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Abstract. The aim of this paper is to extend the notion of general asymptotic regional  gradient 
observer (𝐺𝐴𝑅𝐺-observer) to the reduced order case. More precisely, we study and discuss the 
existing of this approach in a sub-region of the considered domain. Thus, we show that the 
approach is enables to estimate the unknown part of the state gradient when the output function 
gives part of information about the region state in  ω. The characterization of this notion depend 
on  regional gradient strategic sensors (𝑅𝐺𝑆-sensor) concept in order that asymptotic regional 
gradient reduced-order observability  (𝐴𝑅𝐺𝑅𝑂-observability) to be achieved and analyzed. An 
application presented to various situation cases of strategic sensors.  

Key words:  𝑅𝐺𝑆-sensors, 𝐴𝑅𝐺-detectability, 𝐴𝑅𝐺𝑅𝑂-observers, Exchange system. 

1. Introduction 

The basic concept of an observer theory was introduced by Luenberger in [1-5]. In 1975, the observer 
approach is extended to a linear system of  infinite dimensional case described by  SCS-group operators 
[6]. The observation concepts given a main purpose for introducing the observer notions [7-8]. 
Therefore, the study of observer theory depending to the notions of sensors characterizations as in [9-
11]. Thus the regional asymptotic reconstruction has been presented and explored in [12-14]. So the 
motivation behind this study is related to many real world problem when one cannot estimate the state 
of the system in whole the domain Ω, but only in a region ω of this domain as in “Figure 1” [15-16]. 
 

 
 

Figure 1. Real model (locate in-out-vents, sensors, workspace) 

The objective of present research is to extend the work in [17-18] to  regional gradient  case for observer 
type reduced. The rest of paper is ordered as follows: In section2 some preliminaries and formulation of 
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the considered problem are stated. Section 3,  recalls the definitions of ARG-stability and ARG-
detectability. Section 4,  introduces an approach how to build an 𝑨𝑹𝑮𝑹𝑶-observer and gives a sufficient 
condition of such estimator by using ARG-detectability and RGS-sensors. Numerous applications about 
different  sensors locations has been given in the last section.  

2. Some Preliminaries and Formulation of the Considered Problem Footnotes 

Let ℧ be a regular bounded open subset of 𝑅𝑛, with smooth boundary 𝜕℧ and 𝜔 be subregion of ℧. We 

denoted 𝒬 =  ℧ × ]0,∞[, 𝛴 = 𝜕℧ × ]0,∞[. Considering systems which are designated by the following  

           {

𝜕𝓍

𝜕𝑡
 (𝜁, 𝓉) = 𝒜 𝓍(𝜁, 𝓉) + ℬ 𝑢(𝓉)                                  𝒬

 𝓍 (𝜁, 0) = 𝓍 (𝜁)                                                              ℧ 

𝓍(𝜂, 𝓉) = 0                                                                       𝛴 

                                                             (1)  

Augmented by the output function 

             𝒴(. , 𝑡) = 𝒞 𝓍( , 𝑡)                                                                                                                       (2)  

where 𝒜 is a second order linear differential operator, which is a generator of a 𝑆𝐶𝑆-group on the 

Hilbert space 𝕏 [4-5]. So ℬ ∈ ℒ (𝑅𝑝, 𝑋) and 𝒞 ∈ ℒ (𝑅𝑞 , 𝑋), may be bounded or unbounded operators 

[8]. Thus 𝕏,𝕌 and 𝕐 be the Sobolev spaces of type separable where 𝕏 is a state space, 𝕌 = ℒ2(0, 𝑇, 𝑅𝑝) 

is the input space and 𝕐 = ℒ2(0, 𝑇, 𝑅𝑞) is the output space. The mathematical model (1)-(2) in Fig.2 is 

more general than the real model in “Figure 1” 

 
Figure 2. General mathematical model. 

 

The solution of the above system is specified by [6] 

          𝓍 (𝜁 , 𝓉) = 𝑆𝒜(𝓉) 𝓍0(𝜁) + ∫ 𝑆𝒜(𝓉 − 𝜏)𝐵 𝑢(𝜏)𝑑𝜏
𝓉

0
                                                                    (3) 

Then the related output  is can be achieved by the following form in several cases [10-11] 

             𝒴 (. , 𝓉) = 𝒞 𝓍(𝜁 , 𝓉)                                                                            (4) 

Define the operator  

 𝐾:𝓍 ∈ 𝕏 → 𝐾𝓍 = 𝒞 𝑆𝒜 (. ) 𝓍 𝜖 𝕐                      

  with adjoint  𝐾∗: 𝕐 → 𝑋 obtained by  

           𝐾∗ 𝒴∗ = ∫ 𝑆𝒜
 ∗ (ℓ) 𝒞∗ 𝒴∗(ℓ) 𝑑ℓ,    ℓ ∈ [0, 𝓉]                      

𝓉

0
          

Contemplate  the following application 

                ∇:𝐻1(℧) → (𝐻1(℧))𝑛                                            



Iraqi Academics Syndicate International Conference for Pure and Applied Sciences
Journal of Physics: Conference Series 1818 (2021) 012190

IOP Publishing
doi:10.1088/1742-6596/1818/1/012190

3

 
 
 
 
 
 

          𝓍 → ∇𝓍 = (
𝜕𝓍

𝜕𝜉1
, … ,

𝜕𝓍

𝜕𝜉𝑛
) 

and it’s adjoint denotes by  ∇∗  given by 

            ∇∗: (𝐻1(℧))𝑛 → 𝐻1(℧)                                                           

                             𝓍 → ∇∗𝓍 = 𝓋  

For  𝜔 ⊂ ℧  deliberate the following application 

                 𝜒𝜔: (𝐻
1(℧))𝑛 → (𝐻1( 𝜔))𝑛                 

𝓍     →      𝜒𝜔𝓍 = 𝓍 ∣𝜔    
 

with 𝜒𝜔∗  the adjoint [4-5]. Let 𝐻 =  𝜒𝜔∇ 𝐾
∗ from 𝕆 into (𝐻1( 𝜔))𝑛. 

𝟑.  𝑨𝑹𝑮-Detectability and Sensor 

Now we discuss and analysis the link between the concept of 𝐴𝑅𝐺-Detectability and a 𝑅𝐺𝑆-sensor 

structure in order to build an 𝐴𝑅𝐺-observer for the  gradient of the system state in reduced order case 

[13,19-20].  

3.1. Definitions and characterizations 

This subsection presents some definitions and characterization are needed in our research [11].  

      ⋄ System (1)-(2) is so-called exactly regionally gradient observable (𝐸𝑅𝐺-observable)  if  

           𝐼𝑚 𝐻 = 𝐼𝑚 𝜒𝜔∇𝐾
∗ = (𝐻1(𝜔))𝑛 

      ⋄ System (1)-(2) is so-called weakly regionally gradient observable  (𝑊𝑅𝐺-observable) if  

           𝐼𝑚𝐻̅̅ ̅̅ ̅̅ = 𝐼𝑚 𝜒𝜔∇𝐾
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐻1(𝜔))𝑛 

      ⋄ So system (1)-(2) may be 𝑊𝑅𝐺-observable if 

           𝑘𝑒𝑟  𝐻∗ = 𝑘𝑒𝑟𝐾𝛻∗𝜒𝜔∗ ={0} [11] 

      ⋄ A sensor (𝐷, 𝑓) is 𝑅𝐺𝑆-sensor if the related system is  𝑊𝑅𝐺-observable .  

      ⋄ System (1) is 𝐴𝑅𝐺-stable if 𝒜 produces a semigroup which is 𝐴𝑅𝐺-stable. Further,  the system   

      (1) is 𝐴𝑅𝐺-stable, if and only if there exists 𝑀𝐴𝑅𝐺 ,  𝛼𝐴𝑅𝐺  ≥ 0 such that, 

                           ‖𝜒𝜔∇ 𝑆 𝒜(. )‖(𝐻1(𝜔))𝑛 ≤ 𝑀𝐴𝑅𝐺𝑒−𝛼𝐴𝑅𝐺𝓉 , ∀𝓉 ≥ 0.                                                      (5)   

      ⋄ If the semigroup (𝑆𝐴(𝓉))𝑡≥0 is 𝐴𝑅𝐺-stable , then ∀ 𝓍0 ∈ 𝐻1(℧), we can get 

                      lim
𝑡→∞

‖∇ 𝓍(. , 𝓉)‖(𝐻1(𝜔))𝑛 = lim
𝑡→∞ 

‖𝜒𝜔 ∇ 𝑆𝐴(. ) 𝓍0‖(𝐻1(𝜔))𝑛 = 0                             (6)   
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      ⋄  Systems (1)-(2) is 𝐴𝑅𝐺-detectable if 𝐻𝐴𝑅𝐺 : 𝑅𝑞 → (𝐻1(𝜔))𝑛 represents an operator such that   

       (𝐴 − 𝐻𝐴𝑅𝐺 𝒞) products a 𝑆𝐶𝑆-group (𝑆𝐻𝐴𝑅𝐺(𝓉))𝑡≥0 it is 𝐴𝑅𝐺-stable.  

      ⋄ Then equation (6) implies  lim
𝑡→∞

‖∇𝑥(. , 𝓉)‖(𝐻1(𝜔))𝑛 = 0. 

Theorem 3.1.  Assume (𝐷𝑖, 𝑓𝑖)1≤𝑖≤𝑞 the measurement sensors. Then system (1)-(2) is  𝐴𝑅𝐺-detectable 

if and only if : 

       (I) 𝑞 ≥ 𝑟 

      (II) rank 𝐺𝑚 = 𝑟𝑚 , ∀𝑚,𝑚 = 1,… , 𝐽 with  

𝐺𝑚 = (𝐺𝑚)𝑖𝑗 =

{
 
 

 
 𝜓𝑚𝑗(𝑏𝑖), 𝑓𝑖(. ) >𝐿2(𝐷𝑖)              for zone  sensors                      

𝜓𝑚𝑗(𝑏𝑖)                                      for pointwise sensors            

<
𝜕𝜓𝑚𝑗

𝜕𝑣
, 𝑓𝑖(. ) >𝐿2(Г𝑖)               for boundary zone sensors

 

      where  sup 𝑟𝑚 = 𝑟 < ∞ and j = 1,… , 𝑟𝑚, 𝜓𝑚𝑗 is eigenfunctions in (𝐻1(℧))𝑛 orthonormal in   

      (𝐻1(𝜔))𝑛, and 𝜆𝑚 are the eigenvalues with multiplicity  𝑟𝑚. 

Proof: The proof is the same of [16] with some modifications.  

Remark 3.2. The important purpose of asymptotic 𝐴𝑅𝐺-detectability that is related to the possibility 

for defining an 𝐴𝑅𝐺-estimator of the system state from the knowledge of the output and input function. 

4. Reconstruction of  𝑨𝑹𝑮𝑹𝑶-Observer 

In this section we extend the approach of general 𝐴𝑅𝐺-observer studied in  [4, 18] to the reduced type. 

Now deliberate the following systems 

           {

𝜕𝑥

𝜕𝑡
 (𝜁, 𝓉) = 𝒜𝓍(𝜁, 𝓉) + ℬ 𝑢(𝓉)                       𝒬

 𝓍 (𝜁, 0) = 𝓍0 (𝜁)                                                 ℧ 

𝓍 (𝜂, 𝓉) = 0                                                           𝛴 

                                                                      (7) 

where the output function 

             𝒴(𝓉) = 𝒞𝓍(. , 𝓉)                                                                                                                        (8)  

In this case, by using regional reduced order forms as in [5], we have 
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        {

𝜕𝓍1

𝜕𝑡
 (𝜁, 𝓉) = 𝒜11𝓍1 (𝜁, 𝓉) +𝒜12 𝓍2 (𝜁, 𝓉) + ℬ1𝑢 (𝓉)     𝒬

 𝓍1(𝜁, 0) = 𝓍01(𝜁)                                                                      ℧ 

𝓍1(𝜂, 𝓉) = 0                                                                                𝛴 

                                                     (9) 

and 

{

𝜕𝓍2

𝜕𝑡
 (𝜁, 𝓉) = 𝒜21𝓍1(𝜁, 𝓉) +𝒜22 𝓍2(𝜁, 𝓉) + ℬ2 𝑢 (𝓉)  𝒬

 𝓍2 (𝜁, 0) = 𝓍02 (𝜁)                                                                ℧ 

𝓍2(𝜂, 𝓉) = 0                                                                            𝛴

                                                               (10) 

Provided with the information function 

          𝒴(. , 𝓉) = 𝐶𝓍1(𝜁, 𝓉).                                                                                                                  (11) 

The aim of this section is concentrated to construct a dynamic estimator for subsystem (10) [5] which 

formulated via the form 

       {

𝜕𝒶

𝜕𝑡
(𝜁, 𝓉) = 𝒜22 𝒶(𝜁, 𝓉) + [ℬ2 𝑢 (𝓉) +𝒜21 𝑦 (𝜁, 𝓉)]     𝒬

 𝒶 (𝜁, 0) = 𝒶 (𝜁)                                                                      ℧ 

𝒶 (𝜂, 𝓉) =  0                                                                             𝛴

                                                       (12) 

together with the output function 

          �̃�(. , 𝓉) = 𝒜12 𝒶 (𝜁, 𝓉).                                                                                                             (13) 

So that the state 𝑎 in (12) represents 𝓍2 in (10).  

In this case, the system (12)-(13) is 𝐴𝑅𝐺-detectable, there exists an operator  𝐻𝐴𝑅𝐺 ∈ ℒ(𝕏|Ω|𝜔, 𝕏|𝜔) ∋

(𝒜22 −𝐻𝐴𝑅𝐺𝒜12) generates an 𝐴𝑅𝐺-stable semi-group (𝑆𝒜22−𝐻𝐴𝑅𝐺𝒜12
(𝑡))𝑡≥0 on the space 𝕏2 = 𝕏|𝜔 

. So that we can deduce that 

                    ∃𝑀𝐴𝑅𝐺 , 𝛼𝐴𝑅𝐺 > 0 ∋  ‖𝜒𝐴𝑅𝐺(𝑆𝒜22−𝐻𝐴𝑅𝐺𝐴12(. ))‖(𝐻1(𝜔))𝑛
≤ 𝑀𝐴𝑅𝐺𝑒

−𝛼𝐴𝑅𝐺𝓉. 

Therefor we can define an 𝐴𝑅𝐺𝑅𝑂-observer for (12)-(13) depending on  [5, 9] 

  {

𝜕�̂�

𝜕𝑡
( 𝜁, 𝓉) = 𝒜22 �̂� (𝜁, 𝓉) + [ℬ2 𝑢(𝓉) +𝒜21 𝒴 (𝜉, 𝓉)] + 𝐻𝐴𝑅𝐺(𝒴 ̃(. , 𝓉) − 𝒜12 �̂� (𝜁, 𝓉)) 𝒬

 �̂� (𝜁, 0) = �̂�0 (𝜁)                                                                                                                               ℧

�̂� (𝜂, 𝓉) = 0                                                                                                                                        𝛴

          (14) 

The main result which presents the characterization of 𝐴𝑅𝐺𝑅𝑂-observer notion may be given in the next 

impotent result. 

Theorem 4.1. Let (12)-(13) be an 𝐴𝑅𝐺-detectable system, therefore, 

              lim
𝑡→∞ 

  ‖𝓌(𝜁, 𝓉) + 𝐻𝐴𝑅𝐺𝒴 (𝜁, 𝓉) − 𝓍2 (𝜁, 𝓉)‖(𝐻1(𝜔))𝑛 = 0,       ∀ 𝜁 ∈ 𝜔 
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and the system of dynamic type (14) is 𝐴𝑅𝐺𝑅𝑂-observer for the equations  (12)-(13) where  𝒴 (𝜁, 𝓉) is 

the output given by (11) and 𝓌 (𝜁, 𝑡) is the resolution of the following  

          

{
 
 

 
 
𝜕𝓌

𝜕𝑡
 (𝜁, 𝓉) = (𝒜22 −𝐻𝐴𝑅𝐺𝒜 12) 𝓌 ( 𝜁, 𝓉) + [𝒜22 𝐻𝜔𝐺𝑅𝑂−𝐻𝜔𝐺𝑅𝑂  𝒜12 𝐻𝐴𝑅𝐺       

−𝐻𝐴𝑅𝐺𝒜11 +𝒜21] 𝒴 (𝜁, 𝓉)  + [ℬ2 − 𝐻𝐴𝑅𝐺  ℬ1]𝑢(𝓉)                                        𝒬      
𝓌 (𝜁, 0) = 𝓌0(𝜁)                                                                                                       ℧

𝓌 (𝜂, 𝓉) = 0                                                                                                                𝛴
 

                

Proof. For the moment the resolution of the (14) is stated by 

          �̂� (𝜁, 𝓉) = (𝑆(𝒜22− 𝐻𝐴𝑅𝐺 𝒜12)
(𝓉) �̂�0 (𝜉) + {∫ 𝑆(𝒜22− 𝐻𝐴𝑅𝐺𝒜12)

𝓉

0
(𝓉 − 𝒯). 

                        [ℬ2 𝑢 (𝒯) +𝒜21 𝒴 (𝜁, 𝓉) + 𝐻𝐴𝑅𝐺  �̃� (. , 𝓉)] 𝑑 𝒯}                                                       (15) 

From the  use of equations (10) and (9) , we have 

         �̃� (. , 𝓉) = 𝒜12 𝒶 (𝜁, 𝓉) =
𝜕𝓍1

𝜕𝑡
 (𝜁, 𝑡) − 𝒜11 𝓍1 (𝜁, 𝓉) + ℬ1 𝑢(𝓉)                                              (16) 

Inserting (16) into (15), we obtain  

      �̂�(𝜁, 𝓉) = (𝑆(𝒜22− 𝐻𝐴𝑅𝐺𝒜12) 
(𝓉) �̂�0(𝜁) + ∫ (𝑆(𝒜22−𝐻𝐴𝑅𝐺 𝒜12) (𝓉 − 𝒯)

𝓉

0
𝐻𝐴𝑅𝐺  

𝜕𝑥1

𝜕𝑡
 (𝜁, 𝒯) 𝑑𝒯 +

                    + ∫ (𝑆(𝒜22−𝐻𝐴𝑅𝐺𝒜12)
(𝓉 − 𝒯)

𝓉

0
[ℬ2 𝑢(𝒯) +  𝒜21 𝒴 (𝜁, 𝓉) − 𝐻𝐴𝑅𝐺  𝒜11 𝑥1(. , 𝒯) −

                    − 𝐻𝐴𝑅𝐺  ℬ1𝑢(𝒯)]𝑑𝒯                                                                                                           (17) 

and we can get 

∫ (𝑆(𝒜22−𝐻𝐴𝑅𝐺  𝒜12)(𝓉 − 𝒯)
𝓉

0
𝐻𝐴𝑅𝐺

𝜕𝓍1

𝜕𝑡
 (𝜁, 𝒯)𝑑𝒯 = 𝐻𝐴𝑅𝐺  𝑥1(. , 𝒯) −

𝑆(𝒜22− 𝐻𝐴𝑅𝐺 𝒜12 )
(𝓉) 𝐻𝐴𝑅𝐺𝑥01(. )  + (𝒜22 −𝐻𝐴𝑅𝐺  𝒜21) ∫ 𝑆(𝐴22−𝐻𝐴𝑅𝐺  𝒜12)

(𝓉 − 𝒯)
𝓉

0
𝐻𝐴𝑅𝐺 𝓍1(. , 𝒯) 𝑑𝒯                                          

(18)                                                                                                                   Consequently the equation 

(18) becomes  

∫ 𝑆(𝒜22− 𝐻𝐴𝑅𝐺 𝒜12) 
(𝑡 − 𝒯)

𝓉

0
𝐻𝐴𝑅𝐺  

𝜕𝑥1

𝜕𝑡
 (𝜁, 𝒯) 𝑑𝒯 = 𝐻𝐴𝑅𝐺 𝓍1 (. , 𝒯) −

𝑆(𝒜22− 𝐻𝐴𝑅𝐺 𝒜12) 
(𝑡) 𝐻𝐴𝑅𝐺  𝑥01 (. ) + ∫ 𝑆(𝒜22− 𝐻𝐴𝑅𝐺 𝒜12)

(𝓉 − 𝒯)
𝓉

0
(𝒜22 −𝐻𝐴𝑅𝐺𝒜21) 𝐻𝐴𝑅𝐺𝓍1(. , 𝒯) 𝑑𝒯                                                                                                                

(19) Substituting (19) into (17), we have  

�̂�(𝜁, 𝓉) = (𝑆(𝒜22−𝐻𝐴𝑅𝐺𝒜12)
(𝓉) �̂�0(𝜁) − 𝑆𝒜−𝐻𝐴𝑅𝐺𝒜12) 

(𝓉)𝐻𝐴𝑅𝐺𝓍01(. ) + 𝐻𝐴𝑅𝐺𝑥1(. , 𝓉) +

∫ 𝑆𝒜−𝐻𝐴𝑅𝐺𝒜12)
(𝓉 − 𝒯)

𝓉

0
[𝒜22 𝐻𝐴𝑅𝐺 −𝐻𝐴𝑅𝐺𝐴21 𝐻𝐴𝑅𝐺 −𝐻𝐴𝑅𝐺  𝒜11+𝒜21] 𝑥1(. , 𝒯) 𝑑𝒯 +

∫ 𝑆(𝒜22−𝐻𝐴𝑅𝐺𝐴12)
(𝓉 − 𝒯)

𝓉

0
[ℬ2 −𝐻𝐴𝑅𝐺ℬ1]𝑢(𝒯)𝑑𝒯                                                                                                                                  

(20)                                                   
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Setting  

             𝜓(𝜉, 𝓉) = �̂�(𝜁, 𝓉) + 𝐻𝐴𝑅𝐺  𝒴 (𝜁, 𝓉), with 𝜓(𝜉, 0) = �̂�(𝜁, 0) + 𝐻𝐴𝑅𝐺𝑦(𝜁, 0) 

In this case deliberate  (𝒜22𝐻𝐴𝑅𝐺 −𝐻𝐴𝑅𝐺𝒜21𝐻𝐴𝑅𝐺 −𝐻𝐴𝑅𝐺𝒜11 +𝒜21) together with (ℬ2 −𝐻𝐴𝑅𝐺ℬ1) 

satisfied the boundedness property in (20) , the we can get 

           

{
 
 

 
 
𝜕𝜓 

𝜕𝑡
(𝜁, 𝓉) = (𝒜22 −𝐻𝐴𝑅𝐺𝐴12) 𝜓 (𝜁, 𝑡) + (𝒜22𝐻𝐴𝑅𝐺                                   

−𝐻𝐴𝑅𝐺𝒜12 𝐻𝐴𝑅𝐺 −𝐻𝐴𝑅𝐺  𝒜11 +𝒜21) 𝒴(𝜁, 𝓉) + (𝐻𝐴𝑅𝐺ℬ1)𝑢(𝓉)          𝒬

 𝜓 (𝜁, 0) = 𝜓 0(𝜁)                                                                                               ℧

𝜓 (𝜂, 𝓉) = 0                                                                                                         𝛴

                            (21) 

and therefore 

 𝜕𝑧

𝜕𝑡
 (𝜁, 𝓉) −

𝜕𝓍2

𝜕𝑡
( 𝜁, 𝓉) = 𝜓 (𝜁, 𝓉) + 𝐻𝐴𝑅𝐺 − 𝓍2(𝜁, 𝓉) = 𝒜22𝑧 ̂(𝜁, 𝓉) + ℬ2𝑢 (𝓉) +𝒜21𝑦 (. , 𝓉) +

𝐻𝐴𝑅𝐺�̂�(𝜁, 𝓉) −𝒜12 �̂� (𝜁, 𝑡)) − 𝒜21𝓍1(𝜁, 𝓉) −  𝒜22𝓍2(𝜁, 𝓉) − ℬ2𝑢(𝓉) = (𝒜22 −

𝐻𝐴𝑅𝐺𝒜12)( �̂�(𝜁, 𝓉) − 𝓍2(𝜁, 𝓉))  

Now, if  the sensors is a 𝑅𝐺-strategic then from theorem 3.1 we have the following conditions holds: 

          (𝐼) 𝑞 ≥ 𝑟2.  

          (𝐼𝐼) 𝑟𝑎𝑛𝑘 G2𝑚 = r2𝑚, ∀𝑚, 𝑚 = 1,… , 𝐽 , 

So we can deduced that the system (12)-(13) is 𝐴𝑅𝐺-detectable, i.e., there exists an operator 𝐻𝐴𝑅𝐺 ∈

ℒ(𝕆, (𝐻1(𝜔))𝑛 such that (𝒜22 −𝐻𝐴𝑅𝐺𝒜12) generates an 𝐴𝑅𝐺-stable semi-group  

(𝑆𝒜−𝐻𝐴𝑅𝐺 𝒜12
(𝓉))𝑡≥0 on a Hilbert space 𝕏2. 

          ∃𝑀𝐴𝑅𝐺, 𝛼𝐴𝑅𝐺 > 0 such that ‖𝜒𝜔∇(𝑆𝒜22−𝐻𝐴𝑅𝐺𝒜12
(𝓉))‖

(𝐻1(𝜔))𝑛 
≤ 𝑀𝐴𝑅𝐺𝒆

−𝛼𝐴𝑅𝐺(𝓉) 

Thus, we obtain 

‖�̂�(𝜁, 𝓉) − 𝓍2(, 𝓉)‖((𝐻1(𝜔))𝑛 ≤ ‖𝜒𝜔∇(𝑆𝐴22−𝐻𝐴𝑅𝐺𝐴12(𝓉))‖(𝐻1(𝜔))𝑛 
‖�̂�(𝜁, 0) − 𝓍2(𝜁, 0)‖(𝐻1(𝜔))𝑛  

≤ 𝑀𝐴𝑅𝐺𝒆
−𝛼𝐴𝑅𝐺(𝓉)‖�̂�(𝜁, 0) − 𝓍2(𝜁, 𝑜)‖(𝐻1(𝜔))𝑛 → 0 as     𝓉 → ∞ 

Then we have the system (14) is an asymptotic  𝐴𝑅𝐺𝑅𝑂-observer for the systems (12)-(13).□ 
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5. Some Exchange Systems Application to  𝑨𝑹𝑮𝑹𝑶-Observer  

In the subsequent we reflect two-phase systems of type exchange  
 

          

{
 
 

 
 
𝜕𝓍1

𝜕𝑡
(𝜁1, 𝜁2, 𝓉) =

𝑥1

𝜕𝜁2
((𝜁1, 𝜁2, 𝓉)) + (𝓍1(𝜁1, 𝜁2, 𝓉) − 𝓍2(𝜁1, 𝜁2, 𝓉))     𝒬

𝜕𝓍2

𝜕𝑡
(𝜁1, 𝜁2, 𝓉) =

𝜕2𝓍2

𝜕𝜁2
(𝜁1, 𝜁2, 𝓉) + (𝓍2(𝜁1, 𝜁2, 𝓉) − 𝓍1(𝜁1, 𝜁2, 𝓉))        𝒬

𝓍1(𝜁1, 𝜁2, 0) = 𝓍01(𝜁1, 𝜁2), 𝓍2(𝜁1, 𝜁2, 0) = 𝓍02(𝜁1, 𝜁2)                        ℧

𝓍1(𝜂1, 𝜂2, 𝓉) = 0,   𝓍2(𝜂1, 𝜂2, 𝓉) = 0                                                        Θ

                                 (22) 

wherever ℧ = [0, 1[×]0, 1[ through the region 𝜔 =]𝛼1, 𝛽1[×]𝛼2, 𝛽2[⊂ ℧. So the measurement 
information  (2) is known via the form 
          𝒴(𝓉) = 𝒞𝓍1(. , 𝓉) =  ∫𝐷𝓍1(𝜁, 𝓉)𝑓(𝜁) 𝑑𝜁 
Now, the issue is how to calculate 𝑥2(𝜁, 𝑡). For this step, reflect the following formula 
 

          𝜕𝓍
𝜕𝑡
= [

𝜕𝓍1

𝜕𝑡
𝜕𝓍2

𝜕𝑡

] = [
𝒜11 𝒜12

𝒜21 𝒜22
] [
𝓍1
𝓍2
]                                                                                                (23) 

somewhere  
          𝒜11 =

𝜕2𝓍1

𝜕𝜁2
(𝜁1, 𝜁2, 𝓉) + 1, 𝒜22 =

𝜕2𝓍2

𝜕𝜁2
(𝜁1, 𝜁2, 𝓉) + 1 and    𝒜12 = 𝒜21 = −𝐼. 

By the use of the previous  theorem4.1, 𝐴𝑅𝐺𝑅𝑂-estimator can build for (22) if the measuring sensor 
(𝐷, 𝑓)  remains 𝑅𝐺-strategic. 
 

          

{
 
 

 
 
𝜕𝓍1

𝜕𝑡
(𝜁1, 𝜁2, 𝓉) =

𝜕2𝓍1

𝜕𝜁2
(𝜁1, 𝜁2, 𝓉) + (𝓍1(𝜁1, 𝜁2, 𝓉)               

−𝓍2(𝜁1, 𝜁2, 𝓉))                                                                     𝒬

𝓍1(𝜁1, 𝜁2, 0) = 𝓍01(𝜁1, 𝜁2)                                                 ℧

𝓍1(𝜂1, 𝜂2, 𝓉) = 0                                                                 Θ

                                                        (24) 

The measuring information is achieved by 
          𝒴(𝑡) = ∫𝐷 𝓍1(𝜁, 𝓉) 𝑓(𝜁) 𝑑 𝜁 ≠ 0,  
under the detectability property,  we possess the important formula 
 
          lim

𝑛→∞
‖(𝓌(. , 𝓉) + 𝐻𝐴𝑅𝐺𝓍1(. , 𝓉)) − 𝓍2(. , 𝓉)‖(𝐻1(𝜔))𝑛 = 0,  

where 

          

{
 
 

 
 
𝜕𝓌

𝜕𝑡
(𝜁1, 𝜁2, 𝓉) =

𝜕2𝓌

𝜕𝜉2
 (𝜁1, 𝜁2, 𝓉) + ((1 + 𝐻𝐴𝑅𝐺) 𝓌 (𝜁1, 𝜁, 𝓉)                   

                  +(1 − 𝐻𝐴𝑅𝐺) 
𝜕𝑥1

𝜕𝜉2
 (𝜁1, 𝜁2, 𝓉) + (𝐻𝐴𝑅𝐺

2 − 1) (𝜁1, 𝜁2, 𝓉))    𝒬

𝓌(𝜁1, 𝜁2, 0) = 𝓌0 (𝜁1, 𝜁2)                                                                       ℧

𝓌 (𝜂1, 𝜂2, 𝓉) = 0                                                                                       Θ

                                 (25) 

Reflect the process system well-defined by 
 

          

{
 
 

 
 
𝜕𝓍2

𝜕𝑡
(𝜁1, 𝜁2, 𝓉) =

𝜕2𝓍2

𝜕𝜉2
(𝜁1, 𝜁2, 𝓉) + 𝓍2(𝜁1, 𝜁2, 𝓉)            

                  −𝓍1(𝜁1, 𝜁2, 𝓉)                                               𝒬

𝓍2(𝜁1, 𝜁2, 0) = 𝓍02(𝜁1, 𝜁2)                                          ℧

𝓍2(𝜂1, 𝜂2, 𝓉) = 0                                                           Θ 

                                                            (26) 

 
  with   ℧ = (0,1)  ×  (0,1) and the output function 
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          𝒴(𝑡) = 𝒞 𝓍1(. , 𝓉)                                                                                                                      (27) 
Let 𝜔 = (𝛼1, 𝛽1) × (𝛼2, 𝛽2) be studied region provided with 
 
          𝜑𝑖𝑗(𝜁1, 𝜁) =

2

√(𝛽1−𝛼1)(𝛽2−𝛼2)
 𝑆𝑖𝑛 𝑖𝜋 (

𝜁1−𝛼1

𝛽1−𝛼1
)  𝑆𝑖𝑛 𝑗𝜋 (

𝜁2−𝛼2

𝛽2−𝛼2
)     

and                                       (28)               
         𝜆𝑖𝑗 = −(

𝑖2

(𝛽1−𝛼1)
2 +

𝑗2

(𝛽2−𝛼2)
2)𝜋

2,   𝑖, 𝑗 ≥ 1                                                                                (29)  
 
5.1. Case 1 

Reflect case 1 in rectangular sensor supports which is illustrated in “Figure 3” and characterize by 
equations (26)-(27). So the measuring output is specified by  

          𝒴(𝓉) = ∫𝐷 𝓍2(𝜁1, 𝜁2, 𝓉)𝑓(𝜁1, 𝜁2) 𝑑𝜁1 𝑑𝜁2,                                                                                (30) 
wherever 𝐷 ⊂ ℧, is the position of  the sensor in zone type. 

 

 

Figure 3. Case 1 of  the domain, region and sensor. 
 

So that the sensor (𝐷, 𝑓)  may be enough for deriving an  𝐴𝑅𝐺𝑅𝑂-observer, and ∃ 𝐻𝐴𝑅𝐺 ∋ (𝒜22 −
𝐻𝐴𝑅𝐺𝒜12) creates 𝐴𝑅𝐺-stable. Thus we have 
  
          lim

𝑡→∞
‖(𝓌 (𝜁1, 𝜁2, 𝓉) + 𝐻𝐴𝑅𝐺  𝑥2(𝜁1, 𝜁2, 𝓉)) − 𝓍 (𝜁1, 𝜁2, 𝓉)‖(𝐻1(𝜔))𝑛 = 0,  

 
where 
 

          

{
 
 

 
 
𝜕𝓌

𝜕𝑡
 (𝜁1, 𝜁2, 𝓉) =

𝜕2𝓌

𝜕𝜁2
(𝜁1, 𝜁, 𝓉) + ((1 + 𝐻𝐴𝑅𝐺) 𝓌(𝜁1, 𝜁, 𝓉)                 

                  +(1 − 𝐻𝐴𝑅𝐺) 
𝜕𝑥2

𝜕𝜁2
(𝜁1, 𝜁, 𝓉) + (𝐻𝐴𝑅𝐺

2 − 1)( 𝜁1, 𝜁2, 𝓉))     𝒬

𝓌 (𝜁1, 𝜉2, 0) = 𝓌0(𝜁1, 𝜁2)                                                                      ℧

𝓌 (𝜁1, 𝜁2, 𝓉) = 0                                                                                       Θ

                                     (31)  

Proposition 5.1. Supposing 𝐷 = [𝜁01 − 𝑙1, 𝜁01 + 𝑙1] × [𝜁02 − 𝑙2, 𝜁02 + 𝑙2] ⊂ ℧ as in Fig.3. Thus the 
system (31) is not 𝐴𝑅𝐺𝑅𝑂-observer for the systems (26)-(30), if for any 𝑖0, 
𝑖0 (𝜁01 − 𝛼1) (𝛽1 − 𝛼1) and  𝑖0 (𝜁02 − 𝛼2) (𝛽2 − 𝛼2) ⁄⁄ is rational number and 𝑓 stays symmetric 
around the 𝑥01 = 𝜉01. 

Proof. Supposing 𝑖0 = 1, (𝜁01 − 𝛼1) (𝛽1 − 𝛼1) and  𝑖0(𝜁02 − 𝛼2) (𝛽2 − 𝛼2)⁄⁄ ∈ 𝑄, then there exists 
𝑗0 ≥ 1 such that 𝑆𝑖𝑛 (𝑗0𝜋𝑐1 𝛽1⁄ 𝛼1) = 0. But  
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          𝒴(𝓉) = 〈𝑓1, 𝜑𝑖0𝑗0〉 = (
4

(𝛽1−𝛼1) (𝛽2−𝛼2)
)
1 2⁄

∫ ∫ 𝑓1(
 𝛼1+𝜁1
 𝛼1−𝜁1

 𝛼2+𝜁2
 𝛼2−𝜁2

𝜁1, 𝜁2) 

                      𝑆𝑖𝑛 [ 𝑗0 𝜋 𝜁1
(𝛽1− 𝛼1)

] 𝑆𝑖𝑛 [
𝑗0𝜋 𝜁2
(𝛽2− 𝛼2)

] 𝑑𝜁1 𝑑𝜁2 

If 𝑓 satisfy symmetry property for  𝓍01 = 𝜁, this implies 

          𝒴( 𝑡) = 〈𝑓1, 𝜑𝑖0𝑗0〉 = 0.  

Therefore, the dynamic system (31) is not  𝐴𝑅𝐺𝑅𝑂-observer for the systems (26)-(30).□ 

5.2. Case 2 

Deliberate case 2 in circular supports which is shown in Fig.4., and described by equations (26)-(32). 
So the measuring output is stated by 

         𝒴(𝓉) = ∫𝐷𝑥1(𝑟, 𝜃, 𝑡)𝑓(𝑟, 𝜃)𝑑𝜃,                                                                                                 (32) 
where 𝐷 = (𝑟, 𝜃) ⊂   ℧, is the position of  the using sensor ” Figure 4”. 

 

Figure 4. Case 2 of  the domain, region and sensor. 
 

So that (𝐷, 𝑓)   may be enough to ensure  𝐴𝑅𝐺𝑅𝑂-observer [8], and by employing the same way in case 
1 implies the following  

          lim
𝑡→∞

‖(𝑤(𝑟, 𝜃, 𝓉) + 𝐻𝐴𝑅𝐺𝓍2(𝑟, 𝜃, 𝓉)) − 𝓍(𝑟, 𝜃, 𝓉)‖(𝐻1(𝜔))𝑛 = 0,  
where 

          

{
 
 

 
 
𝜕𝓌

𝜕𝑡
 (𝑟, 𝜃, 𝓉) =

𝜕2𝓌

𝜕𝜁2
(𝑟, 𝜃, 𝓉) + ((1 + 𝐻𝐴𝑅𝐺) 𝓌 (𝑟, 𝜃, 𝓉)                   

                  +(1 − 𝐻𝐴𝑅𝐺)
𝜕𝑥2

𝜕𝜁2
 (𝑟, 𝜃, 𝓉) + (𝐻𝐴𝑅𝐺

2 − 1) (𝑟, 𝜃, 𝓉))       𝒬

𝓌 (𝑟, 𝜃, 0) = 𝓌0 (𝑟, 𝜃)                                                                        ℧

𝓌 (𝑟, 𝜃, 𝓉) = 0                                                                                       Θ

                                       (33) 

Then, we have the following result:  

Proposition 5.2. Supposing 𝐷 = 𝐷(𝑐, 𝑟) ⊂   ℧, 𝑐 = (𝑐1, 𝑐2). So the process (33) is not  𝐴𝑅𝐺𝑅𝑂-
observer for (26)-(32), if ∀𝑖0, 𝑖0(𝑐01 − 𝛼1) (𝛽1 − 𝛼1) and  𝑖0(𝑐02 − 𝛼2) (𝛽2 − 𝛼2) ⁄⁄ is rational number  
in order 𝑓 satisfy symmetry property around the  𝑥01 = 𝑐01. 

Proof. Assuming 𝑖0 = 1, then and ∃ 𝑗0 ≥ 1, ∋  𝐶𝑜𝑠 (𝑗0 𝜋𝑐1 𝛽1⁄ 𝛼1) = 0. Thus the measuring 
information (32) with some modification variables can be characterized by 𝑥2 = 𝑐1 +

�̂� 𝑐𝑜𝑠 𝜃,  and 𝑥2 = 𝑐2 + �̂� 𝑠𝑖𝑛 𝜃. Thus we have 
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       𝒴(𝓉) = 〈𝑓1, 𝜑𝑖0𝑗0〉 = (
4

(𝛽1−𝛼1)(𝛽2−𝛼2)
)
1 2⁄

∫ ∫ 𝑓1(
𝑟

0

2𝜋

0
𝑐1 + �̂� Cos 𝜃, 𝑐2 +

�̂� Sin 𝜃) 𝑆𝑖𝑛 [
𝑗0𝜋(𝑐1+�̂� Sin 𝜃)

(𝛽1−𝛼1)
]  𝑆𝑖𝑛 [

𝑗0𝜋(𝑐1+�̂� Sin 𝜃)

(𝛽2−𝛼2)
] �̂� 𝑑�̂� 𝑑𝜃 

Since 𝑓1 is symmetric about 𝑥2 = 𝑐1, the function 

          (�̂�, 𝜃) → 𝑓1(𝑐1 + �̂� Cos𝜃 , 𝑐2 + �̂� Sin 𝜃)𝑐𝑜𝑠 [
𝑗0𝜋(𝑐1+�̂� Sin 𝜃)

(𝛽2−𝛼2)
] 

is symmetric on [0, 𝜋] about 𝜃 = 𝜋 2⁄  for all �̂�. But the function  

          (�̂�, 𝜃) → 𝑆𝑖𝑛 [
𝑗0𝜋 + �̂�Sin s 𝜃)

(𝛽2−  𝛼2)
] 

verify anti-symmetry property on [0, 𝜋] around 𝜋 2⁄ . Therefore, 

          𝒴(𝓉) = 〈𝑓1, 𝜑𝑖0𝑗0〉 =  0 

and hence, the process (33) is not  𝐴𝑅𝐺𝑅𝑂-observer for (26)-(32).□ 
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6. Conclusion 

The existing of an 𝐴𝑅𝐺𝑅𝑂-observer for a class of DPS have been introduced and characterized. 

Precisely, we have specified an approach for construct an 𝐴𝑅𝐺𝑅𝑂-estimator which rebuild a gradient of 

the state in the reflected region ω. For the future work, may be study the possibility to extend these 

results  to the case of semi-linear in distributed parameter systems. 
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