
ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

1

Abstract

This paper describes the design and development
of a pairwise test data generation, called 2TG,
supporting seeding and constraints. In doing so,
a number of experiments are discussed in order
to prove the correctness of the implementation.

Keywords: Pairwise Testing, Combinatorial
Testing, Constraints and Seeding Support,
Software and Hardware Testing.

I. INTRODUCTION

Nowadays, human are increasingly
dependent on software to assist as well as
facilitate daily chores. In fact, whenever
possible, most hardware implementation
is now being substituted by its software
counterpart. From the washing machine
controllers, mobile phone applications
to the sophisticated airplane control
systems, the growing dependence on
software can be attributed to a number of
factors. Unlike hardware, software does
not wear out. Thus, the use of software
can also help to control maintenance costs.
Additionally, software is also flexible and
can be easily changed and customized as
the need arises.

The DesIgN aND ImplemeNTaTION Of a paIRwIse
sTRaTegy sUppORTINg CONsTRaINTs aND seeDINg

meChaNIsm

Kamal Z. Zamli, mohammed I younis,
Ong hui yeh, Juliana md sharif

Software Engineering Group
School of Electrical and Electronic Engineering
Universiti Sains Malaysia Enginering Campus

14300 Nibong Tebal, Penang, Malaysia

Faculty of Electrical Engineering
Universiti Teknologi MARA,

13500 Permatang Pauh, Penang, Malaysia

The continuous dependencies on
software often raise dependability issues
particularly when software is being
employed on harsh and life threatening
or (safety) critical applications. Here,
rigorous software testing becomes very
important. Many combinations of possible
input parameters, hardware/software
environments, and system conditions
need to be tested and verified against
the specification for conformance. Often,
this results into combinatorial explosion
problem (i.e. exorbitant number of test
cases to consider for testing).

Combinatorial explosion problem poses
one of the biggest challenges in modern
computer science due to the fact that it
often defies traditional approaches to
analysis, verification, monitoring and
control [1]. A number of techniques have
been explored in the past to address this
problem. Undoubtedly, parallel testing can
be employed to reduce the time required
for performing the tests. Nevertheless,
as software and hardware are getting
more complex than ever, parallel testing
approach becomes immensely expensive

This research is partially funded by the generous fundamental grants – “Investigating T-Way Test Data Reduction
Strategy Using Particle Swarm Optimization Technique” from Ministry of Higher Education (MOHE), the USM
research university grants – “Development of Variable Strength Interaction Testing Strategy for T-Way Test
Data Generation”, and the USM short term grant –“Development of a Pairwise Test Data Generation Tool Wirh
Seeding and Constraints Support”.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

2

due to the need for faster and higher
capability processors along state-of-
the-art computer hardware. Apart from
parallel testing, systematic random testing
could also be another option. However,
systematic random testing tends to dwell
on unfair distribution of test cases.

A more recent and systematic solution
to this problem is based on pairwise
testing strategy. Any two combinations
of parameter values are to be covered by
at least one test. Because combinatorial
explosion problem is NP-complete (i.e.
no exact solution), it is often unlikely
that efficient strategy exists that can
always generate optimal test set (i.e.
each interaction pair is covered by only
one test) [1]. Furthermore, the size of the
minimum pairwise test set also grows
logarithmically with the number of
parameters and quadratically with the
number of values [2].

Apart from the aforementioned problems,
the effectiveness of the test data generated
can sometimes be questionable. In
many cases, pairwise interaction is
meaningless when more than one faulty
input condition is introduced in the final
generated test suite. Here, the problem
could arise when one dominant faulty test
input is accidentally masking other faults
caused by other test inputs. In this case, it
is likely that only the fault caused by that
dominant faulty test input is detected,
attended, and fixed accordingly. Thus, the
faults caused by less dominant inputs are
accidentally overlooked. In this manner,
these overlooked faults can sometimes
serve as hidden time bombs waiting
to cause unwanted service disruptions
and even system crash. To address this
issue, there is a need for a constraint
support mechanism at the algorithm level
to ensure that such problem will never
occur. Here, the constraint mechanism
helps to enable test engineer to specify
the unwanted (i.e. faulty and impossible)
test cases from appearing in the final
generated test suite. In this manner, other
suitable test cases can be automatically
selected as best fit alternatives.

Additionally, due to customer demands,
there is often a set of pairwise combinations
that are required to be as part of the
final suite (i.e. as benchmarking test).
To support this capability, the seeding
support mechanism must also be in place
as part of the implemented algorithm. In
this case, unlike the constraint mechanism
which prevents unwanted test cases to
appear in the final test suite, the seeding
mechanism ensures that (benchmark) test
cases do appear even if they may not be
the best fit values.

Addressing the aforementioned
challenges, a new strategy has been
proposed for pairwise testing that is not
only efficient but also cater for constraints
and seeding support mechanism. As
part of the ongoing work [1-4], this paper
describes the design and development
of a pairwise test data generation, called
2TG, supporting seeding and constraints.
In doing so, a number of experiments are
discussed in order to prove the correctness
of the implementation.

II. RelaTeD wORK

According to Yu et al [5], existing
interaction strategies for pairwise testing
can be categorized into two categories
based on the dominant approaches, that
is, algebraic approaches or computational
approaches.

Algebraic approaches construct test sets
using pre-defined rules or mathematical
function [5]. Thus, the computations
involved in algebraic approaches are
typically lightweight, and in some cases,
algebraic approaches can produce the
most optimal test sets. However, the
applicability of algebraic approaches is
often restricted to small configurations
[5][6]. Orthogonal arrays (OA) [7] and
covering arrays (CA) [8][9] are typical
example of the strategies based on
algebraic approach. Some variations of the
algebraic approach also exploit recursion
in order to permit the construction of
larger test sets from smaller ones [10].

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

3

Unlike algebraic approaches,
computational approaches often rely on
the generation of the all pair combinations.
Based on all pair combinations, the
computational approaches iteratively
search the combinations space to
generate the required test case until
all pairs have been covered. In this
manner, computational approaches
can ideally be applicable even in large
system configuration. However, in
the case where the number of pairs to
be considered is significantly large,
adopting computational approaches
can be expensive due to the need to
consider explicit enumeration from all the
combination space.

Adopting the computational approaches
as the main basis, an Automatic Efficient
Test Generator (or AETG) [11, 12] and its
variant (AETGm) [13], employs a greedy
algorithm to construct the test case, that
is, each test covers as many uncovered
combinations as possible. Because
AETG uses random search algorithm,
the generated test case is highly non-
deterministic (i.e. the same input
parameter model may lead to different
test suites [14]). Other variants to AETG
that use stochastic greedy algorithms
are: GA (Generic Algorithm) and ACA
(Ant Colony Algorithm) [8]. In some
cases, they give optimal solution than
original AETG, although they share the
common characteristic as far as being
non-deterministic in nature. In Parameter
Order (IPO) strategy [15] builds a pairwise
test set for the first two parameters. Then,
IPO strategy extends the test set to cover
the first three parameters, and continues
to extend the test set until it builds a
pairwise test set for all the parameters. In
this manner, IPO generates the test case
with greedy algorithms similar to AETG.
Nevertheless, apart from deterministic in
nature, covering one parameter at a time
allows the IPO strategy to achieve a lower
order of complexity than AETG.

Based on computational approach,
Schroeder and Korel [14] developed a
rather unique combinatorial strategy

based on the input and output relationship.
If one or more parameters are known to
have insignificant effect on the system (i.e.
don’t care), then the strategy randomly
selects the appropriate replacement of
the don’t care value in order to perform
the reduction. Although useful for system
with known input output relationship, no
reduction is possible if all the parameters
have the same importance.

A more recent strategies based on
computational approaches are IRPS [16]
GTWay[17], and AllPairs [18]. Like IPO,
IRPS is deterministic in nature. Unlike
IPO and other computational strategies,
IRPS focuses on efficient data structure
for storing and searching pairs. In this
manner, IRPS appears to be the only
strategy that supports higher order
interactions of parameters (i.e. from
pairwise up to 13 ways).

Like IRPS, GTWay strategy also targets
for high order interaction of parameters.
Unlike IRPS, GTWay strategy also
supports automated execution of the
generated test data.

Similar to IRPS, GTWay and IPO, All
Pairs strategy (i.e. downloadable tool)
appears to share the same property as far
as producing deterministic test cases is
concerned although little is known about
the actual strategies employed due to
limited availability of references [18].

As far as other non-greedy strategies are
concerned, some approaches opted to
adopt heuristic search techniques such
as hill climbing and simulated annealing
(SA) [13]. Briefly, hill climbing and
simulated annealing strategies start from
some known test set. Then, a series of
transformations were iteratively applied
(starting from the known test set) to cover
all the pairwise combinations [13]. Unlike
AETG, IPO, IRPS and All Pairs strategy,
which builds a test set from scratch,
heuristic search techniques can predict
the known test set in advanced. However,
there is no guarantee that the test set
produced are the most optimum.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

4

Concerning constraint and seeding
mechanism, most existing strategy
implementations (e.g. IRPS, GTWay,
IPO, and Allpairs) have not appeared to
consider the support as yet as evident by
their implemented tools. For these reasons,
we aim to investigate the constraints and
seeding mechanism as part of our tool
implementation of 2TG.

III. IllUsTRaTIVe eXample

To illustrate the concept of pairwise
testing, consider an example of a pizza
online ordering system as illustrated in
Figure 1.

and Allpairs) have not appeared to consider the support as yet
as evident by their implemented tools. For these reasons, we
aim to investigate the constraints and seeding mechanism as
part of our tool implementation of 2TG.

III. ILLUSTRATIVE EXAMPLE

To illustrate the concept of pairwise testing, consider an
example of a pizza online ordering system as illustrated in
Figure 1.

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for the user to choose the
crust, flavour and toppings. For each of the option, there are 2
selections available. For simplification, this pizza online
ordering system options can be represented with integer
numbers (see Figure 2).

Figure 2. Pizza Option Representation Using Integer

Here, the pizza option representation can also be translated
into a table of 3 columns (or parameters) and 2 rows (or
values).

Table 1. Pizza Ordering System with 3 parameters and 2 values

Base Values

Input Variables
A B C
0 0 0
1 1 1

Let the input variable be a set X = {A, B, C}. For
simplicity, assume that the starting test case, termed base test
case, has been identified (see Table 1). Here, integer values
(e.g. 0, 1, 2…) are used in place of real data values to facilitate
discussion.

In this case, exhaustive combinations would yield = 23 = 8
possible test combinations. Referring to Table 2, if parameter
C is known to have insignificant effects on the system, then C
input could be treated as don’t care value. Thus, C could
randomly take either 0 or 1 respectively. Based on this
premise, one can select only an instance of each input
combination to cover 2-way combination for AB at least once.
In this case, there are two possible combinations for 2-way
covering of AB. For instance, consider the input variable
{0,0}. The first AB combination would be {0,0,0} and the

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Combinations

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Using this technique, the number of combinations can be
reduced significantly. For instance, for 2-way combination
AB, the total test data can be reduced to merely 4 (see Figure
3).

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult to establish for
certain which variable has insignificant effect on the system.
Thus, it is necessary to consider the impact of other 2-way
combinations as well. In this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC. Having considered

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for
the user to choose the crust, flavour and
toppings. For each of the option, there are
2 selections available. For simplification,
this pizza online ordering system options
can be represented with integer numbers
(see Figure 2).

and Allpairs) have not appeared to consider the support as yet
as evident by their implemented tools. For these reasons, we
aim to investigate the constraints and seeding mechanism as
part of our tool implementation of 2TG.

III. ILLUSTRATIVE EXAMPLE

To illustrate the concept of pairwise testing, consider an
example of a pizza online ordering system as illustrated in
Figure 1.

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for the user to choose the
crust, flavour and toppings. For each of the option, there are 2
selections available. For simplification, this pizza online
ordering system options can be represented with integer
numbers (see Figure 2).

Figure 2. Pizza Option Representation Using Integer

Here, the pizza option representation can also be translated
into a table of 3 columns (or parameters) and 2 rows (or
values).

Table 1. Pizza Ordering System with 3 parameters and 2 values

Base Values

Input Variables
A B C
0 0 0
1 1 1

Let the input variable be a set X = {A, B, C}. For
simplicity, assume that the starting test case, termed base test
case, has been identified (see Table 1). Here, integer values
(e.g. 0, 1, 2…) are used in place of real data values to facilitate
discussion.

In this case, exhaustive combinations would yield = 23 = 8
possible test combinations. Referring to Table 2, if parameter
C is known to have insignificant effects on the system, then C
input could be treated as don’t care value. Thus, C could
randomly take either 0 or 1 respectively. Based on this
premise, one can select only an instance of each input
combination to cover 2-way combination for AB at least once.
In this case, there are two possible combinations for 2-way
covering of AB. For instance, consider the input variable
{0,0}. The first AB combination would be {0,0,0} and the

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Combinations

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Using this technique, the number of combinations can be
reduced significantly. For instance, for 2-way combination
AB, the total test data can be reduced to merely 4 (see Figure
3).

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult to establish for
certain which variable has insignificant effect on the system.
Thus, it is necessary to consider the impact of other 2-way
combinations as well. In this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC. Having considered

Figure 2. Pizza Option Representation
Using Integer

Here, the pizza option representation can
also be translated into a table of 3 columns
(or parameters) and 2 rows (or values).

Table 1. Pizza Ordering System with 3
parameters and 2 values

and Allpairs) have not appeared to consider the support as yet
as evident by their implemented tools. For these reasons, we
aim to investigate the constraints and seeding mechanism as
part of our tool implementation of 2TG.

III. ILLUSTRATIVE EXAMPLE

To illustrate the concept of pairwise testing, consider an
example of a pizza online ordering system as illustrated in
Figure 1.

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for the user to choose the
crust, flavour and toppings. For each of the option, there are 2
selections available. For simplification, this pizza online
ordering system options can be represented with integer
numbers (see Figure 2).

Figure 2. Pizza Option Representation Using Integer

Here, the pizza option representation can also be translated
into a table of 3 columns (or parameters) and 2 rows (or
values).

Table 1. Pizza Ordering System with 3 parameters and 2 values

Base Values

Input Variables
A B C
0 0 0
1 1 1

Let the input variable be a set X = {A, B, C}. For
simplicity, assume that the starting test case, termed base test
case, has been identified (see Table 1). Here, integer values
(e.g. 0, 1, 2…) are used in place of real data values to facilitate
discussion.

In this case, exhaustive combinations would yield = 23 = 8
possible test combinations. Referring to Table 2, if parameter
C is known to have insignificant effects on the system, then C
input could be treated as don’t care value. Thus, C could
randomly take either 0 or 1 respectively. Based on this
premise, one can select only an instance of each input
combination to cover 2-way combination for AB at least once.
In this case, there are two possible combinations for 2-way
covering of AB. For instance, consider the input variable
{0,0}. The first AB combination would be {0,0,0} and the

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Combinations

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Using this technique, the number of combinations can be
reduced significantly. For instance, for 2-way combination
AB, the total test data can be reduced to merely 4 (see Figure
3).

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult to establish for
certain which variable has insignificant effect on the system.
Thus, it is necessary to consider the impact of other 2-way
combinations as well. In this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC. Having considered

Let the input variable be a set X = {A, B,
C}. For simplicity, assume that the starting

test case, termed base test case, has been
identified (see Table 1). Here, integer
values (e.g. 0, 1, 2…) are used in place of
real data values to facilitate discussion.

In this case, exhaustive combinations
would yield = 23 = 8 possible test
combinations. Referring to Table
2, if parameter C is known to have
insignificant effects on the system, then C
input could be treated as don’t care value.
Thus, C could randomly take either 0 or
1 respectively. Based on this premise, one
can select only an instance of each input
combination to cover 2-way combination
for AB at least once. In this case, there
are two possible combinations for 2-way
covering of AB. For instance, consider
the input variable {0,0}. The first AB
combination would be {0,0,0} and the
second combination would be {0,0,1}. In
order to cover for 2-way combination for
AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

and Allpairs) have not appeared to consider the support as yet
as evident by their implemented tools. For these reasons, we
aim to investigate the constraints and seeding mechanism as
part of our tool implementation of 2TG.

III. ILLUSTRATIVE EXAMPLE

To illustrate the concept of pairwise testing, consider an
example of a pizza online ordering system as illustrated in
Figure 1.

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for the user to choose the
crust, flavour and toppings. For each of the option, there are 2
selections available. For simplification, this pizza online
ordering system options can be represented with integer
numbers (see Figure 2).

Figure 2. Pizza Option Representation Using Integer

Here, the pizza option representation can also be translated
into a table of 3 columns (or parameters) and 2 rows (or
values).

Table 1. Pizza Ordering System with 3 parameters and 2 values

Base Values

Input Variables
A B C
0 0 0
1 1 1

Let the input variable be a set X = {A, B, C}. For
simplicity, assume that the starting test case, termed base test
case, has been identified (see Table 1). Here, integer values
(e.g. 0, 1, 2…) are used in place of real data values to facilitate
discussion.

In this case, exhaustive combinations would yield = 23 = 8
possible test combinations. Referring to Table 2, if parameter
C is known to have insignificant effects on the system, then C
input could be treated as don’t care value. Thus, C could
randomly take either 0 or 1 respectively. Based on this
premise, one can select only an instance of each input
combination to cover 2-way combination for AB at least once.
In this case, there are two possible combinations for 2-way
covering of AB. For instance, consider the input variable
{0,0}. The first AB combination would be {0,0,0} and the

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Combinations

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Using this technique, the number of combinations can be
reduced significantly. For instance, for 2-way combination
AB, the total test data can be reduced to merely 4 (see Figure
3).

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult to establish for
certain which variable has insignificant effect on the system.
Thus, it is necessary to consider the impact of other 2-way
combinations as well. In this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC. Having considered

Using this technique, the number of
combinations can be reduced significantly.
For instance, for 2-way combination
AB, the total test data can be reduced to
merely 4 (see Figure 3).

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

5

and Allpairs) have not appeared to consider the support as yet
as evident by their implemented tools. For these reasons, we
aim to investigate the constraints and seeding mechanism as
part of our tool implementation of 2TG.

III. ILLUSTRATIVE EXAMPLE

To illustrate the concept of pairwise testing, consider an
example of a pizza online ordering system as illustrated in
Figure 1.

Figure 1. Pizza Online Ordering System

In this system, there are 3 options for the user to choose the
crust, flavour and toppings. For each of the option, there are 2
selections available. For simplification, this pizza online
ordering system options can be represented with integer
numbers (see Figure 2).

Figure 2. Pizza Option Representation Using Integer

Here, the pizza option representation can also be translated
into a table of 3 columns (or parameters) and 2 rows (or
values).

Table 1. Pizza Ordering System with 3 parameters and 2 values

Base Values

Input Variables
A B C
0 0 0
1 1 1

Let the input variable be a set X = {A, B, C}. For
simplicity, assume that the starting test case, termed base test
case, has been identified (see Table 1). Here, integer values
(e.g. 0, 1, 2…) are used in place of real data values to facilitate
discussion.

In this case, exhaustive combinations would yield = 23 = 8
possible test combinations. Referring to Table 2, if parameter
C is known to have insignificant effects on the system, then C
input could be treated as don’t care value. Thus, C could
randomly take either 0 or 1 respectively. Based on this
premise, one can select only an instance of each input
combination to cover 2-way combination for AB at least once.
In this case, there are two possible combinations for 2-way
covering of AB. For instance, consider the input variable
{0,0}. The first AB combination would be {0,0,0} and the

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of
the aforementioned combinations.

Table 2. Exhaustive Combinations

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Combinations

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Using this technique, the number of combinations can be
reduced significantly. For instance, for 2-way combination
AB, the total test data can be reduced to merely 4 (see Figure
3).

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult to establish for
certain which variable has insignificant effect on the system.
Thus, it is necessary to consider the impact of other 2-way
combinations as well. In this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC. Having considered

Figure 3. Merging of AB, BC, and AC

In reality, nevertheless, it is often difficult
to establish for certain which variable has
insignificant effect on the system. Thus,
it is necessary to consider the impact of
other 2-way combinations as well. In
this example, there are 3 possibilities
for 2-way interactions: AB, BC, and AC.
Having considered AB and using similar
approach given earlier, the values for the
other 2-way combinations BC and AC can
also be generated (see Figure 3).

Referring to Figure 3, an obvious
observation is the fact that the total test
data has been reduced from 8 exhaustively
to 6 for pairwise, a reduction of 25%. The
reduction technique or strategy illustrated
here can be helpful as far as minimizing
the required tests.

It can be noticed that there exists
combinations of {0,0,1} corresponding to
{Classic Hand Tossed, Vegetarian, Beef}
and {1,0,1} corresponding to {Crunchy
Thin, Vegetarian, Beef}. However, these
combination are deemed illegal (i.e. as
vegetarian implies no beef). Concerning
seeding, they are the combinations that
are required, necessary and desirable.
As discussed earlier, the support for
constraint and seeding are the scope of
this work.

IV. pROpOseD sTRaTegy, 2Tg

In a nutshell, the 2TG strategy consists of
seeding algorithm, the pairwise binary
input combination algorithm and the
constraint algorithm. The overview of
2TG strategy can be represented using the
block diagram as illustrated in Figure 4.

The seeding algorithm involves capturing
the specified test data directly into the
final test suite as specified by the user.
Binary input combination algorithm
implements the interaction between
parameters and generates pairwise
combination accordingly. The constraint
algorithm iteratively finds the test case
that satisfies the constraints into the final
test suite. The complete description for
all algorithms can be seen in Figure 5,6,7
respectively.

Using our earlier example of a system
with 3 parameters and 2 values, the

AB and using similar approach given earlier, the values for the
other 2-way combinations BC and AC can also be generated
(see Figure 3).

Referring to Figure 3, an obvious observation is the fact that
the total test data has been reduced from 8 exhaustively to 6
for pairwise, a reduction of 25%. The reduction technique or
strategy illustrated here can be helpful as far as minimizing the
required tests.

It can be noticed that there exists combinations of {0,0,1}
corresponding to {Classic Hand Tossed, Vegetarian, Beef}
and {1,0,1} corresponding to {Crunchy Thin, Vegetarian,
Beef}. However, these combination are deemed illegal (i.e. as
vegetarian implies no beef). Concerning seeding, they are the
combinations that are required, necessary and desirable. As
discussed earlier, the support for constraint and seeding are the
scope of this work.

IV. PROPOSED STRATEGY, 2TG

In a nutshell, the 2TG strategy consists of seeding
algorithm, the pairwise binary input combination algorithm
and the constraint algorithm. The overview of 2TG strategy
can be represented using the block diagram as illustrated in
Figure 4.

The seeding algorithm involves capturing the specified test
data directly into the final test suite as specified by the user.
Binary input combination algorithm implements the
interaction between parameters and generates pairwise
combination accordingly. The constraint algorithm iteratively
finds the test case that satisfies the constraints into the final
test suite. The complete description for all algorithms can be
seen in Figure 5,6,7 respectively.

Using our earlier example of a system with 3 parameters
and 2 values, the working of each algorithm will be illustrated

in the next paragraph. As for the seeding algorithm, the
combinations that are specified by the user are directly
appended to the final test suite list.

Algorithm Seeding

1: if seeding is specified
2: begin
3: read seeding parameters
4: put in seeding list automatically
5: add seeding to final test suite list
6: end

Figure 5. Seeding Algorithm

Algorithm Pairwise Binary Input Combinations

1: begin
2: let limit =2data length

3: for i=0 until reaches limit
4: begin
5: comb = convert integer to binary
6: while length of comb< data.length
7: comb ="0"+comb;
8: initialise no_of_one
9: for j=0 until j<comb.length
10: if character j of comb='1' then
11: increment no of one by 1
12: if no of one equals to t value
13: begin
14: add comb to binary combination list
15: end
16: end
17: end

Figure 6.Binary Input Combination Algorithm

Figure 4. 2TG Strategy as Block Diagram Figure 4. 2TG Strategy as Block Diagram

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

6

working of each algorithm will be
illustrated in the next paragraph. As for
the seeding algorithm, the combinations
that are specified by the user are directly
appended to the final test suite list.

AB and using similar approach given earlier, the values for the
other 2-way combinations BC and AC can also be generated
(see Figure 3).

Referring to Figure 3, an obvious observation is the fact that
the total test data has been reduced from 8 exhaustively to 6
for pairwise, a reduction of 25%. The reduction technique or
strategy illustrated here can be helpful as far as minimizing the
required tests.

It can be noticed that there exists combinations of {0,0,1}
corresponding to {Classic Hand Tossed, Vegetarian, Beef}
and {1,0,1} corresponding to {Crunchy Thin, Vegetarian,
Beef}. However, these combination are deemed illegal (i.e. as
vegetarian implies no beef). Concerning seeding, they are the
combinations that are required, necessary and desirable. As
discussed earlier, the support for constraint and seeding are the
scope of this work.

IV. PROPOSED STRATEGY, 2TG

In a nutshell, the 2TG strategy consists of seeding
algorithm, the pairwise binary input combination algorithm
and the constraint algorithm. The overview of 2TG strategy
can be represented using the block diagram as illustrated in
Figure 4.

The seeding algorithm involves capturing the specified test
data directly into the final test suite as specified by the user.
Binary input combination algorithm implements the
interaction between parameters and generates pairwise
combination accordingly. The constraint algorithm iteratively
finds the test case that satisfies the constraints into the final
test suite. The complete description for all algorithms can be
seen in Figure 5,6,7 respectively.

Using our earlier example of a system with 3 parameters
and 2 values, the working of each algorithm will be illustrated

in the next paragraph. As for the seeding algorithm, the
combinations that are specified by the user are directly
appended to the final test suite list.

Algorithm Seeding

1: if seeding is specified
2: begin
3: read seeding parameters
4: put in seeding list automatically
5: add seeding to final test suite list
6: end

Figure 5. Seeding Algorithm

Algorithm Pairwise Binary Input Combinations

1: begin
2: let limit =2data length

3: for i=0 until reaches limit
4: begin
5: comb = convert integer to binary
6: while length of comb< data.length
7: comb ="0"+comb;
8: initialise no_of_one
9: for j=0 until j<comb.length
10: if character j of comb='1' then
11: increment no of one by 1
12: if no of one equals to t value
13: begin
14: add comb to binary combination list
15: end
16: end
17: end

Figure 6.Binary Input Combination Algorithm

Figure 4. 2TG Strategy as Block Diagram

Figure 5. Seeding Algorithm

AB and using similar approach given earlier, the values for the
other 2-way combinations BC and AC can also be generated
(see Figure 3).

Referring to Figure 3, an obvious observation is the fact that
the total test data has been reduced from 8 exhaustively to 6
for pairwise, a reduction of 25%. The reduction technique or
strategy illustrated here can be helpful as far as minimizing the
required tests.

It can be noticed that there exists combinations of {0,0,1}
corresponding to {Classic Hand Tossed, Vegetarian, Beef}
and {1,0,1} corresponding to {Crunchy Thin, Vegetarian,
Beef}. However, these combination are deemed illegal (i.e. as
vegetarian implies no beef). Concerning seeding, they are the
combinations that are required, necessary and desirable. As
discussed earlier, the support for constraint and seeding are the
scope of this work.

IV. PROPOSED STRATEGY, 2TG

In a nutshell, the 2TG strategy consists of seeding
algorithm, the pairwise binary input combination algorithm
and the constraint algorithm. The overview of 2TG strategy
can be represented using the block diagram as illustrated in
Figure 4.

The seeding algorithm involves capturing the specified test
data directly into the final test suite as specified by the user.
Binary input combination algorithm implements the
interaction between parameters and generates pairwise
combination accordingly. The constraint algorithm iteratively
finds the test case that satisfies the constraints into the final
test suite. The complete description for all algorithms can be
seen in Figure 5,6,7 respectively.

Using our earlier example of a system with 3 parameters
and 2 values, the working of each algorithm will be illustrated

in the next paragraph. As for the seeding algorithm, the
combinations that are specified by the user are directly
appended to the final test suite list.

Algorithm Seeding

1: if seeding is specified
2: begin
3: read seeding parameters
4: put in seeding list automatically
5: add seeding to final test suite list
6: end

Figure 5. Seeding Algorithm

Algorithm Pairwise Binary Input Combinations

1: begin
2: let limit =2data length

3: for i=0 until reaches limit
4: begin
5: comb = convert integer to binary
6: while length of comb< data.length
7: comb ="0"+comb;
8: initialise no_of_one
9: for j=0 until j<comb.length
10: if character j of comb='1' then
11: increment no of one by 1
12: if no of one equals to t value
13: begin
14: add comb to binary combination list
15: end
16: end
17: end

Figure 6.Binary Input Combination Algorithm

Figure 4. 2TG Strategy as Block Diagram

Figure 6.Binary Input Combination Algorithm

Algorithm Constraints

1: begin
2: for all combinations in binary combination list
3: begin
4: set constraint match to false
5: generate pairwise test case by random generation
6: if test case equals to constraint
7: constraint match=true;
8: if count iteration has reached limit then break
9: if constraint match is false
10: add test case into test suite list
11: continue
12: end
13: end

Figure 7.Constraints Algorithm

Concerning the pairwise binary input combinations
algorithm, the selection of don’t care values to be randomized
is highly dependent on the generated binary combination list.
Here, the binary numbers representing the complete possible
number of combination is first generated and the subsets with
occurrences of two 1’s are selected accordingly in the binary
combination list. In our example, the three selected binary
combinations are ‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly more complicated than
both of the earlier given algorithms. Here, the constraints
algorithm first checks the binary setting for the first column
i.e. column A. Since the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state. Table 3 shows the
first pair of pairwise combinations for BC where the ‘X’
denotes the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair X 0 0

Therefore, a random number will be generated for column
A. Assuming the random number generated by the algorithm
is ‘0’, the algorithm will store this random generated number
inside column A. For the pairwise column (i.e. BC), the
algorithm will generate an incrementing number starting from
‘0’. Therefore, the algorithm will now point to the next
column i.e. column B. Now, since the binary setting for this
column is ‘1’, using recursive loop, the algorithm will
generate ‘0’ for this column. Next, pointing to column C, the
algorithm will also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been completely generated, the
algorithm will check whether this pair matches the specified
constraint parameter. Assuming the specified constraint

parameter is {1,0,1}. Hence, the first generated pair does not
match with the constraint parameter. Consequently, constraint
match remains as FALSE. In the same manner, the constraint
algorithm will continue to iterate and generate the next pairs.
Table 5 shows the first and second pairs generated. From
Table 5, the second pair generated is {1,0,1}. Again, the
algorithm will check whether this pair matches with the
specified constraint parameter i.e. {1,0,1}. Since now the
match is found, the constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0

Table 5. Second Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0
Second Pair 1 0 1

Next, the algorithm will check for value of limit. Here, the
limit represents the maximum allowable loops set to prevent
infinite loop in the case of non-feasible solution. In the case of
no feasible solution, the algorithm will keep on looping until
the limit is reached. If either the limit has been reached, the
searching loop will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the final test suite,
otherwise, the algorithm will iterate further for an alternative
pair.

Table 6 shows the combinations for BC where the unwanted
pair, {1,0,1} has been excluded from the final test suite list.

Table 6. Pairwise Combinations for BC with Constraint

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Pairwise

Combinations
for BC

0 0 0
0 1 0
1 1 1

The constraint algorithm will then iterate to the next
combinations (i.e. AC and AB). The same iterations will be
repeated until completion. Table 7 depicts one of the possible

Figure 7.Constraints Algorithm

Concerning the pairwise binary input
combinations algorithm, the selection
of don’t care values to be randomized is
highly dependent on the generated binary
combination list. Here, the binary numbers
representing the complete possible
number of combination is first generated
and the subsets with occurrences of two
1’s are selected accordingly in the binary
combination list. In our example, the
three selected binary combinations are
‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly
more complicated than both of the earlier
given algorithms. Here, the constraints
algorithm first checks the binary setting
for the first column i.e. column A. Since
the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state.
Table 3 shows the first pair of pairwise
combinations for BC where the ‘X’ denotes
the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations
for BC with Don’t Care State

Algorithm Constraints

1: begin
2: for all combinations in binary combination list
3: begin
4: set constraint match to false
5: generate pairwise test case by random generation
6: if test case equals to constraint
7: constraint match=true;
8: if count iteration has reached limit then break
9: if constraint match is false
10: add test case into test suite list
11: continue
12: end
13: end

Figure 7.Constraints Algorithm

Concerning the pairwise binary input combinations
algorithm, the selection of don’t care values to be randomized
is highly dependent on the generated binary combination list.
Here, the binary numbers representing the complete possible
number of combination is first generated and the subsets with
occurrences of two 1’s are selected accordingly in the binary
combination list. In our example, the three selected binary
combinations are ‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly more complicated than
both of the earlier given algorithms. Here, the constraints
algorithm first checks the binary setting for the first column
i.e. column A. Since the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state. Table 3 shows the
first pair of pairwise combinations for BC where the ‘X’
denotes the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair X 0 0

Therefore, a random number will be generated for column
A. Assuming the random number generated by the algorithm
is ‘0’, the algorithm will store this random generated number
inside column A. For the pairwise column (i.e. BC), the
algorithm will generate an incrementing number starting from
‘0’. Therefore, the algorithm will now point to the next
column i.e. column B. Now, since the binary setting for this
column is ‘1’, using recursive loop, the algorithm will
generate ‘0’ for this column. Next, pointing to column C, the
algorithm will also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been completely generated, the
algorithm will check whether this pair matches the specified
constraint parameter. Assuming the specified constraint

parameter is {1,0,1}. Hence, the first generated pair does not
match with the constraint parameter. Consequently, constraint
match remains as FALSE. In the same manner, the constraint
algorithm will continue to iterate and generate the next pairs.
Table 5 shows the first and second pairs generated. From
Table 5, the second pair generated is {1,0,1}. Again, the
algorithm will check whether this pair matches with the
specified constraint parameter i.e. {1,0,1}. Since now the
match is found, the constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0

Table 5. Second Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0
Second Pair 1 0 1

Next, the algorithm will check for value of limit. Here, the
limit represents the maximum allowable loops set to prevent
infinite loop in the case of non-feasible solution. In the case of
no feasible solution, the algorithm will keep on looping until
the limit is reached. If either the limit has been reached, the
searching loop will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the final test suite,
otherwise, the algorithm will iterate further for an alternative
pair.

Table 6 shows the combinations for BC where the unwanted
pair, {1,0,1} has been excluded from the final test suite list.

Table 6. Pairwise Combinations for BC with Constraint

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Pairwise

Combinations
for BC

0 0 0
0 1 0
1 1 1

The constraint algorithm will then iterate to the next
combinations (i.e. AC and AB). The same iterations will be
repeated until completion. Table 7 depicts one of the possible

Therefore, a random number will be
generated for column A. Assuming
the random number generated by the
algorithm is ‘0’, the algorithm will store
this random generated number inside
column A. For the pairwise column
(i.e. BC), the algorithm will generate an
incrementing number starting from ‘0’.
Therefore, the algorithm will now point
to the next column i.e. column B. Now,
since the binary setting for this column
is ‘1’, using recursive loop, the algorithm
will generate ‘0’ for this column. Next,
pointing to column C, the algorithm will
also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been
completely generated, the algorithm
will check whether this pair matches the
specified constraint parameter. Assuming
the specified constraint parameter is
{1,0,1}. Hence, the first generated pair does
not match with the constraint parameter.
Consequently, constraint match remains
as FALSE. In the same manner, the
constraint algorithm will continue to
iterate and generate the next pairs.
Table 5 shows the first and second pairs
generated. From Table 5, the second pair
generated is {1,0,1}. Again, the algorithm
will check whether this pair matches with
the specified constraint parameter i.e.
{1,0,1}. Since now the match is found, the

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

7

constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise
Combinations for BC

Algorithm Constraints

1: begin
2: for all combinations in binary combination list
3: begin
4: set constraint match to false
5: generate pairwise test case by random generation
6: if test case equals to constraint
7: constraint match=true;
8: if count iteration has reached limit then break
9: if constraint match is false
10: add test case into test suite list
11: continue
12: end
13: end

Figure 7.Constraints Algorithm

Concerning the pairwise binary input combinations
algorithm, the selection of don’t care values to be randomized
is highly dependent on the generated binary combination list.
Here, the binary numbers representing the complete possible
number of combination is first generated and the subsets with
occurrences of two 1’s are selected accordingly in the binary
combination list. In our example, the three selected binary
combinations are ‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly more complicated than
both of the earlier given algorithms. Here, the constraints
algorithm first checks the binary setting for the first column
i.e. column A. Since the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state. Table 3 shows the
first pair of pairwise combinations for BC where the ‘X’
denotes the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair X 0 0

Therefore, a random number will be generated for column
A. Assuming the random number generated by the algorithm
is ‘0’, the algorithm will store this random generated number
inside column A. For the pairwise column (i.e. BC), the
algorithm will generate an incrementing number starting from
‘0’. Therefore, the algorithm will now point to the next
column i.e. column B. Now, since the binary setting for this
column is ‘1’, using recursive loop, the algorithm will
generate ‘0’ for this column. Next, pointing to column C, the
algorithm will also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been completely generated, the
algorithm will check whether this pair matches the specified
constraint parameter. Assuming the specified constraint

parameter is {1,0,1}. Hence, the first generated pair does not
match with the constraint parameter. Consequently, constraint
match remains as FALSE. In the same manner, the constraint
algorithm will continue to iterate and generate the next pairs.
Table 5 shows the first and second pairs generated. From
Table 5, the second pair generated is {1,0,1}. Again, the
algorithm will check whether this pair matches with the
specified constraint parameter i.e. {1,0,1}. Since now the
match is found, the constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0

Table 5. Second Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0
Second Pair 1 0 1

Next, the algorithm will check for value of limit. Here, the
limit represents the maximum allowable loops set to prevent
infinite loop in the case of non-feasible solution. In the case of
no feasible solution, the algorithm will keep on looping until
the limit is reached. If either the limit has been reached, the
searching loop will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the final test suite,
otherwise, the algorithm will iterate further for an alternative
pair.

Table 6 shows the combinations for BC where the unwanted
pair, {1,0,1} has been excluded from the final test suite list.

Table 6. Pairwise Combinations for BC with Constraint

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Pairwise

Combinations
for BC

0 0 0
0 1 0
1 1 1

The constraint algorithm will then iterate to the next
combinations (i.e. AC and AB). The same iterations will be
repeated until completion. Table 7 depicts one of the possible

Table 5. Second Pair of Pairwise
Combinations for BC

Algorithm Constraints

1: begin
2: for all combinations in binary combination list
3: begin
4: set constraint match to false
5: generate pairwise test case by random generation
6: if test case equals to constraint
7: constraint match=true;
8: if count iteration has reached limit then break
9: if constraint match is false
10: add test case into test suite list
11: continue
12: end
13: end

Figure 7.Constraints Algorithm

Concerning the pairwise binary input combinations
algorithm, the selection of don’t care values to be randomized
is highly dependent on the generated binary combination list.
Here, the binary numbers representing the complete possible
number of combination is first generated and the subsets with
occurrences of two 1’s are selected accordingly in the binary
combination list. In our example, the three selected binary
combinations are ‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly more complicated than
both of the earlier given algorithms. Here, the constraints
algorithm first checks the binary setting for the first column
i.e. column A. Since the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state. Table 3 shows the
first pair of pairwise combinations for BC where the ‘X’
denotes the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair X 0 0

Therefore, a random number will be generated for column
A. Assuming the random number generated by the algorithm
is ‘0’, the algorithm will store this random generated number
inside column A. For the pairwise column (i.e. BC), the
algorithm will generate an incrementing number starting from
‘0’. Therefore, the algorithm will now point to the next
column i.e. column B. Now, since the binary setting for this
column is ‘1’, using recursive loop, the algorithm will
generate ‘0’ for this column. Next, pointing to column C, the
algorithm will also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been completely generated, the
algorithm will check whether this pair matches the specified
constraint parameter. Assuming the specified constraint

parameter is {1,0,1}. Hence, the first generated pair does not
match with the constraint parameter. Consequently, constraint
match remains as FALSE. In the same manner, the constraint
algorithm will continue to iterate and generate the next pairs.
Table 5 shows the first and second pairs generated. From
Table 5, the second pair generated is {1,0,1}. Again, the
algorithm will check whether this pair matches with the
specified constraint parameter i.e. {1,0,1}. Since now the
match is found, the constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0

Table 5. Second Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0
Second Pair 1 0 1

Next, the algorithm will check for value of limit. Here, the
limit represents the maximum allowable loops set to prevent
infinite loop in the case of non-feasible solution. In the case of
no feasible solution, the algorithm will keep on looping until
the limit is reached. If either the limit has been reached, the
searching loop will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the final test suite,
otherwise, the algorithm will iterate further for an alternative
pair.

Table 6 shows the combinations for BC where the unwanted
pair, {1,0,1} has been excluded from the final test suite list.

Table 6. Pairwise Combinations for BC with Constraint

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Pairwise

Combinations
for BC

0 0 0
0 1 0
1 1 1

The constraint algorithm will then iterate to the next
combinations (i.e. AC and AB). The same iterations will be
repeated until completion. Table 7 depicts one of the possible

Next, the algorithm will check for value
of limit. Here, the limit represents the
maximum allowable loops set to prevent
infinite loop in the case of non-feasible
solution. In the case of no feasible solution,
the algorithm will keep on looping until
the limit is reached. If either the limit
has been reached, the searching loop
will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the
final test suite, otherwise, the algorithm
will iterate further for an alternative pair.
Table 6 shows the combinations for BC
where the unwanted pair, {1,0,1} has been
excluded from the final test suite list.

Table 6. Pairwise Combinations for
 BC with Constraint

Algorithm Constraints

1: begin
2: for all combinations in binary combination list
3: begin
4: set constraint match to false
5: generate pairwise test case by random generation
6: if test case equals to constraint
7: constraint match=true;
8: if count iteration has reached limit then break
9: if constraint match is false
10: add test case into test suite list
11: continue
12: end
13: end

Figure 7.Constraints Algorithm

Concerning the pairwise binary input combinations
algorithm, the selection of don’t care values to be randomized
is highly dependent on the generated binary combination list.
Here, the binary numbers representing the complete possible
number of combination is first generated and the subsets with
occurrences of two 1’s are selected accordingly in the binary
combination list. In our example, the three selected binary
combinations are ‘011’, ‘110’ and ‘101’.

The constraints algorithm is slightly more complicated than
both of the earlier given algorithms. Here, the constraints
algorithm first checks the binary setting for the first column
i.e. column A. Since the binary setting for the first column is
‘0’, this represents the ‘don’t care’ state. Table 3 shows the
first pair of pairwise combinations for BC where the ‘X’
denotes the ‘don’t care’ state for column A.

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair X 0 0

Therefore, a random number will be generated for column
A. Assuming the random number generated by the algorithm
is ‘0’, the algorithm will store this random generated number
inside column A. For the pairwise column (i.e. BC), the
algorithm will generate an incrementing number starting from
‘0’. Therefore, the algorithm will now point to the next
column i.e. column B. Now, since the binary setting for this
column is ‘1’, using recursive loop, the algorithm will
generate ‘0’ for this column. Next, pointing to column C, the
algorithm will also generate a ‘0’ for this column. Table 4
shows the first pair generated.

Now, since the first pair has been completely generated, the
algorithm will check whether this pair matches the specified
constraint parameter. Assuming the specified constraint

parameter is {1,0,1}. Hence, the first generated pair does not
match with the constraint parameter. Consequently, constraint
match remains as FALSE. In the same manner, the constraint
algorithm will continue to iterate and generate the next pairs.
Table 5 shows the first and second pairs generated. From
Table 5, the second pair generated is {1,0,1}. Again, the
algorithm will check whether this pair matches with the
specified constraint parameter i.e. {1,0,1}. Since now the
match is found, the constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0

Table 5. Second Pair of Pairwise Combinations for BC

Base Values

Input Variables
A B C
0 0 0
1 1 1

First Pair 0 0 0
Second Pair 1 0 1

Next, the algorithm will check for value of limit. Here, the
limit represents the maximum allowable loops set to prevent
infinite loop in the case of non-feasible solution. In the case of
no feasible solution, the algorithm will keep on looping until
the limit is reached. If either the limit has been reached, the
searching loop will terminate. If the constraint match is
‘FALSE’ then the pair will be added to the final test suite,
otherwise, the algorithm will iterate further for an alternative
pair.

Table 6 shows the combinations for BC where the unwanted
pair, {1,0,1} has been excluded from the final test suite list.

Table 6. Pairwise Combinations for BC with Constraint

Base Values

Input Variables
A B C
0 0 0
1 1 1

Exhaustive
Pairwise

Combinations
for BC

0 0 0
0 1 0
1 1 1

The constraint algorithm will then iterate to the next
combinations (i.e. AC and AB). The same iterations will be
repeated until completion. Table 7 depicts one of the possible The constraint algorithm will then iterate
to the next combinations (i.e. AC and AB).
The same iterations will be repeated until
completion. Table 7 depicts one of the
possible pairwise combinations.

Table 7. Pairwise Combinations with
Constraints

pairwise combinations.
Table 7. Pairwise Combinations with Constraints

A B C
0 0 0
1 1 1
0 0 0
0 0 1
0 1 0
1 0 0
1 1 1

All Pairwise
Combinatorial

Values

Base Values

Input Variables

V. DEMONSTRATION OF CORRECTNESS

In order to demonstrate the correctness of the 2TG strategy,
4 experiments have been conducted as follows:

2TG support for seeding
2TG support for constraints
2TG support for general pairwise generation with both
seeding and constraints
2TG behaviour when there is no feasible solution
possible

Here, the experiments are based on our implementation of
2TG using the Java programming language. Here, the 2TG
takes three possible command line parameters as follows:

2TG –i {parameters} –c {constraints list} –s {seeding list}
 Where
 -I represents the input values
 -c represents the constraints list
 -s represents the seeding list

Here the {parameters} take a number separated by comma
to represent parameters and values. For example, {3,3,4}
represents a system with 2 3-valued and 1 4-valued
parameters). The {constraints list} and {seeding lists} take a
number separated by colon to represent the constraints and
seeding. For instance, 1:0:1 represent a seeding (or
constraints) of value 1 of parameter 0, value of parameter 0 of
parameter 1, and value 1 of parameter 2.

A. 2TG Support for seeding

The objective of this experiment is to demonstrate the
2TG’s support for seeding. In this experiment, the input
parameter argument is {-i 3,3,3 -s 0:0:0,0:1:2} corresponding
to 3 parameters with 3 values and seeding values of 0:0:0 and
0:1:2. It is expected that these two seeding input parameters
will be part of the final suite list. Figure 8 depicts the output of
this experiment.

As expected, the seeding parameters {0:0:0} and {0:1:2}
are the first two pairs included in the Final Pairwise Test Suite
List for both assessments. The result is a reduction of 33% of
the total test data that is from 33=27 pairs exhaustively to 18

pairs.

Figure 8. Output for Seeding

B. 2TG Support for constraints

The objective of this experiment is to demonstrate the
2TG’s support for constraint. In this assessment, the input
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}. From the input
parameters, there are 2 sets of constraints parameters; {0:0:0}
and {0:1:2}. It is expected that the result will be smaller sized
test suite where these two constraints will be excluded from
the final test suite list. Figure 9 depicts the output of this
experiment.

Figure 9 shows the final test suit list which consists of 14
pairs. The constraint parameters {0:0:0} and {0:1:2} have
been excluded from the Final Pairwise Test Suite List. The
result is a reduction of 48% of the total test data that is from
33=27 pairs exhaustively to 14 pairs only.

C. 2TG Support for general pairwise generation with both
seeding and constraints

The objective of this experiment is to demonstrate the
2TG’s support for general pairwise generation with both
seeding and constraints. In this experiment, the input
parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s 1:1:1,0:2:2}. It is
expected that both seeding and constraint parameters given
will be reflected in the final test suite list. It should be noted
that the input parameters are non-uniform with 1 2-valued

Seeding list

Seeding list in the final test suite
list V. DemONsTRaTION Of

CORReCTNess

In order to demonstrate the correctness of
the 2TG strategy, 4 experiments have been
conducted as follows:

• 2TG support for seeding
• 2TG support for constraints
• 2TG support for general pairwise

generation with both seeding and
constraints

• 2TG behaviour when there is no
feasible solution possible

Here, the experiments are based on
our implementation of 2TG using the
Java programming language. Here, the
2TG takes three possible command line
parameters as follows:

2TG –i {parameters} –c {constraints list} –s
{seeding list}
 Where

 - I represents the input values
 - c represents the constraints list
 - s represents the seeding list

Here the {parameters} take a number
separated by comma to represent
parameters and values. For example,
{3,3,4} represents a system with 2
3-valued and 1 4-valued parameters). The
{constraints list} and {seeding lists} take a
number separated by colon to represent
the constraints and seeding. For instance,
1:0:1 represent a seeding (or constraints)
of value 1 of parameter 0, value of
parameter 0 of parameter 1, and value 1
of parameter 2.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

8

a. 2Tg support for seeding

The objective of this experiment is to
demonstrate the 2TG’s support for
seeding. In this experiment, the input
parameter argument is {-i 3,3,3 -s
0:0:0,0:1:2} corresponding to 3 parameters
with 3 values and seeding values of 0:0:0
and 0:1:2. It is expected that these two
seeding input parameters will be part of
the final suite list. Figure 8 depicts the
output of this experiment.

As expected, the seeding parameters
{0:0:0} and {0:1:2} are the first two pairs
included in the Final Pairwise Test Suite
List for both assessments. The result is
a reduction of 33% of the total test data
that is from 33=27 pairs exhaustively to 18
pairs.

pairwise combinations.
Table 7. Pairwise Combinations with Constraints

A B C
0 0 0
1 1 1
0 0 0
0 0 1
0 1 0
1 0 0
1 1 1

All Pairwise
Combinatorial

Values

Base Values

Input Variables

V. DEMONSTRATION OF CORRECTNESS

In order to demonstrate the correctness of the 2TG strategy,
4 experiments have been conducted as follows:

2TG support for seeding
2TG support for constraints
2TG support for general pairwise generation with both
seeding and constraints
2TG behaviour when there is no feasible solution
possible

Here, the experiments are based on our implementation of
2TG using the Java programming language. Here, the 2TG
takes three possible command line parameters as follows:

2TG –i {parameters} –c {constraints list} –s {seeding list}
 Where
 -I represents the input values
 -c represents the constraints list
 -s represents the seeding list

Here the {parameters} take a number separated by comma
to represent parameters and values. For example, {3,3,4}
represents a system with 2 3-valued and 1 4-valued
parameters). The {constraints list} and {seeding lists} take a
number separated by colon to represent the constraints and
seeding. For instance, 1:0:1 represent a seeding (or
constraints) of value 1 of parameter 0, value of parameter 0 of
parameter 1, and value 1 of parameter 2.

A. 2TG Support for seeding

The objective of this experiment is to demonstrate the
2TG’s support for seeding. In this experiment, the input
parameter argument is {-i 3,3,3 -s 0:0:0,0:1:2} corresponding
to 3 parameters with 3 values and seeding values of 0:0:0 and
0:1:2. It is expected that these two seeding input parameters
will be part of the final suite list. Figure 8 depicts the output of
this experiment.

As expected, the seeding parameters {0:0:0} and {0:1:2}
are the first two pairs included in the Final Pairwise Test Suite
List for both assessments. The result is a reduction of 33% of
the total test data that is from 33=27 pairs exhaustively to 18

pairs.

Figure 8. Output for Seeding

B. 2TG Support for constraints

The objective of this experiment is to demonstrate the
2TG’s support for constraint. In this assessment, the input
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}. From the input
parameters, there are 2 sets of constraints parameters; {0:0:0}
and {0:1:2}. It is expected that the result will be smaller sized
test suite where these two constraints will be excluded from
the final test suite list. Figure 9 depicts the output of this
experiment.

Figure 9 shows the final test suit list which consists of 14
pairs. The constraint parameters {0:0:0} and {0:1:2} have
been excluded from the Final Pairwise Test Suite List. The
result is a reduction of 48% of the total test data that is from
33=27 pairs exhaustively to 14 pairs only.

C. 2TG Support for general pairwise generation with both
seeding and constraints

The objective of this experiment is to demonstrate the
2TG’s support for general pairwise generation with both
seeding and constraints. In this experiment, the input
parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s 1:1:1,0:2:2}. It is
expected that both seeding and constraint parameters given
will be reflected in the final test suite list. It should be noted
that the input parameters are non-uniform with 1 2-valued

Seeding list

Seeding list in the final test suite
list

Figure 8. Output for Seeding

B. 2Tg support for constraints

The objective of this experiment is to
demonstrate the 2TG’s support for
constraint. In this assessment, the input
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}.
From the input parameters, there are 2
sets of constraints parameters; {0:0:0} and
{0:1:2}. It is expected that the result will be
smaller sized test suite where these two
constraints will be excluded from the final

test suite list. Figure 9 depicts the output
of this experiment.

Figure 9 shows the final test suit list
which consists of 14 pairs. The constraint
parameters {0:0:0} and {0:1:2} have been
excluded from the Final Pairwise Test
Suite List. The result is a reduction of 48%
of the total test data that is from 33=27
pairs exhaustively to 14 pairs only.

C. 2Tg support for general pairwise
generation with both seeding and
constraints

The objective of this experiment is to
demonstrate the 2TG’s support for general
pairwise generation with both seeding
and constraints. In this experiment, the
input parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s
1:1:1,0:2:2}. It is expected that both seeding
and constraint parameters given will be
reflected in the final test suite list. It should
be noted that the input parameters are
non-uniform with 1 2-valued parameter,
1 3-valued parameter and 1 4-valued
parameter. Figure 10 depicts the output
of this experiment.parameter, 1 3-valued parameter and 1 4-valued parameter.

Figure 10 depicts the output of this experiment.

Figure 9. Output for Constraints

Referring to Figure 10, the final test suite includes two
seeding parameters 0:0:0 and 0:1:2 whereas the constraint
parameters 1:1:1 and 0:2:2 have been appropriately excluded.
There is a reduction of 25% of the total test data that is from
2x3x4 = 24 pairs to 18 pairs.

D. 2TG behaviour when there is no feasible solution
possible

The objective of this experiment is to demonstrate the
behaviour of the 2TG strategy when no feasible solution is
possible.

In this experiment, the input variable is {-i 2,2,2 –c
0:0:0,0:0:1}. The constraint parameters chosen are {0:0:0} and
{0:0:1}. In this case, since the base value is {2,2,2}, there are
only two possible combinations for pairwise covering of AB.
The first AB combination would be {0,0,0} and the second
combination would be {0,0,1}. Since the constraint parameter
set are {0:0:0} and {0:0:1}, therefore, there is no feasible
solution for AB combinations. Thus, it is expected that none
of the pairs covering AB combinations should appear. Figure
11 depicts the output of this experiment.

From the output in Figure 11, the final test suite covers only
6 pairs. As expected, none of the pairs that cover combination
between AB appeared. For the result, there is a reduction of
25% of the total test data that is from 8 pairs to 6 pairs

Figure 10. Output for Non-Uniform Parameter Values

Figure 11. Output of Assessment for Non-Feasible Solution

.

Constraint list

Constraint list is excluded from the
final test suite list

Seeding list

Seeding list is in the final test suite
list and constraint list is excluded

Constraint list

Figure 9. Output for Constraints

Referring to Figure 10, the final test suite
includes two seeding parameters 0:0:0 and
0:1:2 whereas the constraint parameters
1:1:1 and 0:2:2 have been appropriately

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

9

excluded. There is a reduction of 25% of
the total test data that is from 2x3x4 = 24
pairs to 18 pairs.

D. 2Tg behaviour when there is no
feasible solution possible

The objective of this experiment is to
demonstrate the behaviour of the 2TG
strategy when no feasible solution is
possible.

In this experiment, the input variable
is {-i 2,2,2 –c 0:0:0,0:0:1}. The constraint
parameters chosen are {0:0:0} and {0:0:1}.
In this case, since the base value is {2,2,2},
there are only two possible combinations
for pairwise covering of AB. The first AB
combination would be {0,0,0} and the
second combination would be {0,0,1}.
Since the constraint parameter set are
{0:0:0} and {0:0:1}, therefore, there is no
feasible solution for AB combinations.
Thus, it is expected that none of the
pairs covering AB combinations should
appear. Figure 11 depicts the output of
this experiment.

From the output in Figure 11, the final test
suite covers only 6 pairs. As expected,
none of the pairs that cover combination
between AB appeared. For the result,
there is a reduction of 25% of the total test
data that is from 8 pairs to 6 pairs

parameter, 1 3-valued parameter and 1 4-valued parameter.
Figure 10 depicts the output of this experiment.

Figure 9. Output for Constraints

Referring to Figure 10, the final test suite includes two
seeding parameters 0:0:0 and 0:1:2 whereas the constraint
parameters 1:1:1 and 0:2:2 have been appropriately excluded.
There is a reduction of 25% of the total test data that is from
2x3x4 = 24 pairs to 18 pairs.

D. 2TG behaviour when there is no feasible solution
possible

The objective of this experiment is to demonstrate the
behaviour of the 2TG strategy when no feasible solution is
possible.

In this experiment, the input variable is {-i 2,2,2 –c
0:0:0,0:0:1}. The constraint parameters chosen are {0:0:0} and
{0:0:1}. In this case, since the base value is {2,2,2}, there are
only two possible combinations for pairwise covering of AB.
The first AB combination would be {0,0,0} and the second
combination would be {0,0,1}. Since the constraint parameter
set are {0:0:0} and {0:0:1}, therefore, there is no feasible
solution for AB combinations. Thus, it is expected that none
of the pairs covering AB combinations should appear. Figure
11 depicts the output of this experiment.

From the output in Figure 11, the final test suite covers only
6 pairs. As expected, none of the pairs that cover combination
between AB appeared. For the result, there is a reduction of
25% of the total test data that is from 8 pairs to 6 pairs

Figure 10. Output for Non-Uniform Parameter Values

Figure 11. Output of Assessment for Non-Feasible Solution

.

Constraint list

Constraint list is excluded from the
final test suite list

Seeding list

Seeding list is in the final test suite
list and constraint list is excluded

Constraint list

Figure 10. Output for Non-Uniform Parameter
Values

parameter, 1 3-valued parameter and 1 4-valued parameter.
Figure 10 depicts the output of this experiment.

Figure 9. Output for Constraints

Referring to Figure 10, the final test suite includes two
seeding parameters 0:0:0 and 0:1:2 whereas the constraint
parameters 1:1:1 and 0:2:2 have been appropriately excluded.
There is a reduction of 25% of the total test data that is from
2x3x4 = 24 pairs to 18 pairs.

D. 2TG behaviour when there is no feasible solution
possible

The objective of this experiment is to demonstrate the
behaviour of the 2TG strategy when no feasible solution is
possible.

In this experiment, the input variable is {-i 2,2,2 –c
0:0:0,0:0:1}. The constraint parameters chosen are {0:0:0} and
{0:0:1}. In this case, since the base value is {2,2,2}, there are
only two possible combinations for pairwise covering of AB.
The first AB combination would be {0,0,0} and the second
combination would be {0,0,1}. Since the constraint parameter
set are {0:0:0} and {0:0:1}, therefore, there is no feasible
solution for AB combinations. Thus, it is expected that none
of the pairs covering AB combinations should appear. Figure
11 depicts the output of this experiment.

From the output in Figure 11, the final test suite covers only
6 pairs. As expected, none of the pairs that cover combination
between AB appeared. For the result, there is a reduction of
25% of the total test data that is from 8 pairs to 6 pairs

Figure 10. Output for Non-Uniform Parameter Values

Figure 11. Output of Assessment for Non-Feasible Solution

.

Constraint list

Constraint list is excluded from the
final test suite list

Seeding list

Seeding list is in the final test suite
list and constraint list is excluded

Constraint list

Figure 11. Output of Assessment for Non-
Feasible Solution

VI. DIsCUssION aND
CONClUsION

The results obtained from experiment
1 demonstrate 2TG is able to support
seeding, that is, by directly adding the
specified seeding parameter into final
test suite list. In the next assessment,
the output showed that the constraint
mechanism was fully supported by the
strategy, where all the specified constraints

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

Journal of Telecommunication, Electronic and Computer Engineering

10

were not found in the final test suite list.
Experiment 3 has demonstrated that
2TG strategy also supports non-uniform
parameters values and finally experiment
4 has demonstrated the behaviour of
the strategy when no feasible solution is
available.

In a nut shell, the experimental results
show that the developed strategy
guarantees inclusion of the specified test
cases by the seeding parameter as the first
level of prioritized pair. By prioritizing the
seeding parameter, none of the specified
critical combinations will be missed out
from the final generated test suite.

The constraint mechanism was proven
to be working correctly. The strategy
generates the pairs and checks against the
specified unwanted combinations before
adding to the final test suite. Often, this
may result with smaller sized test suite
or may be no feasible solution at all.
In the case of no feasible solution, this
strategy has been designed to check for
matching pairs up to certain limit only.
This approach prevents the problem of
infinite loop.

In real life, parameter values may not
always be uniform. Considering this
reality, 2TG is also designed to support
non-uniform parameter input values.
Here, 2TG appears to work seamlessly
well even in the presence of constraints
and seeding requirements.

In short, the evaluation of 2TG has been
promising. As part of future work, the
pairwise support in 2TG will be extended
to support higher order interaction along
with the case study evaluations involving
both hardware and software systems.

RefeReNCes
[1] M.F.J. Klaib, “Development of An

Automated Test Data Generation
and Execution Strategy Using
Combinatorial Approach”, School of
Electrical and Electronic Engineering,
Universiti Sains Malaysia, PhD Thesis
(2009).

[2] M.I. Younis, “Development of a
Parallel T-Way Minimization Strategy
for Combinatorial Testing”, School of
Electrical and Electronic Engineering,
Universiti Sains Malaysia, PhD Thesis
(2010).

[3] J. Md. Sharif, “Implementation of
Seeding and Constraints Mechanism
for Pairwise Test Data Generation”,
School of Electrical and Electronic
Engineering, Universiti Sains Malaysia,
MSc Dissertation (2010).

[4] K.Z.Zamli and M.I.Younis, “Interaction
Testing: From Pairwise to Variable
Strength Interaction”, in Proc of the
Fourth Asia International Conference
on Mathematical/Analytical Modelling
and Computer Simulation (AMS2010),
Kota Kinabalu, pp. 6-11.

[5] Y. Lei, R. Kacker, D.R. Kuhn, V.
Okun, and J. Lawrence, “IPOG: A
General Strategy for T-Way Software
Testing”, in Proc. of the 14th Annual
IEEE International Conference and
Workshops on the Engineering of
Computer-Based Systems, 2007, pp.
549-556.

[6] J. Yan and J. Zhang, “Backtracking
Algorithms and Search Heuristics to
Generate Test Suites for Combinatorial
Testing”, in Proc. of the 30th Annual
International Computer Software
and Applications Conference
(COMPSAC’06). vol. 1, 2006, pp.
385-394.

[7] A.S. Hedayat, N.J.A. Sloane, and J.
Stufken. Orthogonal Arrays: Theory
and Applications. New York: Springer,
1999.

[8] T. Shiba, T. Tsuchiya, and T. Kikuno,
“Using Artificial Life Techniques to
Generate Test Cases for Combinatorial
Testing”, in Proc. of the 28th Annual
International Computer Software and
Applications Conference COMPSAC
2004, Hong Kong, 2004, pp. 72-77.

ISSN: 2180 - 1843 Vol. 2 No. 2 July - December 2010

The Design and Implementation of a Pairwise Strategy Supporting Constraints and Seeding Mechanism

11

[9] L. Zekaoui, “Mixed Covering Arrays on
Graphs And Tabu Search Algorithms”,
Ottawa-Carleton Institute for Computer
Science, University of Ottawa, Canada,
Master Thesis (2006).

[10] A.W. Williams and R.L. Probert, “A
Practical Strategy for Testing Pair-
wise Coverage of Network Interfaces”,
in Proc. of the 7th International
Symposium on Software Reliability
Engineering, 1996, pp. 246-254.

[11] D.M. Cohen, S.R. Dalal, M.L. Fredman,
and G.C.Patton, “The AETG System:
An Approach to Testing Based
on Combinatorial Design”,IEEE
Transactions On Software Engineering,
23(7), July 1997, pp. 437-444

[12] D. M. Cohen, S. R. Dalal, M. L. Fredman,
G. C. Patton, and N.J. Bellcore, “The
Combinatorial Design Approach to
Automatic Test Generation”, vol. 13:
IEEE Software, Sep 1996, pp. 83-89

[13] M.B. Cohen, “Designing Test Suites For
Software Interaction Testing”, School of
Computer Science, Univ. of Auckland,
PhD Thesis (2004).

[14] P. J. Schroeder and B. Korel, “Black-Box
Test Reduction Using Input-Output
Analysis”, in Proc. Of the International
Symposium on Software Testing and
Analysis (ISSTA 2000) Portland, OR,
USA, 2000.

[15] Y. Lei and K.C. Tai, “In-Parameter-
Order: A Test Generation Strategy for
Pairwise Testing”, In Proc. of the 3rd
IEEE International High-Assurance
Systems Engineering Symposium,
Washington, DC, USA: 1998, pp.
254-261

[16] M.I. Younis, K.Z. Zamli, and N.A.M. Isa,
“IRPS –An Efficient Test Data Generation
Strategy for Pairwise Testing,”, in Proc.
of the 12th International Conference
on Knowledge-Based and Intelligent
Information & Engineering Systems
KES2008 Zagreb, Croatia, 2008.

[17] M.F.J. Klaib, K.Z. Zamli, N.A. Mat
Isa, and R. Abdullah, “G2Way – A
Backtracking Strategy for Pairwise
Test Data Generation”, in Proc. of the
IEEE Asia Pacific Software Engineering
Conference (APSEC 2008), Beijing,
December 3-5, 2008

[18] J. Bach. “Allpairs Test Case Generation
Tool”, Available from: http://
tejasconsulting.com/open-testware/
feature/allpairs.html.

