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Abstract 

This paper describes the design and development 
of a pairwise test data generation, called 2TG, 
supporting seeding and constraints. In doing so, 
a number of experiments are discussed in order 
to prove the correctness of the implementation.

Keywords: Pairwise Testing, Combinatorial 
Testing, Constraints and Seeding Support, 
Software and Hardware Testing.

I. INTRODUCTION

Nowadays, human are increasingly 
dependent on software to assist as well as 
facilitate daily chores. In fact, whenever 
possible, most hardware implementation 
is now being substituted by its software 
counterpart. From the washing machine 
controllers, mobile phone applications 
to the sophisticated airplane control 
systems, the growing dependence on 
software can be attributed to a number of 
factors. Unlike hardware, software does 
not wear out. Thus, the use of software 
can also help to control maintenance costs. 
Additionally, software is also flexible and 
can be easily changed and customized as 
the need arises. 
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The continuous dependencies on 
software often raise dependability issues 
particularly when software is being 
employed on harsh and life threatening 
or (safety) critical applications. Here, 
rigorous software testing becomes very 
important. Many combinations of possible 
input parameters, hardware/software 
environments, and system conditions 
need to be tested and verified against 
the specification for conformance. Often, 
this results into combinatorial explosion 
problem (i.e. exorbitant number of test 
cases to consider for testing).

Combinatorial explosion problem poses 
one of the biggest challenges in modern 
computer science due to the fact that it 
often defies traditional approaches to 
analysis, verification, monitoring and 
control [1]. A number of techniques have 
been explored in the past to address this 
problem. Undoubtedly, parallel testing can 
be employed to reduce the time required 
for performing the tests. Nevertheless, 
as software and hardware are getting 
more complex than ever, parallel testing 
approach becomes immensely expensive 
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due to the need for faster and higher 
capability processors along state-of-
the-art computer hardware. Apart from 
parallel testing, systematic random testing 
could also be another option. However, 
systematic random testing tends to dwell 
on unfair distribution of test cases.

A more recent and systematic solution 
to this problem is based on pairwise 
testing strategy. Any two combinations 
of parameter values are to be covered by 
at least one test. Because combinatorial 
explosion problem is NP-complete (i.e. 
no exact solution), it is often unlikely 
that efficient strategy exists that can 
always generate optimal test set (i.e. 
each interaction pair is covered by only 
one test) [1]. Furthermore, the size of the 
minimum pairwise test set also grows 
logarithmically with the number of 
parameters and quadratically with the 
number of values [2]. 

Apart from the aforementioned problems, 
the effectiveness of the test data generated 
can sometimes be questionable.  In 
many cases, pairwise interaction is 
meaningless when more than one faulty 
input condition is introduced in the final 
generated test suite. Here, the problem 
could arise when one dominant faulty test 
input is accidentally masking other faults 
caused by other test inputs. In this case, it 
is likely that only the fault caused by that 
dominant faulty test input is detected, 
attended, and fixed accordingly. Thus, the 
faults caused by less dominant inputs are 
accidentally overlooked. In this manner, 
these overlooked faults can sometimes 
serve as hidden time bombs waiting 
to cause unwanted service disruptions 
and even system crash.  To address this 
issue, there is a need for a constraint 
support mechanism at the algorithm level 
to ensure that such problem will never 
occur. Here, the constraint mechanism 
helps to enable test engineer to specify 
the unwanted (i.e. faulty and impossible) 
test cases from appearing in the final 
generated test suite. In this manner, other 
suitable test cases can be automatically 
selected as best fit alternatives.

Additionally, due to customer demands, 
there is often a set of pairwise combinations 
that are required to be as part of the 
final suite (i.e. as benchmarking test). 
To support this capability, the seeding 
support mechanism must also be in place 
as part of the implemented algorithm. In 
this case, unlike the constraint mechanism 
which prevents unwanted test cases to 
appear in the final test suite, the seeding 
mechanism ensures that (benchmark) test 
cases do appear even if they may not be 
the best fit values.

Addressing the aforementioned 
challenges, a new strategy has been 
proposed for pairwise testing that is not 
only efficient but also cater for constraints 
and seeding support mechanism.  As 
part of the ongoing work [1-4], this paper 
describes the design and development 
of a pairwise test data generation, called 
2TG, supporting seeding and constraints. 
In doing so, a number of experiments are 
discussed in order to prove the correctness 
of the implementation.

II. RelaTeD wORK

According to Yu et al [5], existing 
interaction strategies for pairwise testing 
can be categorized into two categories 
based on the dominant approaches, that 
is, algebraic approaches or computational 
approaches. 

Algebraic approaches construct test sets 
using pre-defined rules or mathematical 
function [5]. Thus, the computations 
involved in algebraic approaches are 
typically lightweight, and in some cases, 
algebraic approaches can produce the 
most optimal test sets. However, the 
applicability of algebraic approaches is 
often restricted to small configurations 
[5][6]. Orthogonal arrays (OA) [7] and 
covering arrays (CA) [8][9] are typical 
example of the strategies based on 
algebraic approach. Some variations of the 
algebraic approach also exploit recursion 
in order to permit the construction of 
larger test sets from smaller ones [10]. 
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Unlike algebraic approaches, 
computational approaches often rely on 
the generation of the all pair combinations. 
Based on all pair combinations, the 
computational approaches iteratively 
search the combinations space to 
generate the required test case until 
all pairs have been covered. In this 
manner, computational approaches 
can ideally be applicable even in large 
system configuration. However, in 
the case where the number of pairs to 
be considered is significantly large, 
adopting computational approaches 
can be expensive due to the need to 
consider explicit enumeration from all the 
combination space. 

Adopting the computational approaches 
as the main basis, an Automatic Efficient 
Test Generator (or AETG) [11, 12] and its 
variant (AETGm) [13], employs a greedy 
algorithm to construct the test case, that 
is, each test covers as many uncovered 
combinations as possible. Because 
AETG uses random search algorithm, 
the generated test case is highly non-
deterministic (i.e. the same input 
parameter model may lead to different 
test suites [14]). Other variants to AETG 
that use stochastic greedy algorithms 
are: GA (Generic Algorithm) and ACA 
(Ant Colony Algorithm) [8]. In some 
cases, they give optimal solution than 
original AETG, although they share the 
common characteristic as far as being 
non-deterministic in nature. In Parameter 
Order (IPO) strategy [15] builds a pairwise 
test set for the first two parameters. Then, 
IPO strategy extends the test set to cover 
the first three parameters, and continues 
to extend the test set until it builds a 
pairwise test set for all the parameters. In 
this manner, IPO generates the test case 
with greedy algorithms similar to AETG. 
Nevertheless, apart from deterministic in 
nature, covering one parameter at a time 
allows the IPO strategy to achieve a lower 
order of complexity than AETG.

Based on computational approach, 
Schroeder and Korel [14] developed a 
rather unique combinatorial strategy 

based on the input and output relationship. 
If one or more parameters are known to 
have insignificant effect on the system (i.e. 
don’t care), then the strategy randomly 
selects the appropriate replacement of 
the don’t care value in order to perform 
the reduction. Although useful for system 
with known input output relationship, no 
reduction is possible if all the parameters 
have the same importance. 

A more recent strategies based on 
computational approaches are IRPS [16] 
GTWay[17], and AllPairs [18]. Like IPO, 
IRPS is deterministic in nature. Unlike 
IPO and other computational strategies, 
IRPS focuses on efficient data structure 
for storing and searching pairs. In this 
manner, IRPS appears to be the only 
strategy that supports higher order 
interactions of parameters (i.e. from 
pairwise up to 13 ways).

Like IRPS, GTWay strategy also targets 
for high order interaction of parameters. 
Unlike IRPS, GTWay strategy also 
supports automated execution of the 
generated test data.

Similar to IRPS, GTWay and IPO, All 
Pairs strategy (i.e. downloadable tool) 
appears to share the same property as far 
as producing deterministic test cases is 
concerned although little is known about 
the actual strategies employed due to 
limited availability of references [18].

As far as other non-greedy strategies are 
concerned, some approaches opted to 
adopt heuristic search techniques such 
as hill climbing and simulated annealing 
(SA) [13]. Briefly, hill climbing and 
simulated annealing strategies start from 
some known test set. Then, a series of 
transformations were iteratively applied 
(starting from the known test set) to cover 
all the pairwise combinations [13]. Unlike 
AETG, IPO, IRPS and All Pairs strategy, 
which builds a test set from scratch, 
heuristic search techniques can predict 
the known test set in advanced. However, 
there is no guarantee that the test set 
produced are the most optimum.
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Concerning constraint and seeding 
mechanism, most existing strategy 
implementations (e.g. IRPS, GTWay, 
IPO, and Allpairs) have not appeared to 
consider the support as yet as evident by 
their implemented tools. For these reasons, 
we aim to investigate the constraints and 
seeding mechanism as part of our tool 
implementation of 2TG. 

III. IllUsTRaTIVe eXample

To illustrate the concept of pairwise 
testing, consider an example of a pizza 
online ordering system as illustrated in 
Figure 1.
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Figure 1. Pizza Online Ordering System 

In this system, there are 3 options for the user to choose the 
crust, flavour and toppings. For each of the option, there are 2 
selections available. For simplification, this pizza online 
ordering system options can be represented with integer 
numbers (see Figure 2). 

Figure 2. Pizza Option Representation Using Integer 

Here, the pizza option representation can also be translated 
into a table of 3 columns (or parameters) and 2 rows (or 
values).  

Table 1. Pizza Ordering System with 3 parameters and 2 values 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Let the input variable be a set X = {A, B, C}. For 
simplicity, assume that the starting test case, termed base test 
case, has been identified (see Table 1). Here, integer values 
(e.g. 0, 1, 2…) are used in place of real data values to facilitate 
discussion.  

In this case, exhaustive combinations would yield = 23 = 8 
possible test combinations. Referring to Table 2, if parameter 
C is known to have insignificant effects on the system, then C 
input could be treated as don’t care value. Thus, C could 
randomly take either 0 or 1 respectively. Based on this 
premise, one can select only an instance of each input 
combination to cover 2-way combination for AB at least once. 
In this case, there are two possible combinations for 2-way 
covering of AB. For instance, consider the input variable 
{0,0}.  The first AB combination would be {0,0,0} and the 

second combination would be {0,0,1}. In order to cover for 2-
way combination for AB, one can randomly select any one of 
the aforementioned combinations. 

Table 2. Exhaustive Combinations  

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Exhaustive 
Combinations 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Using this technique, the number of combinations can be 
reduced significantly. For instance, for 2-way combination 
AB, the total test data can be reduced to merely 4 (see Figure 
3). 

Figure 3. Merging of AB, BC, and AC 

In reality, nevertheless, it is often difficult to establish for 
certain which variable has insignificant effect on the system. 
Thus, it is necessary to consider the impact of other 2-way 
combinations as well. In this example, there are 3 possibilities 
for 2-way interactions: AB, BC, and AC. Having considered 
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In reality, nevertheless, it is often difficult 
to establish for certain which variable has 
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this example, there are 3 possibilities 
for 2-way interactions: AB, BC, and AC. 
Having considered AB and using similar 
approach given earlier, the values for the 
other 2-way combinations BC and AC can 
also be generated (see Figure 3).

Referring to Figure 3, an obvious 
observation is the fact that the total test 
data has been reduced from 8 exhaustively 
to 6 for pairwise, a reduction of 25%. The 
reduction technique or strategy illustrated 
here can be helpful as far as minimizing 
the required tests.

It can be noticed that there exists 
combinations of {0,0,1} corresponding to 
{Classic Hand Tossed, Vegetarian, Beef} 
and {1,0,1} corresponding to {Crunchy 
Thin, Vegetarian, Beef}. However, these 
combination are deemed illegal (i.e. as 
vegetarian implies no beef).  Concerning 
seeding, they are the combinations that 
are required, necessary and desirable. 
As discussed earlier, the support for 
constraint and seeding are the scope of 
this work.

IV. pROpOseD sTRaTegy, 2Tg

In a nutshell, the 2TG strategy consists of 
seeding algorithm, the pairwise binary 
input combination algorithm and the 
constraint algorithm. The overview of 
2TG strategy can be represented using the 
block diagram as illustrated in Figure 4.
 
The seeding algorithm involves capturing 
the specified test data directly into the 
final test suite as specified by the user. 
Binary input combination algorithm 
implements the interaction between 
parameters and generates pairwise 
combination accordingly.  The constraint 
algorithm iteratively finds the test case 
that satisfies the constraints into the final 
test suite. The complete description for 
all algorithms can be seen in Figure 5,6,7 
respectively.
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can be represented using the block diagram as illustrated in 
Figure 4. 

The seeding algorithm involves capturing the specified test 
data directly into the final test suite as specified by the user. 
Binary input combination algorithm implements the 
interaction between parameters and generates pairwise 
combination accordingly.  The constraint algorithm iteratively 
finds the test case that satisfies the constraints into the final 
test suite. The complete description for all algorithms can be 
seen in Figure 5,6,7 respectively. 

Using our earlier example of a system with 3 parameters 
and 2 values, the working of each algorithm will be illustrated 

in the next paragraph. As for the seeding algorithm, the 
combinations that are specified by the user are directly 
appended to the final test suite list.  

Algorithm Seeding 

1: if seeding is specified 
2: begin 
3:      read seeding parameters 
4:      put in seeding list automatically  
5:      add seeding to final test suite list 
6: end

Figure 5. Seeding Algorithm 

Algorithm Pairwise Binary Input Combinations                                         

1: begin 
2: let limit =2data length

3: for  i=0 until reaches limit 
4:      begin 
5:            comb = convert integer to binary  
6:            while length of comb< data.length 
7:            comb ="0"+comb; 
8:             initialise no_of_one 
9:            for j=0 until j<comb.length 
10:                 if character j of comb='1' then 
11:                 increment no of one by 1 
12:            if no of one equals to t value 
13:            begin 
14:                 add comb to binary combination list 
15:            end 
16:       end 
17: end

Figure 6.Binary Input Combination Algorithm 

Figure 4. 2TG Strategy as Block Diagram Figure 4. 2TG Strategy as Block Diagram
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working of each algorithm will be 
illustrated in the next paragraph. As for 
the seeding algorithm, the combinations 
that are specified by the user are directly 
appended to the final test suite list. 

AB and using similar approach given earlier, the values for the 
other 2-way combinations BC and AC can also be generated 
(see Figure 3). 

Referring to Figure 3, an obvious observation is the fact that 
the total test data has been reduced from 8 exhaustively to 6 
for pairwise, a reduction of 25%. The reduction technique or 
strategy illustrated here can be helpful as far as minimizing the 
required tests. 

It can be noticed that there exists combinations of {0,0,1} 
corresponding to {Classic Hand Tossed, Vegetarian, Beef} 
and {1,0,1} corresponding to {Crunchy Thin, Vegetarian, 
Beef}. However, these combination are deemed illegal (i.e. as 
vegetarian implies no beef).  Concerning seeding, they are the 
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and the constraint algorithm. The overview of 2TG strategy 
can be represented using the block diagram as illustrated in 
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The seeding algorithm involves capturing the specified test 
data directly into the final test suite as specified by the user. 
Binary input combination algorithm implements the 
interaction between parameters and generates pairwise 
combination accordingly.  The constraint algorithm iteratively 
finds the test case that satisfies the constraints into the final 
test suite. The complete description for all algorithms can be 
seen in Figure 5,6,7 respectively. 

Using our earlier example of a system with 3 parameters 
and 2 values, the working of each algorithm will be illustrated 

in the next paragraph. As for the seeding algorithm, the 
combinations that are specified by the user are directly 
appended to the final test suite list.  

Algorithm Seeding 

1: if seeding is specified 
2: begin 
3:      read seeding parameters 
4:      put in seeding list automatically  
5:      add seeding to final test suite list 
6: end

Figure 5. Seeding Algorithm 

Algorithm Pairwise Binary Input Combinations                                         

1: begin 
2: let limit =2data length

3: for  i=0 until reaches limit 
4:      begin 
5:            comb = convert integer to binary  
6:            while length of comb< data.length 
7:            comb ="0"+comb; 
8:             initialise no_of_one 
9:            for j=0 until j<comb.length 
10:                 if character j of comb='1' then 
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16:       end 
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Figure 6.Binary Input Combination Algorithm

Algorithm Constraints 

1: begin 
2:    for all combinations in binary combination list 
3:      begin 
4:          set constraint match to false 
5:          generate pairwise test case by random generation 
6:           if test case equals to constraint 
7:                 constraint match=true; 
8:            if count iteration has reached limit  then break    
9:            if constraint  match is false 
10:               add test case into test suite list 
11:           continue 
12:        end   
13: end

Figure 7.Constraints Algorithm 

Concerning the pairwise binary input combinations 
algorithm, the selection of don’t care values to be randomized 
is highly dependent on the generated binary combination list.  
Here, the binary numbers representing the complete possible 
number of combination is first generated and the subsets with 
occurrences of two 1’s are selected accordingly in the binary 
combination list. In our example, the three selected binary 
combinations are ‘011’, ‘110’ and ‘101’. 

The constraints algorithm is slightly more complicated than 
both of the earlier given algorithms. Here, the constraints 
algorithm first checks the binary setting for the first column 
i.e. column A. Since the binary setting for the first column is 
‘0’, this represents the ‘don’t care’ state. Table 3 shows the 
first pair of pairwise combinations for BC where the ‘X’ 
denotes the ‘don’t care’ state for column A. 

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair X 0 0 

Therefore, a random number will be generated for column 
A. Assuming the random number generated by the algorithm 
is ‘0’, the algorithm will store this random generated number 
inside column A. For the pairwise column (i.e. BC), the 
algorithm will generate an incrementing number starting from 
‘0’. Therefore, the algorithm will now point to the next 
column i.e. column B. Now, since the binary setting for this 
column is ‘1’, using recursive loop, the algorithm will 
generate ‘0’ for this column. Next, pointing to column C, the 
algorithm will also generate a ‘0’ for this column.  Table 4 
shows the first pair generated.  

Now, since the first pair has been completely generated, the 
algorithm will check whether this pair matches the specified 
constraint parameter. Assuming the specified constraint 

parameter is {1,0,1}. Hence, the first generated pair does not 
match with the constraint parameter. Consequently, constraint 
match remains as FALSE. In the same manner, the constraint 
algorithm will continue to iterate and generate the next pairs. 
Table 5 shows the first and second pairs generated. From 
Table 5, the second pair generated is {1,0,1}. Again, the 
algorithm will check whether this pair matches with the 
specified constraint parameter i.e. {1,0,1}. Since now the 
match is found, the constraint match becomes ‘TRUE’. 

Table 4. First Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 

Table 5. Second Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 
Second Pair 1 0 1 

Next, the algorithm will check for value of limit. Here, the 
limit represents the maximum allowable loops set to prevent 
infinite loop in the case of non-feasible solution. In the case of 
no feasible solution, the algorithm will keep on looping until 
the limit is reached. If either the limit has been reached, the 
searching loop will terminate. If the constraint match is 
‘FALSE’ then the pair will be added to the final test suite, 
otherwise, the algorithm will iterate further for an alternative 
pair. 

Table 6 shows the combinations for BC where the unwanted 
pair, {1,0,1} has been excluded from the final test suite list.  

Table 6. Pairwise Combinations for BC with Constraint 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Exhaustive 
Pairwise

Combinations 
for BC 

0 0 0 
0 1 0 
1 1 1 

The constraint algorithm will then iterate to the next 
combinations (i.e. AC and AB). The same iterations will be 
repeated until completion. Table 7 depicts one of the possible 
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9:            if constraint  match is false 
10:               add test case into test suite list 
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Input Variables 
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First Pair X 0 0 

Therefore, a random number will be generated for column 
A. Assuming the random number generated by the algorithm 
is ‘0’, the algorithm will store this random generated number 
inside column A. For the pairwise column (i.e. BC), the 
algorithm will generate an incrementing number starting from 
‘0’. Therefore, the algorithm will now point to the next 
column i.e. column B. Now, since the binary setting for this 
column is ‘1’, using recursive loop, the algorithm will 
generate ‘0’ for this column. Next, pointing to column C, the 
algorithm will also generate a ‘0’ for this column.  Table 4 
shows the first pair generated.  

Now, since the first pair has been completely generated, the 
algorithm will check whether this pair matches the specified 
constraint parameter. Assuming the specified constraint 

parameter is {1,0,1}. Hence, the first generated pair does not 
match with the constraint parameter. Consequently, constraint 
match remains as FALSE. In the same manner, the constraint 
algorithm will continue to iterate and generate the next pairs. 
Table 5 shows the first and second pairs generated. From 
Table 5, the second pair generated is {1,0,1}. Again, the 
algorithm will check whether this pair matches with the 
specified constraint parameter i.e. {1,0,1}. Since now the 
match is found, the constraint match becomes ‘TRUE’. 

Table 4. First Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 

Table 5. Second Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
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First Pair 0 0 0 
Second Pair 1 0 1 

Next, the algorithm will check for value of limit. Here, the 
limit represents the maximum allowable loops set to prevent 
infinite loop in the case of non-feasible solution. In the case of 
no feasible solution, the algorithm will keep on looping until 
the limit is reached. If either the limit has been reached, the 
searching loop will terminate. If the constraint match is 
‘FALSE’ then the pair will be added to the final test suite, 
otherwise, the algorithm will iterate further for an alternative 
pair. 

Table 6 shows the combinations for BC where the unwanted 
pair, {1,0,1} has been excluded from the final test suite list.  

Table 6. Pairwise Combinations for BC with Constraint 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Exhaustive 
Pairwise

Combinations 
for BC 

0 0 0 
0 1 0 
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The constraint algorithm will then iterate to the next 
combinations (i.e. AC and AB). The same iterations will be 
repeated until completion. Table 7 depicts one of the possible 

Therefore, a random number will be 
generated for column A. Assuming 
the random number generated by the 
algorithm is ‘0’, the algorithm will store 
this random generated number inside 
column A. For the pairwise column 
(i.e. BC), the algorithm will generate an 
incrementing number starting from ‘0’. 
Therefore, the algorithm will now point 
to the next column i.e. column B. Now, 
since the binary setting for this column 
is ‘1’, using recursive loop, the algorithm 
will generate ‘0’ for this column. Next, 
pointing to column C, the algorithm will 
also generate a ‘0’ for this column.  Table 4 
shows the first pair generated. 

Now, since the first pair has been 
completely generated, the algorithm 
will check whether this pair matches the 
specified constraint parameter. Assuming 
the specified constraint parameter is 
{1,0,1}. Hence, the first generated pair does 
not match with the constraint parameter. 
Consequently, constraint match remains 
as FALSE. In the same manner, the 
constraint algorithm will continue to 
iterate and generate the next pairs. 
Table 5 shows the first and second pairs 
generated. From Table 5, the second pair 
generated is {1,0,1}. Again, the algorithm 
will check whether this pair matches with 
the specified constraint parameter i.e. 
{1,0,1}. Since now the match is found, the 
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constraint match becomes ‘TRUE’.

Table 4. First Pair of Pairwise 
Combinations for BC

Algorithm Constraints 

1: begin 
2:    for all combinations in binary combination list 
3:      begin 
4:          set constraint match to false 
5:          generate pairwise test case by random generation 
6:           if test case equals to constraint 
7:                 constraint match=true; 
8:            if count iteration has reached limit  then break    
9:            if constraint  match is false 
10:               add test case into test suite list 
11:           continue 
12:        end   
13: end

Figure 7.Constraints Algorithm 

Concerning the pairwise binary input combinations 
algorithm, the selection of don’t care values to be randomized 
is highly dependent on the generated binary combination list.  
Here, the binary numbers representing the complete possible 
number of combination is first generated and the subsets with 
occurrences of two 1’s are selected accordingly in the binary 
combination list. In our example, the three selected binary 
combinations are ‘011’, ‘110’ and ‘101’. 

The constraints algorithm is slightly more complicated than 
both of the earlier given algorithms. Here, the constraints 
algorithm first checks the binary setting for the first column 
i.e. column A. Since the binary setting for the first column is 
‘0’, this represents the ‘don’t care’ state. Table 3 shows the 
first pair of pairwise combinations for BC where the ‘X’ 
denotes the ‘don’t care’ state for column A. 
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Input Variables 
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0 0 0 
1 1 1 

First Pair X 0 0 

Therefore, a random number will be generated for column 
A. Assuming the random number generated by the algorithm 
is ‘0’, the algorithm will store this random generated number 
inside column A. For the pairwise column (i.e. BC), the 
algorithm will generate an incrementing number starting from 
‘0’. Therefore, the algorithm will now point to the next 
column i.e. column B. Now, since the binary setting for this 
column is ‘1’, using recursive loop, the algorithm will 
generate ‘0’ for this column. Next, pointing to column C, the 
algorithm will also generate a ‘0’ for this column.  Table 4 
shows the first pair generated.  

Now, since the first pair has been completely generated, the 
algorithm will check whether this pair matches the specified 
constraint parameter. Assuming the specified constraint 

parameter is {1,0,1}. Hence, the first generated pair does not 
match with the constraint parameter. Consequently, constraint 
match remains as FALSE. In the same manner, the constraint 
algorithm will continue to iterate and generate the next pairs. 
Table 5 shows the first and second pairs generated. From 
Table 5, the second pair generated is {1,0,1}. Again, the 
algorithm will check whether this pair matches with the 
specified constraint parameter i.e. {1,0,1}. Since now the 
match is found, the constraint match becomes ‘TRUE’. 

Table 4. First Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 

Table 5. Second Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
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First Pair 0 0 0 
Second Pair 1 0 1 

Next, the algorithm will check for value of limit. Here, the 
limit represents the maximum allowable loops set to prevent 
infinite loop in the case of non-feasible solution. In the case of 
no feasible solution, the algorithm will keep on looping until 
the limit is reached. If either the limit has been reached, the 
searching loop will terminate. If the constraint match is 
‘FALSE’ then the pair will be added to the final test suite, 
otherwise, the algorithm will iterate further for an alternative 
pair. 

Table 6 shows the combinations for BC where the unwanted 
pair, {1,0,1} has been excluded from the final test suite list.  

Table 6. Pairwise Combinations for BC with Constraint 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Exhaustive 
Pairwise

Combinations 
for BC 

0 0 0 
0 1 0 
1 1 1 

The constraint algorithm will then iterate to the next 
combinations (i.e. AC and AB). The same iterations will be 
repeated until completion. Table 7 depicts one of the possible 

Table 5. Second Pair of Pairwise 
Combinations for BC

Algorithm Constraints 

1: begin 
2:    for all combinations in binary combination list 
3:      begin 
4:          set constraint match to false 
5:          generate pairwise test case by random generation 
6:           if test case equals to constraint 
7:                 constraint match=true; 
8:            if count iteration has reached limit  then break    
9:            if constraint  match is false 
10:               add test case into test suite list 
11:           continue 
12:        end   
13: end

Figure 7.Constraints Algorithm 

Concerning the pairwise binary input combinations 
algorithm, the selection of don’t care values to be randomized 
is highly dependent on the generated binary combination list.  
Here, the binary numbers representing the complete possible 
number of combination is first generated and the subsets with 
occurrences of two 1’s are selected accordingly in the binary 
combination list. In our example, the three selected binary 
combinations are ‘011’, ‘110’ and ‘101’. 

The constraints algorithm is slightly more complicated than 
both of the earlier given algorithms. Here, the constraints 
algorithm first checks the binary setting for the first column 
i.e. column A. Since the binary setting for the first column is 
‘0’, this represents the ‘don’t care’ state. Table 3 shows the 
first pair of pairwise combinations for BC where the ‘X’ 
denotes the ‘don’t care’ state for column A. 

Table 3. First Pair of Pairwise Combinations for BC with Don’t Care State 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair X 0 0 

Therefore, a random number will be generated for column 
A. Assuming the random number generated by the algorithm 
is ‘0’, the algorithm will store this random generated number 
inside column A. For the pairwise column (i.e. BC), the 
algorithm will generate an incrementing number starting from 
‘0’. Therefore, the algorithm will now point to the next 
column i.e. column B. Now, since the binary setting for this 
column is ‘1’, using recursive loop, the algorithm will 
generate ‘0’ for this column. Next, pointing to column C, the 
algorithm will also generate a ‘0’ for this column.  Table 4 
shows the first pair generated.  

Now, since the first pair has been completely generated, the 
algorithm will check whether this pair matches the specified 
constraint parameter. Assuming the specified constraint 

parameter is {1,0,1}. Hence, the first generated pair does not 
match with the constraint parameter. Consequently, constraint 
match remains as FALSE. In the same manner, the constraint 
algorithm will continue to iterate and generate the next pairs. 
Table 5 shows the first and second pairs generated. From 
Table 5, the second pair generated is {1,0,1}. Again, the 
algorithm will check whether this pair matches with the 
specified constraint parameter i.e. {1,0,1}. Since now the 
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Next, the algorithm will check for value of limit. Here, the 
limit represents the maximum allowable loops set to prevent 
infinite loop in the case of non-feasible solution. In the case of 
no feasible solution, the algorithm will keep on looping until 
the limit is reached. If either the limit has been reached, the 
searching loop will terminate. If the constraint match is 
‘FALSE’ then the pair will be added to the final test suite, 
otherwise, the algorithm will iterate further for an alternative 
pair. 

Table 6 shows the combinations for BC where the unwanted 
pair, {1,0,1} has been excluded from the final test suite list.  
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The constraint algorithm will then iterate to the next 
combinations (i.e. AC and AB). The same iterations will be 
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shows the first pair generated.  

Now, since the first pair has been completely generated, the 
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parameter is {1,0,1}. Hence, the first generated pair does not 
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match remains as FALSE. In the same manner, the constraint 
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Table 4. First Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 

Table 5. Second Pair of Pairwise Combinations for BC 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

First Pair 0 0 0 
Second Pair 1 0 1 

Next, the algorithm will check for value of limit. Here, the 
limit represents the maximum allowable loops set to prevent 
infinite loop in the case of non-feasible solution. In the case of 
no feasible solution, the algorithm will keep on looping until 
the limit is reached. If either the limit has been reached, the 
searching loop will terminate. If the constraint match is 
‘FALSE’ then the pair will be added to the final test suite, 
otherwise, the algorithm will iterate further for an alternative 
pair. 

Table 6 shows the combinations for BC where the unwanted 
pair, {1,0,1} has been excluded from the final test suite list.  

Table 6. Pairwise Combinations for BC with Constraint 

Base Values 

Input Variables 
A B C 
0 0 0 
1 1 1 

Exhaustive 
Pairwise

Combinations 
for BC 

0 0 0 
0 1 0 
1 1 1 

The constraint algorithm will then iterate to the next 
combinations (i.e. AC and AB). The same iterations will be 
repeated until completion. Table 7 depicts one of the possible The constraint algorithm will then iterate 
to the next combinations (i.e. AC and AB). 
The same iterations will be repeated until 
completion. Table 7 depicts one of the 
possible pairwise combinations.

Table 7. Pairwise Combinations with 
Constraints

pairwise combinations. 
Table 7. Pairwise Combinations with Constraints 

A B C
0 0 0
1 1 1
0 0 0
0 0 1
0 1 0
1 0 0
1 1 1

All Pairwise 
Combinatorial 

Values

Base Values

Input Variables

V. DEMONSTRATION OF CORRECTNESS

In order to demonstrate the correctness of the 2TG strategy, 
4 experiments have been conducted as follows: 

2TG support for seeding 
2TG support for constraints 
2TG support for general pairwise generation with both 
seeding and constraints 
2TG behaviour when there is no feasible solution 
possible 

Here, the experiments are based on our implementation of 
2TG using the Java programming language.  Here, the 2TG 
takes three possible command line parameters as follows: 

2TG –i {parameters} –c {constraints list} –s {seeding list}  
      Where 
          -I represents the input values 
         -c represents the constraints list 
         -s represents the seeding list 

Here the {parameters} take a number separated by comma 
to represent parameters and values. For example, {3,3,4} 
represents a system with  2 3-valued and 1 4-valued 
parameters). The {constraints list} and {seeding lists} take a 
number separated by colon to represent the constraints and 
seeding. For instance, 1:0:1 represent a seeding (or 
constraints) of value 1 of parameter 0, value of parameter 0 of 
parameter 1, and value 1 of parameter 2.  

A. 2TG Support for seeding 

The objective of this experiment is to demonstrate the 
2TG’s support for seeding. In this experiment, the input 
parameter argument is {-i 3,3,3 -s 0:0:0,0:1:2} corresponding 
to 3 parameters with 3 values and seeding values of 0:0:0 and 
0:1:2. It is expected that these two seeding input parameters 
will be part of the final suite list. Figure 8 depicts the output of 
this experiment. 

As expected, the seeding parameters {0:0:0} and {0:1:2} 
are the first two pairs included in the Final Pairwise Test Suite 
List for both assessments. The result is a reduction of 33% of 
the total test data that is from 33=27 pairs exhaustively to 18 

pairs. 

Figure 8. Output for Seeding 

B. 2TG Support for constraints 

The objective of this experiment is to demonstrate the 
2TG’s support for constraint. In this assessment, the input 
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}. From the input 
parameters, there are 2 sets of constraints parameters; {0:0:0} 
and {0:1:2}. It is expected that the result will be smaller sized 
test suite where these two constraints will be excluded from 
the final test suite list. Figure 9 depicts the output of this 
experiment. 

Figure 9 shows the final test suit list which consists of 14 
pairs. The constraint parameters {0:0:0} and {0:1:2} have 
been excluded from the Final Pairwise Test Suite List. The 
result is a reduction of 48% of the total test data that is from 
33=27 pairs exhaustively to 14 pairs only. 

C. 2TG  Support  for general pairwise generation with both 
seeding and constraints 

The objective of this experiment is to demonstrate the 
2TG’s support for general pairwise generation with both 
seeding and constraints. In this experiment, the input 
parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s 1:1:1,0:2:2}. It is 
expected that both seeding and constraint parameters given 
will be reflected in the final test suite list. It should be noted 
that the input parameters are non-uniform with 1 2-valued 

Seeding list 

Seeding list in the final test suite 
list V. DemONsTRaTION Of 

CORReCTNess

In order to demonstrate the correctness of 
the 2TG strategy, 4 experiments have been 
conducted as follows:

• 2TG support for seeding
• 2TG support for constraints
• 2TG support for general pairwise 

generation with both seeding and 
constraints

• 2TG behaviour when there is no 
feasible solution possible

Here, the experiments are based on 
our implementation of 2TG using the 
Java programming language.  Here, the 
2TG takes three possible command line 
parameters as follows:

2TG –i {parameters} –c {constraints list} –s 
{seeding list} 
      Where

      -  I represents the input values
      -  c represents the constraints list
     -  s represents the seeding list

Here the {parameters} take a number 
separated by comma to represent 
parameters and values. For example, 
{3,3,4} represents a system with  2 
3-valued and 1 4-valued parameters). The 
{constraints list} and {seeding lists} take a 
number separated by colon to represent 
the constraints and seeding. For instance, 
1:0:1 represent a seeding (or constraints) 
of value 1 of parameter 0, value of 
parameter 0 of parameter 1, and value 1 
of parameter 2. 
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a. 2Tg support for seeding

The objective of this experiment is to 
demonstrate the 2TG’s support for 
seeding. In this experiment, the input 
parameter argument is {-i 3,3,3 -s 
0:0:0,0:1:2} corresponding to 3 parameters 
with 3 values and seeding values of 0:0:0 
and 0:1:2. It is expected that these two 
seeding input parameters will be part of 
the final suite list. Figure 8 depicts the 
output of this experiment.

As expected, the seeding parameters 
{0:0:0} and {0:1:2} are the first two pairs 
included in the Final Pairwise Test Suite 
List for both assessments. The result is 
a reduction of 33% of the total test data 
that is from 33=27 pairs exhaustively to 18 
pairs.

pairwise combinations. 
Table 7. Pairwise Combinations with Constraints 

A B C
0 0 0
1 1 1
0 0 0
0 0 1
0 1 0
1 0 0
1 1 1

All Pairwise 
Combinatorial 

Values

Base Values

Input Variables

V. DEMONSTRATION OF CORRECTNESS
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possible 

Here, the experiments are based on our implementation of 
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          -I represents the input values 
         -c represents the constraints list 
         -s represents the seeding list 

Here the {parameters} take a number separated by comma 
to represent parameters and values. For example, {3,3,4} 
represents a system with  2 3-valued and 1 4-valued 
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number separated by colon to represent the constraints and 
seeding. For instance, 1:0:1 represent a seeding (or 
constraints) of value 1 of parameter 0, value of parameter 0 of 
parameter 1, and value 1 of parameter 2.  

A. 2TG Support for seeding 

The objective of this experiment is to demonstrate the 
2TG’s support for seeding. In this experiment, the input 
parameter argument is {-i 3,3,3 -s 0:0:0,0:1:2} corresponding 
to 3 parameters with 3 values and seeding values of 0:0:0 and 
0:1:2. It is expected that these two seeding input parameters 
will be part of the final suite list. Figure 8 depicts the output of 
this experiment. 

As expected, the seeding parameters {0:0:0} and {0:1:2} 
are the first two pairs included in the Final Pairwise Test Suite 
List for both assessments. The result is a reduction of 33% of 
the total test data that is from 33=27 pairs exhaustively to 18 

pairs. 

Figure 8. Output for Seeding 

B. 2TG Support for constraints 

The objective of this experiment is to demonstrate the 
2TG’s support for constraint. In this assessment, the input 
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}. From the input 
parameters, there are 2 sets of constraints parameters; {0:0:0} 
and {0:1:2}. It is expected that the result will be smaller sized 
test suite where these two constraints will be excluded from 
the final test suite list. Figure 9 depicts the output of this 
experiment. 

Figure 9 shows the final test suit list which consists of 14 
pairs. The constraint parameters {0:0:0} and {0:1:2} have 
been excluded from the Final Pairwise Test Suite List. The 
result is a reduction of 48% of the total test data that is from 
33=27 pairs exhaustively to 14 pairs only. 

C. 2TG  Support  for general pairwise generation with both 
seeding and constraints 

The objective of this experiment is to demonstrate the 
2TG’s support for general pairwise generation with both 
seeding and constraints. In this experiment, the input 
parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s 1:1:1,0:2:2}. It is 
expected that both seeding and constraint parameters given 
will be reflected in the final test suite list. It should be noted 
that the input parameters are non-uniform with 1 2-valued 

Seeding list 

Seeding list in the final test suite 
list 

Figure 8. Output for Seeding

B. 2Tg support for constraints

The objective of this experiment is to 
demonstrate the 2TG’s support for 
constraint. In this assessment, the input 
parameter is {–i 3, 3, 3 –c 0:0:0,0:1:2}. 
From the input parameters, there are 2 
sets of constraints parameters; {0:0:0} and 
{0:1:2}. It is expected that the result will be 
smaller sized test suite where these two 
constraints will be excluded from the final 

test suite list. Figure 9 depicts the output 
of this experiment.

Figure 9 shows the final test suit list 
which consists of 14 pairs. The constraint 
parameters {0:0:0} and {0:1:2} have been 
excluded from the Final Pairwise Test 
Suite List. The result is a reduction of 48% 
of the total test data that is from 33=27 
pairs exhaustively to 14 pairs only.

C. 2Tg  support  for general pairwise 
generation with both seeding and 
constraints

The objective of this experiment is to 
demonstrate the 2TG’s support for general 
pairwise generation with both seeding 
and constraints. In this experiment, the 
input parameter is {-i 2,3,4 -c 0:0:0,0:1:2 -s 
1:1:1,0:2:2}. It is expected that both seeding 
and constraint parameters given will be 
reflected in the final test suite list. It should 
be noted that the input parameters are 
non-uniform with 1 2-valued parameter, 
1 3-valued parameter and 1 4-valued 
parameter. Figure 10 depicts the output 
of this experiment.parameter, 1 3-valued parameter and 1 4-valued parameter. 

Figure 10 depicts the output of this experiment. 

Figure 9. Output for Constraints 

Referring to Figure 10, the final test suite includes two 
seeding parameters 0:0:0 and 0:1:2 whereas the constraint 
parameters 1:1:1 and 0:2:2 have been appropriately excluded. 
There is a reduction of 25% of the total test data that is from 
2x3x4 = 24 pairs to 18 pairs.  

D. 2TG behaviour when there is no feasible solution 
possible 

The objective of this experiment is to demonstrate the 
behaviour of the 2TG strategy when no feasible solution is 
possible. 

In this experiment, the input variable is {-i 2,2,2 –c 
0:0:0,0:0:1}. The constraint parameters chosen are {0:0:0} and 
{0:0:1}. In this case, since the base value is {2,2,2}, there are 
only two possible combinations for pairwise covering of AB. 
The first AB combination would be {0,0,0} and the second 
combination would be {0,0,1}. Since the constraint parameter 
set are {0:0:0} and {0:0:1}, therefore, there is no feasible 
solution for AB combinations. Thus, it is expected that none 
of the pairs covering AB combinations should appear. Figure 
11 depicts the output of this experiment. 

From the output in Figure 11, the final test suite covers only 
6 pairs.  As expected, none of the pairs that cover combination 
between AB appeared. For the result, there is a reduction of 
25% of the total test data that is from 8 pairs to 6 pairs 

Figure 10. Output for Non-Uniform Parameter Values 

Figure 11. Output of Assessment for Non-Feasible Solution 

.

Constraint list 

Constraint list is excluded from the 
final test suite list 

Seeding list 

Seeding list is in the final test suite 
list and constraint list is excluded 

Constraint list 

Figure 9. Output for Constraints

Referring to Figure 10, the final test suite 
includes two seeding parameters 0:0:0 and 
0:1:2 whereas the constraint parameters 
1:1:1 and 0:2:2 have been appropriately 
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excluded. There is a reduction of 25% of 
the total test data that is from 2x3x4 = 24 
pairs to 18 pairs. 

D. 2Tg behaviour when there is no 
feasible solution possible

The objective of this experiment is to 
demonstrate the behaviour of the 2TG 
strategy when no feasible solution is 
possible.

In this experiment, the input variable 
is {-i 2,2,2 –c 0:0:0,0:0:1}. The constraint 
parameters chosen are {0:0:0} and {0:0:1}. 
In this case, since the base value is {2,2,2}, 
there are only two possible combinations 
for pairwise covering of AB. The first AB 
combination would be {0,0,0} and the 
second combination would be {0,0,1}. 
Since the constraint parameter set are 
{0:0:0} and {0:0:1}, therefore, there is no 
feasible solution for AB combinations. 
Thus, it is expected that none of the 
pairs covering AB combinations should 
appear. Figure 11 depicts the output of 
this experiment.

From the output in Figure 11, the final test 
suite covers only 6 pairs.  As expected, 
none of the pairs that cover combination 
between AB appeared. For the result, 
there is a reduction of 25% of the total test 
data that is from 8 pairs to 6 pairs

parameter, 1 3-valued parameter and 1 4-valued parameter. 
Figure 10 depicts the output of this experiment. 

Figure 9. Output for Constraints 

Referring to Figure 10, the final test suite includes two 
seeding parameters 0:0:0 and 0:1:2 whereas the constraint 
parameters 1:1:1 and 0:2:2 have been appropriately excluded. 
There is a reduction of 25% of the total test data that is from 
2x3x4 = 24 pairs to 18 pairs.  
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combination would be {0,0,1}. Since the constraint parameter 
set are {0:0:0} and {0:0:1}, therefore, there is no feasible 
solution for AB combinations. Thus, it is expected that none 
of the pairs covering AB combinations should appear. Figure 
11 depicts the output of this experiment. 

From the output in Figure 11, the final test suite covers only 
6 pairs.  As expected, none of the pairs that cover combination 
between AB appeared. For the result, there is a reduction of 
25% of the total test data that is from 8 pairs to 6 pairs 

Figure 10. Output for Non-Uniform Parameter Values 

Figure 11. Output of Assessment for Non-Feasible Solution 
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Constraint list 

Constraint list is excluded from the 
final test suite list 

Seeding list 

Seeding list is in the final test suite 
list and constraint list is excluded 

Constraint list 

Figure 10. Output for Non-Uniform Parameter 
Values
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seeding parameters 0:0:0 and 0:1:2 whereas the constraint 
parameters 1:1:1 and 0:2:2 have been appropriately excluded. 
There is a reduction of 25% of the total test data that is from 
2x3x4 = 24 pairs to 18 pairs.  

D. 2TG behaviour when there is no feasible solution 
possible 
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possible. 
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0:0:0,0:0:1}. The constraint parameters chosen are {0:0:0} and 
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only two possible combinations for pairwise covering of AB. 
The first AB combination would be {0,0,0} and the second 
combination would be {0,0,1}. Since the constraint parameter 
set are {0:0:0} and {0:0:1}, therefore, there is no feasible 
solution for AB combinations. Thus, it is expected that none 
of the pairs covering AB combinations should appear. Figure 
11 depicts the output of this experiment. 

From the output in Figure 11, the final test suite covers only 
6 pairs.  As expected, none of the pairs that cover combination 
between AB appeared. For the result, there is a reduction of 
25% of the total test data that is from 8 pairs to 6 pairs 

Figure 10. Output for Non-Uniform Parameter Values 

Figure 11. Output of Assessment for Non-Feasible Solution 

.

Constraint list 

Constraint list is excluded from the 
final test suite list 

Seeding list 

Seeding list is in the final test suite 
list and constraint list is excluded 

Constraint list 

Figure 11. Output of Assessment for Non-
Feasible Solution

VI. DIsCUssION aND 
CONClUsION

The results obtained from experiment 
1 demonstrate 2TG is able to support 
seeding, that is, by directly adding the 
specified seeding parameter into final 
test suite list. In the next assessment, 
the output showed that the constraint 
mechanism was fully supported by the 
strategy, where all the specified constraints 
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were not found in the final test suite list. 
Experiment 3 has demonstrated that 
2TG strategy also supports non-uniform 
parameters values and finally experiment 
4 has demonstrated the behaviour of 
the strategy when no feasible solution is 
available.

In a nut shell, the experimental results 
show that the developed strategy 
guarantees inclusion of the specified test 
cases by the seeding parameter as the first 
level of prioritized pair. By prioritizing the 
seeding parameter, none of the specified 
critical combinations will be missed out 
from the final generated test suite.

The constraint mechanism was proven 
to be working correctly. The strategy 
generates the pairs and checks against the 
specified unwanted combinations before 
adding to the final test suite. Often, this 
may result with smaller sized test suite 
or may be no feasible solution at all. 
In the case of no feasible solution, this 
strategy has been designed to check for 
matching pairs up to certain limit only. 
This approach prevents the problem of 
infinite loop.

In real life, parameter values may not 
always be uniform. Considering this 
reality, 2TG is also designed to support 
non-uniform parameter input values. 
Here, 2TG appears to work seamlessly 
well even in the presence of constraints 
and seeding requirements.

In short, the evaluation of 2TG has been 
promising. As part of future work, the 
pairwise support in 2TG will be extended 
to support higher order interaction along 
with the case study evaluations involving 
both hardware and software systems.
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