 

2 Terminologies 

2.1 Neutrosophic Random Experiments 

We know the importance of experiments in the fields of science and 

engineering. Experimentation is useful in use, assuming that experiments under 

close conditions will yield equal results.  

In these circumstances, we will be able to determine the values of variables 

that affect the results of the experiment. In any case, in some experiments, we 

cannot determine the values of some variables and therefore the results will 

change from experiment to other.  

However, most of the conditions remain as it is. These experiments are 

described as randomized trials. When we get an undetermined result in the 

experiment (indeterminacy) and we take and acknowledge this result, we have a 

neutrosophic experience. 
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2.2 Example 

When throwing the dice, the result we will get from the experiment is one of 

the following results: {1, 2, 3, 4, 5, 6, i} Where i represents an indeterminacy 

result. We call this experience a Neutrosophic randomized experiment. 

2.3 Sample Spaces and Events due to Neutrosophic 

Group X consists of all possible results of a randomized experiment called the 

sample space. When these results include the result of the indeterminacy, we 

obtain the Neutrosophic sample space. 

2.4 Neutrosophic events 

The event: Is a subset A of the sample space X, that is, a set of possible outcomes. 

The Neutrosophic set of the sample space formed by all the different assemblies 

(which may or may not include indeterminacy) of the possible results these 

assemblies are called Neutrosophic. Salama and Hanafy et al. [12-14] 

introduced laws to calculate correlation coefficients and study regression lines 

for the new type of data; a new concept of probability has been introduced for 

this kind of events. It is a generalization of the old events and the theory of the 

ancient possibilities. This is the link between the concept of Neutrosophic for 

classical events and the neutrosophic concept of fuzzy events. These concepts can 

be applied in computer translators and decision-making theory.  

2.5 The concept of Neutrosophic probability 

We know that probability is a measure of the possibility of a particular event, 

and Smarandache presented the neutrosophic experimental probability, which is 

a generalization of the classical experimental probability as follows [2, 4]: 

(
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 
,
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 𝑜𝑐𝑐𝑢𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 
,
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 
) 

If we had the neutrosophic event, 𝐴 = (𝐴1, 𝐴2, 𝐴3)we define the neutrosophic 

probability (Which is marked with the symbol NP) for this event as follows: 

𝑁𝑃(𝐴) = ( 𝑃(𝐴1) , 𝑃(𝐴2) , 𝑃(𝐴3)) = (𝑇 , 𝐼 , 𝐹 ), with: 

 𝑃(𝐴1) represents the probability of event A 

 𝑃(𝐴2) represents the probability of 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 

 𝑃(𝐴3) represents the probability that event A will not occur 

According to the definition of classical probability:𝑃1, 𝑃2, 𝑃3   ∈ [0,1] 

We therefore define the neutrosophic probability [2] in the form: 

𝑁𝑃: 𝑋 →  [0,1]3,  where X is a neutrosophic sample space. 

The micro-space of the total group, which has a neutrosophic probability 

for each of its partial groups, calls it a neutrosophic classical probability space. 
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In [7, 13] the neutrosophic logic can distinguish between the absolutely sure event 

(the sure event in all possible worlds and its probabilistic value is 1+) and the 

relative sure event (the sure event in at least one world and not in all worlds its 

probability is 1) where1 < 1+. Similarly, we distinguish between the absolutely 

impossible event (the impossible event in all possible worlds its probabilistic 

value is -0) and the relative impossible event (the impossible event in at least one 

world and not in all worlds its probabilistic value is 0) where -0 <0. 

0− = 0 − ε &1+ = 1 + ε where ε is a very small positive number. 

So, define components(T , I , F )on the non-standard domain ]-0 , 1+ [. 

For 𝐴 = (𝐴1, 𝐴2, 𝐴3)neutrosophic classical event Then it is: 
−0 ≤  𝑃(𝐴1) +  𝑃(𝐴2) +  𝑃(𝐴3) ≤ 3

+ 

For 𝐴 = (𝐴1, 𝐴2, 𝐴3)neutrosophic crisp event of the first type Then : 

0 ≤  𝑃(𝐴1) +  𝑃(𝐴2) +  𝑃(𝐴3) ≤ 2 

The probability  of neutrosophic crisp event of the second type is a 

neutrosophic crisp event then  : 
−0 ≤  𝑃(𝐴1) +  𝑃(𝐴2) +  𝑃(𝐴3) ≤ 2

+ 

The probability  of neutrosophic crisp event of the third  type is a 

neutrosophic crisp event then: 
−0 ≤  𝑃(𝐴1) +  𝑃(𝐴2) +  𝑃(𝐴3) ≤ 3+          ……….. [12] 

2.6 The Axioms of Neutrosophic probability 

For  𝐴 = (𝐴1, 𝐴2, 𝐴3) neutrosophic crisp event on the X  then :  

𝑁𝑃(𝐴) = ( 𝑃(𝐴1) , 𝑃(𝐴2) , 𝑃(𝐴3)) 

 where: 

 𝑃(𝐴1) ≥ 0    ,   𝑃(𝐴2) ≥ 0     ,  𝑃(𝐴3) ≥ 0 

The probability of neutrosophic crisp event 𝐴 = (𝐴1, 𝐴2, 𝐴3) 

𝑁𝑃(𝐴) = ( 𝑃(𝐴1) , 𝑃(𝐴2) , 𝑃(𝐴3)) 

 Where: 

 0 ≤ 𝑃(𝐴1) ≤ 1    ,   0 ≤ 𝑃(𝐴2) ≤ 1     ,  0 ≤ 𝑃(𝐴3) ≤ 1 

For 𝐴1, 𝐴2, … .. Inconsistent neutrosophic crisp events then : 

NP(A) = (A1 ∪ A2 ∪ …… ) =  (   P(A1) + P(A2) +

⋯… . .    ,    P(iA1∪A2∪…)  , p(A1 ∪ A2 ∪ …
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )). 

3 Some important theorems on the neutrosophic crisp 

probability 

Theorem 1 

If we have A, B two neutrosophic crisp events and 𝐴 ⊆ 𝐵 then: 
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The first type: 

NP(A) ≤ NP(B)     ⇔   P(A1) ≤ P(B1)   , P(A2) ≤ P(B2) ,

P(A3) ≥ P(B3) 

The second type: 

NP(A) ≤ NP(B)     ⇔   P(A1) ≤ P(B1)   , P(A2) ≥ P(B2) ,

P(A3) ≥ P(B3) 

Theorem 2 

Probability of the neutrosophic impossible event (symbolized by 

form 𝑁𝑃 (∅𝑁)) we define it as four types: 

The first type: 

𝑁𝑃 (∅𝑁)   = (𝑃(∅), 𝑃(∅), 𝑃(∅)) = (0,0,0) = 0𝑁 

The second type: 

𝑁𝑃 (∅𝑁)   = (𝑃(∅), 𝑃(∅), 𝑃(𝑋)) = (0,0,1) 

The third type: 

𝑁𝑃 (∅𝑁)   = (𝑃(∅), 𝑃(𝑋), 𝑃(∅)) = (0,1,0) 

The fourth type: 

𝑁𝑃 (∅𝑁)   = (𝑃(∅), 𝑃(𝑋), 𝑃(𝑋)) = (0,1,1) 

Theorem 3 

Probability of the neutrosophic overall crisp event (symbolized by form 

𝑁𝑃 (𝑋𝑁)) we define it as four types: 

The first type: 

𝑁𝑃 (𝑋𝑁)   = (𝑃(𝑋) , 𝑃(𝑋) , 𝑃(𝑋)) = (1,1,1) = 1𝑁 

The second type: 

𝑁𝑃 (𝑋𝑁)   = (𝑃(𝑋) , 𝑃(𝑋) , 𝑃(∅)) = (1,1,0) 

The third type: 

𝑁𝑃 (𝑋𝑁)   = (𝑃(𝑋) , 𝑃(∅) , 𝑃(∅)) = (1,0,0) 

The fourth type: 

𝑁𝑃 (𝑋𝑁)   = (𝑃(𝑋) , 𝑃(∅) , 𝑃(𝑋)) = (1,0,1) 

Theorem 4 

If 𝐴c represents the complement of the event A, then the probability of this 

event is given according to the following may be three types: 

Where  𝐴c = (A1
c , A2

c , A3
c ) 

The first type: 

𝑁𝑃 (𝐴c)   = (𝑃(A1
c ) , 𝑃(A2

c ) , 𝑃(A3
c ))    

= (  1 − 𝑝(𝐴1)  , 1 − 𝑝(𝐴2) , 1 − 𝑝(𝐴3) ) 

The second type: 
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𝑁𝑃 (𝐴c) = (  𝑃(𝐴3)  , 𝑃(𝐴2)  , 𝑃(𝐴1)  ) 

The third type: 

𝑁𝑃 (𝐴c) = (  𝑃(𝐴3)  , 𝑃(A2
c )  , 𝑃(𝐴1)  ) 

Theorem 5 

For A, B two neutrosophic crisp events 

𝐴 = (𝐴1, 𝐴2, 𝐴3) 

𝐵 = (𝐵1, 𝐵2, 𝐵3) 

Then the probability of the intersection of these two events is given in the 

form: 

𝑁𝑃(𝐴 ∩ 𝐵) = ( 𝑃(𝐴1 ∩ 𝐵1)  , 𝑃(𝐴2 ∩ 𝐵2), 𝑃(𝐴3 ∪ 𝐵3) ) 

 or 

𝑁𝑃(𝐴 ∩ 𝐵) = ( 𝑃(𝐴1 ∩ 𝐵1)  , 𝑃(𝐴2 ∪ 𝐵2), 𝑃(𝐴3 ∪ 𝐵3) ) 

In general if we have the neutrosophic crisp events A, B, C then: 

𝑁𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = (  𝑃(𝐴1 ∩ 𝐵1 ∩ 𝐶1)   , 𝑃(𝐴2 ∩ 𝐵2 ∩ 𝐶2), 𝑃(𝐴3 ∪ 𝐵3 ∪ 𝐶3)  ) 

 Or 

𝑁𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = (  𝑃(𝐴1 ∩ 𝐵1 ∩ 𝐶1)   , 𝑃(𝐴2 ∪ 𝐵2 ∪ 𝐶2), 𝑃(𝐴3 ∪ 𝐵3 ∪ 𝐶3)  ) 

We can generalize on n of the neutrosophic crisp events. 

Theorem 6 

Under the same assumptions in theory (1-5) the union of these two 

neutrosophic crisp events will be:  [28] 

𝑁𝑃(𝐴 ∪ 𝐵) = ( 𝑃(𝐴1 ∪ 𝐵1)  , 𝑃(𝐴2 ∪ 𝐵2), 𝑃(𝐴3 ∩ 𝐵3) ) Or 

𝑁𝑃(𝐴 ∪ 𝐵) = ( 𝑃(𝐴1 ∪ 𝐵1)  , 𝑃(𝐴2 ∩ 𝐵2), 𝑃(𝐴3 ∩ 𝐵3) ) 

Theorem 7 

If we have a neutrosophic crisp event that is about: 

𝐴 = 𝐴1 ∪ 𝐴2 ∪ ……… .∪ 𝐴𝑛 

The neutrosophic crisp events 𝐴1, A2, …… , An are In consistent then 

neutrosophic crisp event A we write it in the form: 

𝐴 = (𝐴1, A2, A3)

= ((𝐴11, 𝐴12, 𝐴13) ∪ (𝐴21, 𝐴22, 𝐴23) ∪ …… . .

∪ (𝐴𝑛1, 𝐴𝑛2, 𝐴𝑛3)) 

Therefore: 

𝑁𝑃(𝐴) = 𝑁𝑃(𝐴1) + 𝑁𝑃(𝐴2) + ⋯…+  𝑁𝑃(𝐴𝑛) 

Theorem 8 

If we have A neutrosophic crisp event and 𝐴c It is an complement event on 

the whole set X then: 

A ∪ 𝐴c = 𝑋 Therefore: 

𝑁𝑃 (𝐴) + 𝑁𝑃(𝐴c) = 𝑁𝑃(𝑋𝑁) = 1𝑁 = (1,1,1) 
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4 Neutrosophic Crisp Conditional Probability 

If we have A, B two neutrosophic crisp events  

          𝐴 = (𝐴1, 𝐴2, 𝐴3)   𝐵 = (𝐵1, 𝐵2, 𝐵3) 

Then the neutrosophic conditional probability is defined to occur A if B 

occurs in the form: 

𝑁𝑃(𝐴|𝐵) = ( 𝑃(𝐴|𝐵)  , 𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝐴|𝐵) , 𝑃(𝐴
c|𝐵)) 

= (   
𝑝(𝐴∩𝐵)

𝑃(𝐵)
  , 𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝐴|𝐵)  ,

𝑝(𝐴c∩𝐵)

𝑃(𝐵)
   )  IF: 𝑃(𝐵) > 0 

From it we conclude that:  

 𝑁𝑃(𝐴|𝐵) ≠ 𝑁𝑃(𝐵|𝐴) 

- The conditional probability of complement the neutrosophic event Ac is 

conditioned by the occurrence of the event B. 

We distinguish it from the following types: 

 The first type: 

𝑁𝑃(𝐴c|𝐵) = (
𝑃(𝐴3 ∩ 𝐵1)

𝑃(𝐵1)
 ,
𝑃(𝐴2

𝑐 ∩ 𝐵2)

𝑃(𝐵2)
 ,
𝑃(𝐴1 ∩ 𝐵3)

𝑃(𝐵3)
 ) 

The second type: 

𝑁𝑃(𝐴c|𝐵) = (
𝑃(𝐴3 ∩ 𝐵1)

𝑃(𝐵1)
 ,
𝑃(𝐴2 ∩ 𝐵2)

𝑃(𝐵2)
 ,
𝑃(𝐴1 ∩ 𝐵3)

𝑃(𝐵3)
 ) 

- The rule of multiplication in neutrosophic crisp conditional probability: 

𝑁𝑃(𝐴 ∩ 𝐵)

= (  𝑃(𝐴1). 𝑃(𝐵1|𝐴1)   , 𝑃(𝐴2). 𝑃(𝐵2|𝐴2) , 𝑃(𝐴3) . 𝑃(𝐵3
𝑐|𝐴3) ) 

5 Independent Neutrosophic Events 

We say of the neutrosophic events that they are independent if the 

occurrence of either does not affect the occurrence of the other.Then the 

neutrosophic conditional probability of the crisp event A condition of occurrence 

B is it neutrosophic crisp probability of A. We can verify independence of A, B 

if one of the following conditions is check: 

𝑁𝑃(𝐴|𝐵) = 𝑁𝑃(𝐴), 𝑁𝑃(𝐵|𝐴) = 𝑁𝑃(𝐵), 𝑁𝑃(𝐴 ∩ 𝐵) = 𝑁𝑃(𝐴). 𝑁𝑃(𝐵) 

(We can easily validate the above conditions based on classical conditional 

probability  (  .  

Equally: 

If the two neutrosophic crisp events A, B are independent then: 

Ac Independent of B 

A  Independent of   Bc 

  Ac Independent of   Bc 

(Pronounced from the definition of a complementary event in Theorems 4). 
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6 The law of total probability and Bayes theorem via 

Neutrosophic crisp sets  

6.1 The law of Neutrosophic crisp total probability 

(1) We have a sample space consisting of then neutrosophic crisp 

comprehensive events 𝐴1, A2… . . , An 

𝐴1 ∪ A2 ∪ … .∪ An = XN 

((𝐴11, 𝐴12, 𝐴13) ∪ (𝐴21, 𝐴22, 𝐴23) ∪ …… . .∪ (𝐴𝑛1, 𝐴𝑛2, 𝐴𝑛3)) = XN 

(2) The neutrosophic comprehensive events are inconsistent two at a 

time among them: 

Ai ∩ Aj = ∅   ∀ 𝑖 ≠ 𝑗 

(3) The neutrosophic crisp event B represents a common feature in all 

joint neutrosophic crisp events , note the following figure(1): 

 

Figure (1) 

 

We take the neutrosophic crisp probability for these events: 

𝑁𝑃(𝐴1), NP(A2) , … . . , NP(An) 

From the graphic, we note that: 

𝑁𝑃(𝐵) =  𝑁𝑃(𝐴1 ∩ B) +   𝑁𝑃(𝐴2 ∩ B) + ⋯…+  𝑁𝑃(𝐴n ∩ B) 

From the definition of neutrosophic crisp conditional probability: 

𝑁𝑃(B ∩ 𝐴i ) =  ( 𝑃(𝐴i 1). P(B\𝐴i 1) , 𝑃(𝐴i 2). P(B\𝐴i 2), 𝑃(𝐴i 3). P(B\𝐴i 3) ) 

Therefore: 

𝑁𝑃(𝐵) = 𝑁𝑃(𝐵|𝐴1). 𝑁𝑃(𝐴1) + 𝑁𝑃(𝐵|𝐴2). 𝑁𝑃(𝐴2)

+ … . . +𝑁𝑃(𝐵|𝐴𝑛). 𝑁𝑃(𝐴𝑛) 

Which is equal to 

= (𝑝(𝐴11). 𝑃(𝐵\𝐴11), 𝑝(𝐴12). 𝑃(𝐵\𝐴12), 𝑝(𝐴13). 𝑃(𝐵
𝑐\𝐴13) +   

𝑝(𝐴21). 𝑃(𝐵\𝐴21), 𝑝(𝐴22). 𝑃(𝐵\𝐴22), 𝑝(𝐴23). 𝑃(𝐵
𝑐\𝐴23) + 

+⋯…… . . +(𝑝(𝐴𝑛1). 𝑃(𝐵\𝐴𝑛1), 𝑝(𝐴𝑛2). 𝑃(𝐵\𝐴𝑛2), 𝑝(𝐴𝑛3). 𝑃(𝐵
𝑐\𝐴𝑛3) 

6.2 Bayes theorem by Neutrosophic: 

Taking advantage of the previous figure (1): 

Neutrosophic total probability iff Probability of occurrence a common 

feature B. 
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Bayes theorem iff provided that the neutrosophic crisp event occur 

B,What is the probability of being from 𝐴i (Item selected from B, What is the 

probability of being from 𝐴i ) 

Under the same assumptions that we have set in the definition of the 

law of neutrosophic crisp total probability, we reach the Bayes Law as 

follows: 

𝑁𝑃(𝐴i \B) = (
P(B1\Ai1)p(Ai1)

p(B1)
 ,
P(B2\Ai2)p(Ai2)

p(B2)
 ,
P(B3\Ai3

c )p(Ai3
c )

p(B3)
 ) 

6.3 Examples 

Let us have the experience of throwing a dice stone and thus we have 

the neutrosophic sample space as: X= {1, 2, 3, 4, 5, 6, i}, where i represents 

the probability of getting indeterminacy. 

We have the possibility of getting indeterminacy= 0.10  

Then to calculate the following possibilities: 

1- 𝑁𝑃(1 )  =  (1−0.10 
6

, 0.10 , 5.
1−0.10 

6 
) 

= (  0.15   , 0.10   , 0.75  ) =   𝑁𝑃 ( 2 )  = ⋯… =  𝑁𝑃( 6 ) 

2- 𝑁𝑃 (1𝑐) = (   𝑃(2,3,4,5 )  ,   0.10    , 𝑃(1)) 
 =(   5  (0.15)  ,  0.10  ,  0.15  )=  (  0.75  ,  0.10  , 0.15  )   

3- 𝑁𝑃(1   𝑜𝑟   2 ) = ( 𝑝(1) + 𝑝(2)  , 0.10  , 𝑝(3,4,5,6 )) 

= ( 2(0.15) , 0.10  , 4(0.15)) = ( 0.30   , 0.10   , 0.60  ) 

But when we have B={2,3,4,5}   ,  A={1,2,3 }  then : 

𝑁𝑃( 𝐴  𝑜𝑟  𝐵 ) = ( 𝑃(𝐴) +  𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)  , 0.10  , 𝑃(𝐴𝑐)  𝑎𝑛𝑑  𝑃(𝐵𝑐) )  

= ( 3(0.15) + 4(0.15) − 2(0.15)  , 0.10   , 𝑃{4,5,6} 𝑎𝑛𝑑 𝑃{1 , 6 }) 

= (  0.75 , 0.10  , 𝑃(6)) = (0.75  , 0.10  , 0.15 ) 

4- 𝑁𝑃 ({1,2,3}) = (𝑃{1,2,3} , 0.10 , 𝑃{1,2,3}𝑐) 
= (  𝑝(1) + 𝑝(2) + 𝑝(3)  , 0.10   , 𝑝(4) + 𝑝(5) + 𝑝(6)) 

= (0.15 + 0.15 + 0.15  , 0.10 , 0.15 + 0.15 + 0.15) 

= ( 0.45  , 0.10 , 0,45 ) 

I. Assuming we have a jar containing: 

5 cards have a symbol A, 3cards have a symbol B 

2 cards are not specified )The symbol is erased on them) 

If A represents is getting the card A from the jar 

 B represents is getting the card B from the jar 

Then  

𝑁𝑃 (𝐴) = (
5

10
 ,
2

10
 ,
3

10
)       ,    𝑁𝑃 (𝐵) = (

3

10
 ,
2

10
 ,
5

10
  ) 

If card B is withdrawn from the jar then it will be: 
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𝑁𝑃 ( 𝐴\𝐵) = (
𝑃(𝐵\𝐴). 𝑃(𝐴)

𝑃(𝐵)
 , 𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟 𝐴\𝐵), 𝑃(𝐴𝑐\𝐵)) 

= (
(
3

9
) ( 

5

9
)

3

9

  ,
2

9
  , 𝑃(𝐵\𝐵) = 𝑃(𝐵) =

2

9
) = ( 

5

9
 ,
2

9
 ,
2

9
 ) 

If card A is withdrawn from the jar then it will be: 

The same way we get: 𝑁𝑃(𝐵\𝐴) = (  
3

9
  ,
2

9
  ,
4

9
  ) 

Thus, Bayes theory according to neutrosophic be as: 

𝑁𝑃(𝐴\𝐵) = ( 𝑃(𝐴\𝐵 ), 𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟 𝐴\𝐵), 𝑃(𝐴
𝑐\𝐵))

=
𝑃(𝐵\𝐴). 𝑃(𝐴)

𝑃(𝐵)
  ,   𝑃(𝑖𝑛𝑑𝑒𝑡𝑒𝑟 𝐴\𝐵)  ,

 𝑃(𝐵\𝐴𝑐). 𝑃(𝐴𝑐)

𝑃(𝐵)
  ) 

= (
3

9 

5

10
3

10

  ,
2

9
    , 𝑃(𝐵\𝐵)) = ( 

5

9
 ,
2

9
 ,
2

9
 ) 

Let us have the X set X={ a ,b ,c ,d }  and  

A= ({a,b} , {c} , {d} )  

B= ({a}, {c}, {d,b})  

 Two neutrosophic events from the first type on X and we have: 

𝑈1 = ({a, b}, {c, d}, {a, d}) 

𝑈2 = ({a, b, 𝑐}, {c}, {d}) 

Two neutrosophic events from the third type on X then: 

The first type : 

𝐴 ∩ 𝐵 = ( {𝑎}, {𝑐}, {𝑑, 𝑏}) 

𝑁𝑃(𝐴 ∩ 𝐵) = ( 0.25  , 0.25 , 0.50 ) 

 The second type:    

𝐴 ∩ 𝐵 = ( {𝑎}, {𝑐}, {𝑑, 𝑏}) 

𝑁𝑃(𝐴 ∩ 𝐵) = ( 0.25  , 0.25 , 0.50 ) 

The first type : 

𝐴 ∪ 𝐵 = ( {𝑎, 𝑏}, {𝑐}, {𝑑}) 

𝑁𝑃(𝐴 ∪ 𝐵) = ( 0.50 , 0.25 , 0.25 ) 

  The second type:    

𝐴 ∪ 𝐵 = ( {𝑎, 𝑏}, {𝑐}, {𝑑}) 

𝑁𝑃(𝐴 ∪ 𝐵) = ( 0.50 , 0.25 , 0.25 ) 

The first type : 

𝐴c = ({𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}) 

𝑁𝑃(𝐴c) = ( 0.50 , 0.75 , 0.75 ) 

The second type:    

𝐴c = ({𝑑}, {𝑐}, {𝑎, 𝑏}) 



Neutrosophic Operational Research 

Volume III 

59 

 

𝑁𝑃(𝐴c) = ( 0.25 , 0.25 , 0.50 ) 

The third type:    

𝐴c = ({𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏}) 

𝑁𝑃(𝐴c) = ( 0.25 , 0.75 , 0.50 ) 

The first type :  

𝐵c = ({𝑏, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏}) 

𝑁𝑃(𝐵c) = ( 0.75 , 0.75 , 0.50 ) 

The second type 

𝐵c = ({𝑏, 𝑑}, {𝑐}, {𝑎}) 

The third type:    

𝐵c = ({𝑏, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎}) 

𝑁𝑃(𝐵c) = ( 0.50 , 0.75 , 0.25) 

The first type 

𝑈1 ∪ U2 = ({ 𝑎, 𝑏, 𝑐}, { 𝑐, 𝑑}, {𝑑}) 

𝑁𝑃(𝑈1 ∪ U2) = ( 0.75 , 0.50 , 0.25 ) 

The second type 

𝑈1 ∪ U2 = ({ 𝑎, 𝑏, 𝑐}, { 𝑐}, {𝑑}) 

𝑁𝑃(𝑈1 ∪ U2) = ( 0.75 , 0.25  , 0.25 ) 

The first type 

𝑈1 ∩ U2 = ({ 𝑎, 𝑏}, { 𝑐}, {𝑎, 𝑑}) 

𝑁𝑃(𝑈1 ∩ U2) = ( 0.50 , 0.25  , 0.50 ) 

The second type 

𝑈1 ∩ U2 = ({ 𝑎, 𝑏}, { 𝑐, 𝑑}, {𝑎, 𝑑}) 

𝑁𝑃(𝑈1 ∩ U2) = ( 0.50 , 0.50  , 0.50 ) 

The first type: 

𝑈1
c = ({𝑐, 𝑑}, {𝑎, 𝑏}, {𝑏, 𝑐}) 

𝑁𝑃 (𝑈1
c) = (0.50 , 0.50 , 0.50 ) 

The second type:   

𝑈1
c = ({𝑎, 𝑑}, {𝑐, 𝑑}, {𝑎, 𝑏}) 

𝑁𝑃 (𝑈1
c) = (0.50 , 0.50 , 0.50 ) 

The third type 

𝑈1
c = ({𝑎, 𝑑}, {𝑎, 𝑏}, {𝑎, 𝑑}) 

𝑁𝑃 (𝑈1
c) = (0.50 , 0.50 , 0.50 ) 

The first type: 

𝑈2
c = ({𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}) 

𝑁𝑃 (𝑈2
c) = (0.25 , 0.75 , 0.75 ) 

The second type:   

𝑈2
c = ({𝑑}, {𝑐}, {𝑎, 𝑏, 𝑐}) 

9- 𝑁𝑃 (𝑈2
c) = (0.25 , 0.25 , 0.75 ) 

The third type 
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𝑈2
c = ({𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}) 

𝑁𝑃 (𝑈2
c) = (0.25 , 0.75 , 0.75 ) 

𝑁𝑃 (𝐴) =(0.50, 0.25, 0.25) 

𝑁𝑃(B) =(0.25, 0.25, 0.50) 

𝑁𝑃 (𝑈1) =(0.50,0.50,0.50) 

𝑁𝑃 (𝑈2) =(0.75,0.25,0.25) 

𝑁𝑃 (𝑈1
𝑐 ) =(0.50,0.50,0.50) 

𝑁𝑃 (𝑈2
𝑐 ) =(0.25,0.75,0.75) 

10-  (𝐴 ∩ 𝐵)c = ({b, c, d}, {a, b, d}, {a, c}) 

𝑁𝑃(𝐴 ∩ 𝐵)c = (0.75  , 0.75 , 0.50 ) 

11- 𝑁𝑃 (𝐴𝑐)  ∩ 𝑁𝑃(𝐵𝑐) = ({𝑐, 𝑑}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}) 

= ( 0.50 , 0.75 , 0.75 ) 

𝑁𝑃 (𝐴𝑐)  ∪ 𝑁𝑃(𝐵𝑐) = ({𝑐, 𝑑, 𝑏}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}) 

= (0.75  , 0.75 , 0.75 ) 

12- 𝐴 ∗ 𝐵 = {(𝑎, 𝑎), (𝑏, 𝑎)}, {(𝑐, 𝑐)}, {(𝑑, 𝑑), (𝑑, 𝑏)} 

𝑁𝑃(𝐴 ∗ 𝐵) = (
2

16
 ,
1

16
 ,
2

16
 ) 

𝐵 ∗ 𝐴 = ({(𝑎, 𝑎), (𝑎, 𝑏)}, {𝑐, 𝑐}, {(𝑑, 𝑑), (𝑏, 𝑑)} 

𝑁𝑃(𝐵 ∗ 𝐴) = (
2

16
 ,
1

16
 ,
2

16
) 

𝐴 ∗ 𝑈1 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎 ), (𝑏, 𝑏)}, {(𝑐, 𝑐), (𝑐, 𝑑)}, {(𝑑, 𝑎), (𝑑, 𝑑 )} 

 𝑁𝑃(𝐴 ∗ 𝑈1) = (
4

16
,
2

16
,
2

16
) 

U1 ∗ U2
= ({(a, a), (a, b), (a, c), (b, a), (b, b), (b, c)}, {(c, c), (d, c)}, {(a, d), (d, d)} 

= (
6

16
,
2

16
,
2

16
) 
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