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Abstract
Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyper-

thyroidism. There is, however, some debate about its use during pregnancy as MMI is known to

cross the mammalian placenta and reach the developing foetus. A similar problem occurs in

birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate

whether maternally derived MMI can have detrimental effects on embryonic development, we

treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI

contents in the tissues of hens and embryos at different stages of development. In hens, MMI was

selectively increased in the thyroid gland, while its levels in the liver and especially brain

remained relatively low. Long-term MMI treatment induced a pronounced goitre with a

decrease in thyroxine (T4) content but an increase in thyroidal 3,5,30-triiodothyronine (T3)

content. This resulted in normal T3 levels in tissues except in the brain. In chicken embryos, MMI

levels were similar in the liver and brain. They gradually decreased during development but

always remained above those in the corresponding maternal tissues. Contrary to the situation in

hens, T4 availability was only moderately affected in embryos. Peripheral T3 levels were reduced

in 14-day-old embryos but normal in 18-day-old embryos, while brain T3 content was decreased

at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively

high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on

embryonic thyroid hormone availability is most pronounced for brain T3 content, which is

reduced throughout the embryonic development period.
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Introduction
Untreated hyperthyroidism in pregnant women increases

the risk for a number of adverse outcomes for the mother

and foetus, including intrauterine growth restriction,
miscarriage, preterm delivery, pre-eclampsia and conges-

tive heart failure (Luewan et al. 2011). Maternal hyper-

thyroidism can be treated with anti-thyroid drugs such as
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AUTHOR COpropylthiouracil (PTU) and methimazole (MMI). However,

these drugs may in turn have a negative impact on foetal

development as they can cross the placenta. The present

clinical guidelines advise to avoid the use of MMI in early

pregnancy because it may increase the risk of specific

malformations including choanal and oesophageal atresia

and aplasia cutis congenita (Wolf et al. 2006, Azizi &

Amouzegar 2011, Rodriguez-Garcia et al. 2011, Vissenberg

et al. 2012), but it remains unclear whether these

abnormalities are linked to MMI or to the maternal

hyperthyroidism itself (Barbero et al. 2008).

While it is known that MMI is transferred from the

mother to the embryo/foetus, either through the placenta

in mammals or through a deposit in the egg in non-

mammalian vertebrates, data on the relative MMI con-

centrations in different embryonic/foetal tissues are

scarce. In addition, to what extent maternal MMI reaching

the embryo/foetus is present in the reduced or oxidised

form has hardly been investigated. While oxidised MMI

metabolites are no longer active as anti-thyroid drugs,

they have been associated with cytotoxic effects (Kedderis

& Rickert 1985, Laurence et al. 1998, Heidari et al. 2012)

and as such they may still disturb normal development.

It also remains unclear to what extent maternal MMI

treatment disturbs thyroid hormone (TH)-dependent

development in the embryo/foetus. Maternally derived

MMI can block the developing thyroid gland as shown

repeatedly in rats (Comer & Norton 1985, Ruiz de Ona

et al. 1988, Calvo et al. 1990). However, the early

vertebrate brain is highly dependent on adequate

3,5,3 0-triiodothyronine (T3) availability, and it may not

yet be able to compensate for a reduced TH supply by an

increase in type 2 iodothyronine deiodinase (D2) activity

as observed in the adult brain (Ruiz de Ona et al. 1988, Van

Herck et al. 2012). Apart from inhibiting TH production, it

has been found more recently that MMI may also have

local anti-thyroid effects in tissues by directly suppressing

transcriptional activities mediated by T3 and its receptors

(Moriyama et al. 2007).

In this study, we have used the chicken embryo to

study the effect of maternal MMI treatment on the

developing embryo. It has been shown earlier that MMI

is taken up from the egg by the embryo and is capable of

disturbing development, including brain development

(Iqbal et al. 1987, Liu & Porter 2004, Kagami & Nishigori

2010). We measured the levels of MMI and its metabolites

in different maternal and embryonic tissues and studied

the effect of MMI treatment on thyroxine (T4) and T3

availability in these tissues.
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYMaterials and methods

Animal treatment and tissue sampling

Experiments were performed on broiler breeder hens

(Ross, Belgabroed, Belgium) that were w30 weeks old.

They were fed a standard diet with iodine content within

the advised range for euthyroidism (1.9 mg/kg). The

animals were divided over six pens, with each containing

20 hens and 3 roosters. Those in four pens were treated

with 0.03% 1-methyl-3H-imidazole-2-thione (methima-

zole, Acros Organics, Geel, Belgium) in the drinking water,

while those in two pens served as controls. This dose was

based on literature data from studies carried out in rats and

chickens aimed at inducing hypothyroidism (Iqbal et al.

1987, Calvo et al. 1990, Rosebrough et al. 2006, Sharlin

et al. 2010). The animals were treated for a total of 16 weeks,

and we started collecting eggs after 6 weeks of treatment.

Eggs were incubated in a forced draft incubator at

37.5 8C and 50% relative humidity and automatically

turned at a 458 angle every hour. The day on which

incubation was started was called day 0 (E0). After 6, 14

and 18 days of incubation (E6, E14 and E18), eggs were

opened, and the following tissues were sampled: head and

trunk at E6; liver, heart, lung, muscle and brain at E14 and

E18. Brain was divided into telencephalon, diencephalon,

mesencephalon, cerebellum and hindbrain. Tissue

samples were immediately frozen in liquid nitrogen and

stored at K80 8C for later use.

At 10, 14 and 16 weeks of treatment, a number of non-

incubated eggs were sampled for MMI measurements. Egg

yolk and egg white were separated and stored frozen until

MMI analysis.

Treatment was stopped for all animals after 16 weeks,

and ten control and ten MMI-treated hens were killed at

that moment to collect their liver, kidney and different

brain regions.

Prior to tissue sampling, blood samples were collected

from hens and from E14 and E18 embryos in heparinised

tubes. After centrifugation, plasma was stored at K20 8C

until analysis.

The Ethical Committee for animal experiments of the

KU Leuven approved all the experimental protocols.
Determination of MMI levels

The method for the determination of reduced and total

MMI levels was based on derivatisation with 2-chloro-

1-methylquinolinium tetrafluoroborate (Bald & Glowacki

2001) and separation and quantification by ion-pairing
Published by Bioscientifica Ltd.
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developed for human urine (Kusmierek & Bald 2007).

Details of the procedure used for chicken tissues, eggs

and embryos have been described elsewhere (G Chwatko,

V M Darras & E Bald, Personal communication 2013).
Determination of T4 and T3 levels

T4 and T3 levels in maternal and embryonic tissues were

measured following extraction as described previously in

detail (Reyns et al. 2002, 2005). Typical recoveries of

extracted THs ranged from 55 to 75% for T3 and from

40 to 60% for T4. The T3 RIA had a detection limit of 2 fmol

and an intra-assay variability of 2.2%. The T4 RIA had a

detection limit of 5 fmol and an intra-assay variability of

2.8%. For the T3 RIA, cross-reactivity with T4 was 0.1–0.5%,

whereas for the T4 RIA, cross-reactivity with T3 was 3.5%.

Hormone levels are expressed as picomole per gram tissue.

T4 and T3 levels in plasma were measured using the

same RIA system without extraction, using a standard in

hormone-free serum, and results are expressed as picomole

per millilitre plasma.

Thyroid glands were homogenised in 500 ml ice-cold

barbital buffer (0.05 M, pH 8.6) using a Glass/Teflon Potter

tissue grinder system. This step was followed by further

ultrasonic homogenisation (2!25 s). Homogenates were

then centrifuged and supernatants were transferred into

new tubes. Part of the supernatants was directly frozen and

stored at K20 8C. For enzymatic degradation of thyro-

globulin by addition of 150 ml protease (Sigma P-5147,

6.25 mg protease and 3.13 mg 2-thiouracil in 10 ml Tris–HCl

buffer, 0.75 M and pH 8.8) and 15 ml toluol, 150 ml of the

supernatants were used. Tubes were stoppered and

incubated for 2 days in a shaking water bath at 37 8C.
Table 1 Primer sequences for the quantitative RT-PCR analyses

Name

Accession no.

mRNA Forward sequence (5 0/30)

D2 NM_204114 TGT TTC TGA GCC GCT CCA A
D3 NM_001122648 CAG GAG GAG AAG GTG ATG
OATP1C1 NM_001039097 CAT GGG ACG ATA TCA GTA TG
MCT8 XM_426274 CAA CTC CTT CGG GAT CAT CT
TSH receptor NM_001033850;

NM_001193589;
NM_001193588

GGT CCT CTG ATA GCT CTG AA

NIS XM_429095 CAC CAC GGA GGC TGAT GTT
TTF1 NM_204616 GCC GTT CTC CTG TTG CAT CT
TPO AM167549 TTC CGA TAA AGG TAA CAA C
TG XM_003640868 CAA CGT TTT CCA GGC CAT TG
b-Actin NM_205518 ATG GCT CCG GTA TGT GCA A
GAPDH NM_204305 GAA GCT TAC TGG AAT GGC T
Cyclophilin A NM_001166326 GGC TAC AAG GGC TCC TGC T

http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYFinally, tubes were placed in boiling water for 2 min to

inactivate the pronase enzyme, snap frozen and stored at

K20 8C. Dilutions of untreated homogenates (free hormone

levels) and enzymatically digested homogenates (total

hormone levels) were analysed by RIA, and free and total

hormone contents were calculated per thyroid gland.

RT and quantitative PCR

Total RNA was isolated using TRIzol reagent (Life

Technologies) and treated with DNase I (Life Technologies)

to remove residual genomic DNA. Total RNA was reverse-

transcribed using SuperScript III Reverse Transcriptase and

Oligo(dT)12–18 primers (Life Technologies). Real-time PCR

was performed using a thermal cycler, StepOnePlus Real-

Time PCR Systems (Life Technologies), with Fast SYBR

Green Mastermix (Life Technologies) and 300 nM of each

primer as listed in Table 1. Non-template and water

controls were used to detect non-specific amplification.

Each experimental and standard sample was analysed in

duplicate. Relative expression values were calculated

based on the standard curve with the StepOne Software

(Life Technologies) using a 1:5 dilution series of pooled

cDNA as the standard. The expression data were analysed

using the qBasePLUS Software (Biogazelle, Zwijnaarde,

Belgium). Two reference genes were used for normal-

isation: glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and cyclophilin for adult hens and GAPDH and

b-actin for embryos.

Deiodinase enzyme assays

In vitro deiodination activities were determined in micro-

somes obtained from maternal liver and kidney and in

homogenates of the different maternal and embryonic
Reverse sequence (5 0/3 0)

Amplicon

length (bp)

ACA CTG GAG TTC GGA GCT TCT C 142
TAC CA TCT GGA GCC GGG TTT TGT ACT 100
A AAG A CGA GAG TGG AGT TTG GCT TTT CT 97
A CA AGC CAA CCC ATG CTG TTT TAA 95
C GAT CAC TGC TGT GCT TTC AAG AAC TG 119

GCG CAG CCA CCG TGA T 75
GAA CAT TTA GCC AGC ATG ATC CA 126

CA ATG CAG TGC CAC ATG CAG GAG AT 87
CCA GTG ATT GGC CAT GTT TAT G 80
TGT CTT TCT GGC CCA TAC CAA 120

TT CC GAT ATC ATC ATA CTT GGC TGG TTT CTC 97
T CCG TTG TGG CGC GTA AA 77

Published by Bioscientifica Ltd.
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1992, Reyns et al. 2005). In the D1 activity test, the

incubation mixture contained 0.1 mg of protein/ml and

1 mM rT3 containing 50 000 c.p.m. of radiolabelled

[125I]-rT3, and tubes were incubated at 37 8C for 30 min.

D2 activity was assayed in a similar way by incubating

1 mg of protein/ml and 1 nM T4 containing 50 000 c.p.m.

[125I]-T4 at 37 8C for 120 min. A second mixture was

prepared with 100 nM T4 to assess possible interference of

D1 activity. Only when iodide production was absent or

minimal in the presence of 100 nM T4, enzyme activity

using 1 nM T4 was considered to be the true D2 activity. In

the D3 activity test, the incubation mixture contained

1 mg of protein/ml and 1 nM T3 containing

150 000 c.p.m. [125I]-T3 as well as 1 mM rT3 and 0.1 mM

6n-PTU to block possible D1 interference. The mixture was

incubated for 120 min at 37 8C. Activities were calculated

as picomol (D1) or femtomol (D2 and D3) of hormone

deiodinated per milligram protein and per minute.
Statistical analysis

All data comparisons between the control group and the

MMI group for the given age and tissue were done by

Student’s unpaired t-test. Comparisons with P values

!0.05 were considered significantly different.
Results

MMI levels in maternal and embryonic tissues

We measured MMI levels in the hens, eggs and embryos of

the MMI-treated groups to evaluate maternal transfer to
Table 2 Levels of (MMI*, mg/g wet tissue weight) in different ma

sampled from eggs collected between weeks 10 and 14 of treatmen

E14 and E18). Samples from hens were collected at the end of the

samples for tissues). E6, E14 and E18: 6-, 14- and 18-day-old embryo

Hen E6

Reduced (%)a Total Reduced (%)a

Plasma 6.6G0.9b (93%) 7.1G1.0
Thyroid 20.9G2.0 (91%) 22.8G2.6
Head 7.6G1.2 (91%) 8.
Trunk 7.6G1.2 (97%) 7.
Liver 3.5G1.5 (89%) 3.9G0.7
Telencephalon 2.1G0.1 (92%) 2.2G0.3
Mesencephalon 1.2G0.1 (56%) 2.2G0.3
Cerebellum 1.1G0.1 (59%) 1.9G0.1

aPercentage of total MMI content present as reduced (anti-thyroid active) MM
bValues represent meanGS.E.M.

http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYthe embryos. As not only reduced MMI but also its

metabolites may have adverse effects on embryonic

development, we used a method allowing discrimination

between the total amount of MMI (including oxidised

forms) and that of reduced MMI (the anti-thyroid active

form). From weeks 10 up to 16 of treatment, the average

levels of reduced MMI were 11.0G0.6 mg/g wet weight for

egg yolk (76% of total MMI level) and 12.8G0.7 mg/g wet

weight for egg white (95% of total MMI level; meanGS.E.M.

for a total of 12 samples). MMI levels in maternal and

embryonic tissues are given in Table 2. As expected, the

highest levels were found in the thyroid gland of adult

hens. In these animals, reduced MMI levels were also

clearly higher in the peripheral tissues (plasma and liver)

than in the brain. A different result was found in embryos

where reduced MMI levels were similar in the peripheral

tissues and brain. E6 embryos had the highest levels and

almost all MMI was present in the reduced form. Total

MMI concentrations were comparable at E14 and E18, but

the percentage present as reduced MMI was clearly lower

at E18 than at E14. However, reduced levels in the

embryonic brain remained higher than the levels in the

adult brain. Owing to the small size of the embryonic

thyroid gland, we were not able to determine MMI levels

in this tissue.
Effects on maternal thyroid gland activity

Sixteen weeks of MMI treatment strongly increased the

size of the thyroid gland (Table 3). The expression of a

number of genes involved in thyroid gland activity was

significantly affected, with a decrease in the mRNA levels

of thyroid transcription factor 1 (TTF1 (NKX2-1)) and
ternal and embryonic chicken tissues. Embryonic tissues were

t (eight samples for E6 and three to four samples per tissue for

16-week treatment (ten samples for plasma and three to four

s

E14 E18

Total Reduced (%)a Total Reduced (%)a Total

3G1.4
9G1.2

3.9G0.5 (83%) 4.7G0.2 2.8G0.4 (77%) 3.7G0.5
4.0G0.6 (90%) 4.4G0.6 2.8G0.4 (68%) 4.1G0.5
4.1G0.4 (88%) 4.7G0.6 2.7G0.3 (67%) 4.1G0.5
3.7G0.6 (66%) 5.6G0.6 2.7G0.4 (69%) 4.0G0.5

I.

Published by Bioscientifica Ltd.
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AUTHOR COTable 3 Effects of 16 weeks of MMI treatment on maternal

thyroid weight (mg) and on total and free thyroid hormone

contents (pmol/gland) in adult hens and embryos. Values

represent meanGS.E.M. for eight to ten samples/group. E14

and E18: 14- and 18-day-old embryos

Control MMI

Fold

change

Hens
Weight 190G18 3299G454 !17†

Total T4 419 763G76 320 31 984G5956 !0.08†

Free T4 18 136G3178 2048G450 !0.11†

Total T3 952G99 2175G349 !2.3*
Free T3 15.6G1.9 115G32 !7.4*
E14
Total T4 164.2G15.0 18.7G5.0 !0.11†

Free T4 13.81G1.40 0.48G0.12 !0.03†

Total T3 7.67G0.64 5.59G0.85 !0.73
Free T3 0.217G0.55 0.086G0.021 !0.40*
E18
Total T4 3661G351 1005G104 !0.27†

Free T4 57.1G3.6 20.6G2.6 !0.36†

Total T3 21.36G1.73 13.30G2.59 !0.62*
Free T3 0.299G0.043 0.581G0.095 !1.94*

*P!0.05 and †P!0.001 compared with the controls (unpaired t-test).
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thyroglobulin (TG) and a significant increase in the mRNA

levels of sodium/iodide symporter (NIS (SLC5A5)), thyroid

peroxidase (TPO) and thyrotropin receptor (TSHR) (Fig. 1).

The amount of T4 per weight unit of the thyroid gland

was more than 100-fold reduced following MMI treat-

ment, and despite the substantial increase in the size of the

thyroid gland, both total and free T4 contents were about

tenfold decreased. The amount of T3 per weight unit was

far less affected, and in combination with the higher

weight of the thyroid gland, this resulted in a twofold

increase in total T3 content and a sevenfold increase in free

T3 content (Table 3).
***
**

2

4

R
el

at
iv

e 
m

R
N

***

0
TTF1 TG NIS TPO TSHR

* *

Figure 1

Relative mRNA expression of TTF1, TG, NIS, TPO and TSHR in the thyroid

glands of the control (white bars) and MMI-treated (dark bars) hens

following 16 weeks of treatment. Expression levels were normalised using

GAPDH and cyclophilin as the reference genes. For each gene, levels are

expressed relative to the average level in the control group. Values

represent meanGS.E.M. for five animals per group. *P!0.05, **P!0.01 and

***P!0.001 (unpaired t-test compared with the controls).
TH levels in maternal and embryonic tissues

Blood samples were collected from hens every 2 weeks

throughout the treatment period. Circulating T4 levels

in the MMI-treated hens showed a steady decrease until

6 weeks of treatment when they stabilised around 50% of

the control levels. Plasma T3 content was mildly decreased

at 10 and 14 weeks of treatment, but remained unchanged

at all other time points (data not shown).

T4 and T3 levels in maternal tissues are shown in Fig. 2.

T4 levels were strongly decreased in the plasma, liver,

kidney and different brain regions of the MMI-treated

hens, except in the diencephalon. While T3 levels in
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYperipheral plasma, liver and kidney were similar for the

control and MMI-treated hens, T3 content was strongly

decreased in the telencephalon and mesencephalon and

mildly but not significantly decreased in the diencephalon

and cerebellum.

The number of eggs produced by the MMI-treated

hens decreased and stabilised around week 8 at 20–25% of

the number produced by the control hens. However, the

overall quality of the eggs did not change; egg weight,

crude energy content, crude protein content and crude

lipid content were similar in the MMI-treated and control

groups. By contrast, the amount of T4 and T3 deposited in

the egg yolk was strongly decreased throughout the egg

collection period (Fig. 3). T4 levels in E6 embryos were

similar in the trunk and head and were surprisingly not

decreased by MMI treatment. At this stage, T3 levels were

clearly higher in the head than in the trunk and were

significantly lower in the head of MMI embryos (Fig. 3).

Maternal MMI treatment decreased circulating T4

levels in E14 and E18 embryos. However, T4 levels in

liver, heart, lung, muscle and different brain regions were

not altered (Figs 4 and 5). The situation was different for

T3. While plasma T3 content was not significantly

decreased, levels were, in general, clearly lower in both

peripheral tissues and brain in MMI embryos at E14. At

E18, T3 levels were still decreased in the brain but no

longer in the peripheral tissues (Figs 4 and 5).
Published by Bioscientifica Ltd.
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Figure 2

Levels of T4 (A) and T3 (B) (expressed in picomole per millilitre or gram) in

the plasma, liver, kidney and brain of the control (white bards) and MMI-

treated (dark bars) hens following 16 weeks of treatment. Values represent

meanGS.E.M. for five animals per group. *P!0.05, **P!0.01 and

***P!0.001 (unpaired t-test compared with the controls).
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Expression of TH transporters and deiodinases in

maternal and embryonic brain

As MMI treatment clearly affected TH levels in the brain, we

measured the mRNA expression of the deiodinases D2 and

D3 and the TH transporters OATP1C1 (SLCO1C1) and

MCT8 (SLC16A2). Expression was measured in the telen-

cephalon, diencephalon, mesencephalon, cerebellum and

hindbrain of the control and MMI-treated hens, but no

significant changes were observed. The expression of these

four genes was also measured in the telencephalon,

diencephalon and mesencephalon of E6 and E14 embryos.

No significant changes were found at E6. At E14, the

expression of D2 and MCT8 was decreased by respectively

34 and 27% (P!0.05) but only in the diencephalon.
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Figure 3

Levels of T4 (A) and T3 (B) (expressed in picomole per gram) in the eggs and

6-day-old embryos (E6) of the control (white bars) and MMI-treated (dark

bars) hens. Eggs were collected following 14 weeks of maternal MMI

treatment. Values represent meanGS.E.M. for four eggs or embryos per

group. *P!0.05, **P!0.01 and ***P!0.001 (unpaired t-test compared

with the controls).
Deiodinase activity in maternal and embryonic tissues

MMI treatment did not significantly affect D1 or D3 activity

in maternal liver and kidney, but it strongly increased D2

activity in all regions of the maternal brain (Table 4).

Moderate but significant increases were also observed in the

diencephalon and mesencephalon of E14 embryos. No

increases were found in the embryonic brain at E6, where

D2 activity was even significantly lower in embryos from

MMI eggs compared with the controls (Table 4).
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYThe only significant change in D3 activity was found

in the adult brain where activity was decreased in

the telencephalon of the MMI-treated hens (0.597

G0.036 fmol T3 deiodinated/mg protein per min vs

0.766G0.068 in the controls, P!0.05).

In order to determine whether the presence of MMI as

such is able to decrease the efficiency of T4-to-T3

conversion, we also tested D2 activity in the brain

homogenates of a number of control embryos in the

presence or absence of 20 mg MMI/ml, a concentration

corresponding to the highest level observed in tissues

(maternal thyroid, 20 mg/g wet weight). The addition of

MMI to the homogenates did not alter in vitro D2 activity.
Discussion

The anti-thyroid drug MMI can be absorbed from the

gastrointestinal tract and it accumulates in the thyroid

gland where it inhibits TH synthesis by interfering with

the action of thyroid peroxidase (Nagasaka & Hidaka 1976,

Vickers et al. 2012). It has been shown in humans and rats

that MMI is rapidly metabolised and that a major part is

excreted via urine (Skellern & Steer 1981, Hengstmann &

Hohn 1985, Cooper 2005, Kusmierek & Bald 2007).
Published by Bioscientifica Ltd.
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Figure 4

Levels of T4 (A) and T3 (B) (expressed in picomole per millilitre or gram) in

the peripheral tissues and brain of 14-day-old embryos of the control

(white bars) and MMI-treated (dark bars) hens. Eggs were collected

between weeks 10 and 16 of maternal MMI treatment. Values represent

meanGS.E.M. for five embryos per group. *P!0.05 and **P!0.01 (unpaired

t-test compared with the controls).
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Figure 5

Levels of T4 (A) and T3 (B) (expressed in picomole per millilitre or gram) in

the peripheral tissues and brain of 18-day-old embryos of the control

(white bars) and MMI-treated (dark bars) hens. Eggs were collected

between weeks 10 and 16 of maternal MMI treatment. Values represent

meanGS.E.M. for five embryos per group. *P!0.05, **P!0.01 and

***P!0.001 (unpaired t-test compared with the controls).
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Nevertheless, MMI treatment sometimes induces severe

side effects such as agranulocytosis and hepatotoxicity

(Cooper 2005, Yang et al. 2012), indicating that a

significant amount of MMI and/or its metabolites is

present in extra-thyroidal tissues. We measured the levels

of reduced MMI and its oxidised metabolites in hens

following 16 weeks of treatment. The dose that we used

was relatively high compared with the ones used in

medical practice. Circulating levels were about fourfold

higher than the average levels reported for humans

(Mortimer et al. 1997), but relative differences in tissue

levels might also apply to humans where tissue data are

scarce. As in humans and rats (Marchant & Alexander

1972, Jansson et al. 1983), MMI specifically accumulated

in the thyroid gland. About sixfold lower levels were

present in the liver, mainly in the reduced form. Total

levels in the brain were about half of those in the liver,

suggesting that the adult brain is somehow better

protected. Interestingly, we found clear differences in the

proportion of MMI present as oxidised metabolites. This

was more than 40% in the mesencephalon and

cerebellum, while this was around 10% in the telencepha-

lon, similar to that observed in the peripheral tissues. So

far, it remains unclear whether this difference is the result

of a higher local metabolism of MMI or a selective uptake
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYrelated to the tissue composition. The fact that total

MMI levels are similar could be an element in favour of

the first hypothesis.

The major problem with MMI as well as other

thionamides in humans and more precisely in pregnant

women is that these compounds are transferred to the

developing foetus via the placenta and may harm normal

development (Cooper 2005, Vissenberg et al. 2012). In

birds, essential as well as potentially harmful substances

are deposited in the egg and taken up by the embryo

during development. Two important conclusions can be

drawn from the MMI measurements in chicken embryos.

The first one is that although both total and reduced MMI

levels in embryonic tissues are gradually decreasing from

early towards later stages of development, they always

remain above the levels found in the corresponding adult

tissues. The second one is that the levels in the embryonic

brain are as high as those in the embryonic liver,

suggesting that the protective mechanisms possibly

present in the adult brain are not yet functional before

hatching. Most of the MMI is present in the reduced form,

although there seems to be a gradual increase in the

percentage of oxidised metabolites, especially in the

brain. However, although these metabolites no longer

function as anti-thyroid drugs, they can be cytotoxic and
Published by Bioscientifica Ltd.
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AUTHOR COTable 4 Effects of maternal MMI treatment on type 2

deiodinase activity (fmol T4 deiodinated/mg protein per min)

in maternal and embryonic chicken brain. Values represent

meanGS.E.M. for four pools/group (E6) or eight individual

samples/group (E14 and hens)

Control MMI

Hens
Telencephalon 0.499G0.026 0.763G0.057†

Diencephalon 0.180G0.017 0.324G0.016†

Mesencephalon 0.194G0.018 0.279G0.010‡

Cerebellum 0.311G0.027 0.503G0.017†

E6
Telencephalon 0.638G0.045 0.676G0.053
Diencephalon 0.914G0.068 0.797G0.040
Mesencephalon 0.693G0.032 0.575G0.020*
E14
Telencephalon 4.094G0.077 4.343G0.177
Diencephalon 4.231G0.090 4.600G0.143*
Mesencephalon 3.477G0.075 3.843G0.115*
Cerebellum 3.089G0.128 3.163G0.167

*P!0.05, ‡P!0.01 and †P!0.001 compared with the controls (unpaired t-test).
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therefore may still contribute to the adverse effects of MMI

on development (Kedderis & Rickert 1985, Genter 1998).

When investigating maternal thyroid status, we found

that the MMI-treated hens were able to keep up normal

plasma T3 levels despite a 50% decrease in circulating T4

levels. The same was true for the TH content in the liver

and kidney. One possible mechanism would be an increase

in the peripheral conversion of T4 into T3 by outer-ring

deiodination and/or a decrease in T3 degradation by inner-

ring deiodination. The results of the in vitro D1 and D3

activity tests in the liver and kidney suggest that this is not

the case. By contrast, we observed dramatic changes at the

level of the thyroid gland. The most obvious one was the

huge goitre, which can most probably be explained by a

decrease in the negative feedback of T4 at the level of the

pituitary thyrotropes (Huang et al. 2001, Bianco & Kim

2006). The increased growth of the thyroid gland was

accompanied by a highly increased relative expression of

the thyrotropin receptor, the sodium/iodide symporter

and thyroid peroxidase, while the expression of thyroglo-

bulin and TTF1 was slightly decreased. This is somewhat

different from observations in human thyroid cells and rat

FRTL-5 cells cultured in vitro where short-term treatment

with MMI increased the expression of thyroid peroxidase

as well as thyroglobulin (Leer et al. 1991). However, recent

studies on human thyroid slices have shown that the

effect of MMI on the expression of thyroid-specific genes

may vary according to treatment dose and duration

(Vickers et al. 2012).
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iodine integration into tyrosine, both total and free T4

contents were strongly decreased. By contrast, long-term

MMI treatment resulted in a twofold increase in total T3

content and a sevenfold increase in free T3 content. This

way the MMI-treated hens could maintain normal T3

levels by shifting from a predominance of T3 produced by

peripheral deiodination of T4 to a predominance of T3

produced within the thyroid gland. A similar mechanism

has not been found in pregnant rats where MMI treatment

reduced T4 as well as T3 levels in plasma, liver and heart,

although the relative decrease was smaller for T3 (Calvo

et al. 1990). This could be a species-related difference, but it

is also possible that the treatment period of 7 days in the rat

experiment was too short to induce substantial changes in

the ratio of T3:T4 content and release of the thyroid gland.

The adaptive mechanism in adult hens seems to be

sufficient to maintain T3 levels in peripheral tissues such as

liver and kidney, but not in the brain, which is known to

depend heavily on T4 uptake and local T4-to-T3 conversion

by D2 (Silva & Matthews 1984, Grijota-Martinez et al.

2011). Despite a clear increase in D2 activity, most brain

regions did not succeed in compensating for the reduced

supply of T4 and showed low T3 levels. This finding

illustrates once more that the thyroid status of a specific

tissue cannot be simply deduced from the TH levels

present in circulation.

A tissue-specific control also seems to be active at the

level of the ovary, since both T4 and T3 concentrations in

the eggs were severely reduced despite the normal plasma

T3 levels. This control occurred independently of the

overall protein and lipid contents of the eggs, which were

not changed by MMI treatment. The fact that the total

number of eggs was reduced confirmed earlier data on the

inhibitory effect of hypothyroidism on female reproduc-

tion in a number of species including fish, amphibians and

humans (Van der Geyten et al. 2001, Krassas et al. 2010,

Carr & Patino 2011).

Maternal MMI treatment clearly has an effect on tissue

TH availability in developing embryos but, surprisingly,

predominantly on T3. Again, this is not reflected in the

circulation since both E14 and E18 embryos from MMI

eggs showed significantly reduced plasma T4 levels, while

plasma T3 content was not significantly different. At E6, T4

levels in the body of the control and MMI embryos were

similar. As at that stage the embryonic thyroid gland is

developing but not yet functional, this suggests that the

embryo can compensate for the reduced T4 content in the

egg yolk by a more efficient T4 uptake. The embryonic

thyroid gland normally starts contributing to TH
Published by Bioscientifica Ltd.
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AUTHOR COavailability in the embryo during the second week of

incubation and the effects observed at E14 and E18 should

therefore be interpreted as the combined result of the

reduced TH content in the yolk and the inhibition

of embryonic thyroid gland activity by MMI taken up by

the embryo.

As in adult hens, the brain of E14 and E18 embryos

from MMI eggs had clearly lower T3 levels but without a

decrease in T4 content, a combination that is difficult to

explain. The possibility of a direct inhibitory effect of MMI

on D2 activity in brain homogenates was tested, but it

proved to be negative. In vitro D2 activity tests on the brain

of E14 embryos showed that the amount of active enzyme

was higher in the diencephalon and mesencephalon of

MMI embryos compared with the controls, indicative of a

compensatory response. This response was, however, not

present in all brain regions, and it was less pronounced

than the strong response in the brain of adult hens.

Together with the fact that there was no compensatory

increase in D2 activity in the brain at E6, this confirms

earlier observations that the typical compensatory

response of deiodinases to altered TH availability is not

yet mature in young embryos/foetuses (Ruiz de Ona et al.

1988, Gereben et al. 2008, Sharlin et al. 2010, Van Herck

et al. 2012). The single changes found in D2 and MCT8

mRNA in different brain regions of E14 embryos are also

not in line with a compensatory response at the level of

gene expression and rather point to a delay in the normal

ontogenetic expression pattern of these genes in

hypothyroid MMI embryos (Geysens et al. 2012, Van

Herck et al. 2012). The fact that hypothyroidism as such

did not change the mRNA expression of the deiodinases in

the embryonic as well as adult brain is in agreement with

literature data from embryonic and post-hatch quail

exposed to perchlorate (Chen et al. 2008, 2009).

One more interesting observation is that T3 avail-

ability was reduced not only in the brain but also in the

peripheral tissues of E14 embryos, while this was no longer

the case at E18. During the second half of embryonic

development, the relative contribution of the embryonic

thyroid gland to total TH availability increases over time

and is therefore higher at E18 where the hypothalamo-

pituitary–thyroid axis is almost completely mature. As in

adult hens, the embryonic thyroid gland may have

increased its relative release of T3 and this is in line with

the fact that at E18 free T3 content was increased in the

thyroid gland of MMI embryos. The slower maturation of

the thyroid axis in rodents compared with chickens may

also help to explain why in rat foetuses from MMI-treated

dams both T4 and T3 contents are decreased in the
http://joe.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JOE-13-0089 Printed in Great Britain
PY ONLYperipheral tissues and brain, similar to the situation in

the dams themselves (Calvo et al. 1990).

Taken together, our data show that long-term MMI

treatment of hens severely reduces T4 production in the

thyroid gland but induces a relative increase in thyroidal

T3 content. As a result, peripheral tissues can maintain

normal T3 levels, but the brain is clearly hypothyroid. As

in mammals, the treatment leads to the maternal transfer

of MMI and its oxidised metabolites to the developing

embryo. Levels in embryonic tissues are relatively high,

especially at the early stages, and MMI and/or its oxidised

metabolites may therefore have cytotoxic effects on all

developing tissues including the brain. Long-term MMI

treatment also reduces TH availability in the egg yolk,

resulting in lower T3 availability in the early embryonic

brain. At later stages, the maternally derived MMI also

disturbs embryonic thyroid gland function. Combined

with the lower TH content of the yolk, this results in a

reduced T3 content in the peripheral tissues and brain of

14-day-old embryos and in the brain of 18-day-old

embryos. We can conclude that the maternal transfer of

MMI and its metabolites to the embryo can be harmful for

embryonic development, in particular, for the brain, by a

combination of anti-thyroidal and possibly local cytotoxic

effects, an observation that may also be of relevance to the

human situation.
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