
Authentication Enhancement Using 
Mobile-Based Application 

Ibrahim Fadul Ibrahim Osman 
College of Ahfad for Women 

Ahfad University 
Omdurman, Sudan 

bimco758@gmail.com 

Yasir Abdelgadir Mohamed 
Faculty of Computer Science & IT 

Karary University 
Omdurman, Sudan 

yasir_eym@yahoo.com 

Abstract—Information security is one of the most complicated 
and difficult issues to which all interested parties attach a great 
deal of attention. Security and confidentiality studies of 
information, therefore, prevail over studies in other fields. The 
loss of information and the destruction of it by falling into hands 
of the abusers have many images and different forms, all of 
which focus on circumventing the regulations and entering them 
illegally. In this paper, an application Android relies on the many 
advantages of the Android system to authenticate a user on the 
mobile phone, so that they can login to a system that built, 
installed on the environment of the computer. The application is 
designed depending on the features of the mobile operating 
system, in the secure transport and control of data transmission, 
in addition to the features of the mobile phone itself, thus, 
features integrated to raise the level of protection of information 
to increase the strength authenticate to a higher extent. 

Keywords—infosec; confidentiality; integrity; availability; 
authentication; access resource.  

1. INTRODUCTION

Security is to define information from unauthorized access, 
use, disruption, disclosure, modification, recording or 
destruction. [1] The great technological advances, the 
development of various means of connection and 
communication, the openness of the world to each other and 
the reliance on the transmission of various types of data over 
the networks have led to a risk of leakage of these data and 
access to the wrong people or competitors, and thus became an 
urgent need to maintain information security. Information 
security “well-informed sense of assurance that the information 
risks and controls are in balance” as Jim Anderson, said. [2] 
Application or computer system security encompasses 
measures taken throughout the code's life-cycle to prevent gaps 
in the security policy of an application or the underlying 
system (vulnerabilities) through flaws in the design, 
development, deployment, upgrade, or maintenance or 
database of the application. [3] Applications only control the 
kind of resources granted to them, and not which resources are 
granted to them. They, in turn, determine the use of these 
resources by users of the application through application 
security. Authentication is relevant to multiple fields. In art, 
antiques and anthropology, authentication is verifying that a 
given artefact was produced by a certain person or in a certain 

place or period of history. In computer science, verifying a 
person's identity is often required to allow access to 
confidential data or systems. Authentication is the process of 
actually confirming that identity. It might involve confirming 
the identity of a person by validating their identity documents 
and verifying the authenticity. 

2. BACKGROUND

A. Java 
Java is a language and a platform originated by Sun 

Microsystems. Sun organized Java into three main editions: 
Java SE, Java EE, and Java ME, so it is a language in which 
developers express source code (program text). Java’s syntax 
(rules for combining symbols into language features) is partly 
patterned after the C and C++ languages in order to shorten the 
learning curve for C / C++ developers. [4] Java platform 
consists of a virtual machine and an execution environment. 
The virtual machine is a software-based processor that presents 
an instruction set, and it is commonly referred to as the Java 
Virtual Machine (JVM). The execution environment consists of 
libraries for running programs and interacting with the 
underlying operating system (also known as the native 
platform). The execution environment includes a huge library 
of prebuilt classfiles that perform common tasks, such as math 
operations (trigonometry, for example) and network 
communications. This library is commonly referred to as the 
standard class library. A special Java program known as the 
Java compiler translates source code into object code 
consisting of instructions that are executed by the JVM and 
associated data. These instructions are known as bytecode. 
Figure (2.1): shows this translation process. [4] 

Figure (2.1): The Java compiler translates Java source 
code into Java object code consisting of bytecode and 

associated data 

ACIT’2017
The International Arab Conference on Information Technology

Yassmine Hammamet, Tunisia
December 22-24, 2017___________________________________________________________________________________



The paper takes advantage of standard Java libraries and 
their purpose to build an application that can be accessed 
through a secure mobile application because these libraries 
provide support for running programs and interacting with 
other applications at very high levels of protection. 

B. Android 
The template is used to format your paper and style the text. 

All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

Android offers the following features: [4] 

• GSM Telephony support.

• Bluetooth, EDGE, 3G, and Wi-Fi support.

• Camera, GPS, compass, and accelerometer support.

• Dalvik virtual machine optimized for mobile devices.

• Integrated browser based on the open source WebKit
engine.

• Optimized graphics powered by a custom 2D graphics
library; so, 3D graphics based on OpenGL ES 1.0, 1.1,
2.0, or 3.0.

• Media support for common audio, video, and image
formats (MPEG4, H.264, MP3, AAC, AMR, JPG,
PNG, and GIF).

• An application framework enabling reuse and
replacement of application components.

Although not part of the software stack, Android’s rich 
development environment (including a device emulator and a 
plug-in for the Eclipse IDE) could also be considered an 
Android feature. The paper sought to find ways to exploit the 
advantages of the Android system to address some of the 
disadvantages used in traditional systems used only the 
password for authenticate. 

C. Android Development 
Contrary to might expect, Android didn’t originate with 

Google. Instead, Android, Inc., a small Palo Alto, California-
based start-up company in 2003, initially developed Android. 
Google bought this company in the summer of 2005 and 
released a beta version of the Android SDK in November 2007, 
a consortium of major actors in the mobile area built around 
Android: [5] 

• Software companies: Google, eBay, etc.

• Mobile operators: T-Mobile, Telefonica, Vodafone, etc.

• Hardware vendors: Intel, Texas Instruments,
Qualcomm, NVidia.

• Hardware manufacturers: HTC, Sony Ericsson,
Samsung, LG, etc.

D. Android Open Source Project (AOSP) 
At every new version, Google releases its source code 

through this project so that community and vendors can work 
with it. One major exception: Honey-comb has not been 
released because Google stated that its source code was not 
clean enough to release it. One can fetch the source code and 
contribute to it, even though the development process is very 
locked by Google. Only a few devices are supported through 
AOSP though, only the two most recent Android development 
phones and tablets (part of the Nexus brand) and the panda 
board. On September 23, 2008, Google released Android 1.0, 
whose core features included a web browser, camera support, 
Google Search, Wi-Fi and Bluetooth support, and more. This 
release corresponds to API Level 1. (An API level is a 1-based 
integer that uniquely identifies the API revision offered by an 
Android version; it’s a way of distinguishing one significant 
Android release from another). [5] 

E. Android Architecture 
The Android software stack consists of apps at the top, a 

Linux kernel with various drivers at the bottom, and 
middleware (an application framework, libraries, and the 
Android runtime) in the centre. Figure (2.2): shows this layered 
architecture. [4] 

Figure (2.2): Android’s layered architecture consists of 
several major parts. 

F. Android Security Model 
Android’s architecture includes a security model that 

prevents apps from performing operations that are considered 
harmful to other apps, Linux, or users. This security model is 
mostly based on process level enforcement via standard Linux 
features (such as user and group IDs), and places processes in a 
security sandbox. [4] 

By default, the sandbox prevents apps from reading or 
writing the user’s private data (such as contacts or e-mails), 
reading or writing another app’s files, performing network 
access, keeping the device awake, accessing the camera, and so 



on. Apps that need to access the network or perform other 
sensitive operations must first obtain permission to do so. [4] 
Android handles permission requests in various ways, typically 
by automatically allowing or disallowing the request based 
upon a certificate or by prompting the user to grant or revoke 
the permission. Permissions required by an app are declared in 
the app’s manifest file so that they are known to Android when 
the app is installed. These permissions won’t subsequently 
change. [4] 

G. Related Work 
The researcher in [6] has proposed a simple, novel scheme 

for using a mobile device to enhance CardSpace authentication. 
During the process of user authentication on a PC using 
CardSpace, a random and short lived one-time password is sent 
to the user’s mobile device; this must then be entered into the 
PC by the user when prompted. The scheme does not require 
any changes to login servers, the CardSpace identity selector, 
or to the mobile device itself. 

Paper [7] suggested a secure authentication mechanism by 
integrating the public key with the hash-chaining technique. 
The propose protocol satisfies the security requirements of 
third generation (3G) mobile networks. Also provide the 
protection of the international mobile subscriber identity 
(IMSI) to ensure subscriber un-traceability, key refreshment 
periodically, strong key management and a new non-
repudiation service in a simple and elegant way. The proposed 
protocol is more secure protocol than the other available 
authentication protocols. To avoid the complicated 
synchronization as in universal mobile telecommunications 
system (UMTS) the proposed protocol does not use sequence 
number (SEQ), the management of a hash chain is simple and 
elegant compared to that of SEQ. This proposed protocol is 
secure against network attacks, such as replay attacks, guessing 
attacks, and other attacks. 

A network independent mobile based authentication 
scheme has been proposed in [8]. The framework uses the pre-
shared number and MAC address of the device along with 
TOTP to generate a hash known as the one-time identity token 
to successfully authenticate the user attempting to access the 
services offered by the network host. Unlike SMS and location 
based multi-factor authentication schemes, it does not require 
network services to transmit or to generate the OTP for 
authenticating the user. It never transmits the pre-shared 
number and the MAC address of the device during the token 
generation process. MAC is only shared once through the 
channel at the time of application registration on token server, 
thus making the intruder difficult to guess and the number can 
also be modified by the user. 

Liao in [9] has developed a slight modification on a 
previous work that was published by Das, Saxena [10] which 
presented a dynamic ID-based remote user authentication 
scheme using smart cards. As a result, the improved scheme 
has the ability to enhance the security mechanism presented by 
of Das and Saxena, and Gulati’s scheme. In addition, the 
proposed scheme does not add much computational costs. 
Thus, Compared with Das, Saxena, and Gulati scheme, Liao 
and Hwang proposed, scheme is also efficient. 

• Researcher in paper [6] was interested in authentication
using random one-time password to the mobile device
regardless of mobile user whether it is actually the user
authorized to receive the message or someone else is a
terrorist.

• Paper [7] proposed a partial security authentication
mechanism, nevertheless it did not address other risks,
such as access and processing of resources to log in in a
seemingly legitimate way (guessing, injection).

• What was suggested in paper [8] is the mobile network
authentication system, and, consequently, it is not safe
for internal attacks that should pay adequate attention to
the effects that may incurred.

• The treatments performed in the paper [10] and the
improvements introduced in [9] are all efforts to
improve authentication, but then again the same user
status is not considered authentic

3. THE METHODOLOGY

A. Flowchart 
This section discusses the application flow diagram and 

scenario used to ensure and secure system authentication using 
mobile applications. The scenario is explained as the 
following: 

Step (1): Mobile Side Authentication 
Initially the user must authenticate themselves using the 

mobile application by providing registered Username and 
Password. The application will do the following after that: 

I. Verify the user, if exist; then do: 

• Generate random password based on the provided
password using AES algorithm.

• Concatenate the generated code with stored value called
here the ‘Padding’, which stored previously and
securely by the application and known only by the user.

• Submit the concatenated result to the server for the
other side for authentication purpose.

• Show only the generated random password to the user
without the Padding for confusion purpose and ensure
high security.

II. Move to Step (2).

Step (2): System Side Authentication 
• The secure system asks for the User ID and

Authentication Password to authenticate the user.

• The user should follow the random password with the
padding for successful authentication, because the User
ID and Authentication Password are not enough without
the Padding, which has a specific life time for high
secure authentication.



B. Mobile Side Authentication 

Figure (3.1): Mobile Side Authentication. 
Step 1: Start:  

The application starts with the following conditions: 

• Secure connection between mobile and server.

• Achieve Steps 2.

Step 2: Login: 
Provide login by using Username and Password, to the 

mobile app. The user must be pre-registered in the system 
database, and if the Username, Password do not match either or 
both of that information recorded in the system database, the 
application will not work at all. 

Step 3: Generate password: 
The application generates a random password using AES 

algorithm based on the password. 

Step 4: Concatenation: 
After successfully generating the random password, the 

application do concatenation between “password” and 
“padding” - the value that is pre-configured in the settings part 
- and then considered as a single value. 

Step 5: Submit: 
Submit the value that was processed in the previous step to 

the server. 

Step 6: Show password: 
In this step, the random password given by the application 

is displayed only without the padding added in the step 4 to 
make more protection level. 

Step 7: End: 
End steps of the mobile side authentication. 

C. System Side Authentication 

Figure (3.2): System Side Authentication. 
Step 1: Start:  

The system starts. 

Step 2: Login: 
Provide login by using User ID and Authentication 

Password generated by the app. However, you cannot take 
advantage of the random password generated from the mobile 
application alone to login to the system, the following steps 
must be followed: 

• Add the padding of the random password generated by
the mobile application.

• Achieve Steps 3.

If step 2 is not implemented, you cannot login, in this case 
try again all steps from the beginning. 

Step 3: The matching: 
The value generated by the application and sent via the 

mobile device to the server to be stored, as discussed in the 
previous section, compares them to the value entered by the 
system user; matching supports user authentication and 
mismatch requires a retry to validate authentication again, 
according to the specified time period. 

The random password should be consumed only once in the 
specified period of time without exceeding 30 seconds. 

Step 4: Successful Authentication: 
Following all of the steps above achieves successful access 

to the system. 

Step 5: End: 
End steps of the system side authentication. 



D. Sequence Diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.3): The Sequence Diagram. 

4. DESIGN AND IMPLEMENTATION 

A. User Interface for Mobile Application 
The figure (4.1): Shows shortcut icon for application after 

installing, it appears in the distinctive ring frame within the set 
of applications installed on the mobile device. [11] [12] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.1): The app icon. 

The figure (4.2): Shows the application's login screen, 
where the user’s name and password are entered correctly, get 
to the next screen, unless either or both are incorrect. They 
must be corrected or impossibility of entry to the application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (4.2): Login screen. 
The figure (4.3): Shows the application's main screen, 

displays the authenticated user’s name that has access to the 
application and generates the random password; however, any 
authenticated user using the application cannot use the 
generated random password from the application unless its 
padding matches the value of the owner of the application 
used. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (4.3): The main screen. 



B. User Interface for System 
The figure (4.4): Shows the system login screen using the 

user id and random password generated from the mobile 
application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.4): The system login screen. 
The figure (4.5): Shows the information that the users table 

contains (id, fname, lname, username, password and pad). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.5): The information of users. 

C. Results of Mobile Application 
The figure (4.6): Shows the application under ‘application 

manager menu’, through which the application can be 
controlled by uninstallation, as well as the size and 
characteristics of the application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.6): The app in the Application manager menu. 
When the application is executed, immediately after the 

welcome screen, an application login screen display. This 
requires enter of Username, Password correctly without the 
slightest ambiguity.  

• If no connection is available, between the mobile device 
and the server, the result is as shown in figure (4.7).  

• If the connection is valid, then authentication of the user 
is done.  

• If the user’s name is included in the user list, and the 
password is correct, then the main application screen 
appears as in the figure (4.8) and otherwise, a message 
will appear indicating error as in the figure (4.10).  

The figure (4.7): Shows a waiting message when the 
connection between the mobile device and the server is not 
available. The application stops if the specified time of the 
process exceeded. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.7: The app at runtime mode. 



The figure (4.8): Shows the main screen, shows the 
authenticated user name that has access to the application and 
generates the random password. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure (4.8): The main screen. 
The figure (4.9): Shows the main application screen after 

generating a random password, and a confirmation message 
appears confirming that the random password generation is 
completed correctly. As shown by the two distinctive circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.9): The generate password screen. 
The figure (4.10): Shows the application login screen, if 

any user’s name, password, or both entered incorrectly, a 
warning message will be generated indicating an error. 

 

 

 

 

 

 

 

 

 
 

Figure (4.10): The login screen. 

D. Results of System 
After the random password generation is successfully 

generated, the role of the application is only of some order such 
as:  

• Concatenate the random password with the padding and 
send it to the server.  

• Calculation of the time after the transmission process, 
the random password should be used in a time period 
less than or equal to 30 second only.  

By the other side - on the side of the system - we get the 
following results: 

Accessing the system via the main login screen requires the 
User ID, Authentication Password generated by the mobile 
application with the padding which the user has already been 
setting in their own application.  

• If you enter the User ID, Authentication Password by 
the application in addition to the padding correctly, the 
login of the system and access to the content becomes 
successful.  

• If any of the above conditions are violated, the entry 
process, if not impossible, is very difficult, as recorded 
according to the most recent experiments.  

The figure (4.11): Shows the login screen of the system 
after full verification of the system user authentication, with a 
notice indicating the success of the process. 

 

 

 

 

 

 

 
 

 

Figure (4.11): The success login message. 



The figure (4.12): Shows the main screen system, with a 
welcome message to the authenticated user who has access to 
the system content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (9.3): The main system screen. 

5. CONCLUSION 
This application is designed to increase the level of 

protection, by taking advantage of the security of Android, 
activated by putting it in the framework of a specific practical 
model that helps, the user to authenticate themselves in a 
simple and unique way, through mobile phone.  

The paper concluded that the design of an Android-based 
mobile phone application, taking advantage of the security 
features of the Android system, enables the paper to achieve 
highly satisfactory results, with multiple additional protection 
levels, which in turn improves access to content, and only 
authenticating the authenticated users.  

It remains, there is no security at whole, but it is an attempt 
to increase reliability, make systems content a distance from 
threats and blatant abuse. 

A. Future Works 
There are several things that app developers can take 

advantage of and exploit to add new app leverage, for example:  

• Develop the idea of mobile authentication to access 
cloud computing content.  

• Modifying the idea of authentication for using the 
mobile phone in Internet of Thing (IoT) accessing.  

• Create special purpose devices that operate in the same 
way as to control the actual incomes of employees in 
organizations.  

• Enhance the idea to control attendance, absence of 
lectures and conferences etc. 

B. Recommendation 
Recommendations can be summarized as follows:  

• Finding more convincing and unique solutions to the 
padding.  

 

• Improve the rate of authentication transaction, by 
reducing the process time to the minimum as well as 
possible.  

 

• Find appropriate ways to take advantage of the features 
of the Android system, (GPS, encryption, etc.), within 
the application to raise its efficiency to the maximum. 

REFERENCES   
[1] Anderson, J.M., 2003. Why we need a new definition of information 

security. Computers & Security, 22(4), pp.308-313. 
[2] Whitman, M.E. and Mattord, H.J., 2011. Principles of information 

security. Cengage Learning. 
[3] Crowley, E., 2003, October. Information system security curricula 

development. In Proceedings of the 4th conference on Information 
technology curriculum (pp. 249-255). ACM. 

[4] Friesen, J.J., 2010. Getting Started with Java. Learn Java for Android 
Development, pp.1-41. 

[5] Android System Development 2004-2017, accessed 03 March 2017, 
<http://www. free-electrons.com/doc/training/ android>.  

[6] Al-Sinani, H.S. and Mitchell, C.J., 2011, June. Enhancing CardSpace 
Authentication Using a Mobile Device. In DBSec (pp. 201-216). 

[7] Mustafa, A.F. and Ja’afer, A.S., 2011. An enhancement of authentication 
protocol and key agreement (AKA) for 3G mobile networks. 
International Journal of Security (IJS), 5(1), pp.35-51. 

[8] Vishal, G., Ravishanker and and Ashish, Kr.L, 2016. Mobile Based 
Secure Authentication Using TLS and Offline OTP. International 
Journal of Computer Technology and (IJCTA), 9(11), pp. 5253-5262. 

[9] Liao, I.E., Lee, C.C. and Hwang, M.S., 2005, August. Security 
enhancement for a dynamic ID-based remote user authentication 
scheme. In Next Generation Web Services Practices, 2005. NWeSP 
2005. International Conference on (pp. 4-pp). IEEE. 

[10] Das, M.L., Saxena, A. and Gulati, V.P., 2004. A dynamic ID-based 
remote user authentication scheme. IEEE Transactions on Consumer 
Electronics, 50(2), pp.629-631. 

[11] Gong, J. and Tarasewich, P., 2004, November. Guidelines for handheld 
mobile device interface design. In Proceedings of DSI 2004 Annual 
Meeting (pp. 3751-3756). 

[12]  Stüber, G.L., 2001. Principles of mobile communication (Vol. 2). 
Boston: Kluwer Academic. 


	1. Introduction
	2. Background
	A. Java
	B. Android
	C. Android Development
	D. Android Open Source Project (AOSP)
	E. Android Architecture
	F. Android Security Model
	G. Related Work

	3. the methodology
	A. Flowchart
	B. Mobile Side Authentication
	C. System Side Authentication
	D. Sequence Diagram

	4. Design And Implementation
	A. User Interface for Mobile Application
	B. User Interface for System
	C. Results of Mobile Application
	D. Results of System

	5. Conclusion
	A. Future Works
	B. Recommendation

	References

