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Wederive the Fekete-Szegö theorem for new subclasses of analytic functionswhich are 𝑞-analogue ofwell-known classes introduced
before.

1. Introduction

Denote byA the class of all analytic functions of the form

𝑓 (𝑧) = 𝑧 + ∞∑
𝑘=2

𝑎𝑘𝑧𝑘 (1)

in the open unit disk U = {𝑧 ∈ C : |𝑧| < 1}.
For two analytic functions 𝑓 and 𝑔 in U, the subordina-

tion between them is written as 𝑓 ≺ 𝑔. Frankly, the function𝑓(𝑧) is subordinate to 𝑔(𝑧) if there is a Schwarz function𝑤 with 𝑤(0) = 0, |𝑤(𝑧)| < 1, for all 𝑧 ∈ U, such that𝑓(𝑧) = 𝑔(𝑤(𝑧)) for all 𝑧 ∈ U. Note that, if 𝑔 is univalent,
then 𝑓 ≺ 𝑔 if and only if 𝑓(0) = 𝑔(0) and 𝑓(U) ⊆ 𝑔(U).

In [1, 2], Jackson defined the 𝑞-derivative operator 𝐷𝑞 of
a function as follows:

𝐷𝑞𝑓 (𝑧) = 𝑓 (𝑞𝑧) − 𝑓 (𝑧)(𝑞 − 1) 𝑧 (𝑧 ̸= 0, 𝑞 ̸= 0) (2)

and 𝐷𝑞𝑓(𝑧) = 𝑓󸀠(0). In case 𝑓(𝑧) = 𝑧𝑘 for 𝑘 is a positive
integer, the 𝑞-derivative of 𝑓(𝑧) is given by

𝐷𝑞𝑧𝑘 = 𝑧
𝑘 − (𝑧𝑞)𝑘
𝑧 (1 − 𝑞) = [𝑘]𝑞 𝑧𝑘−1. (3)

As 𝑞 → 1− and 𝑘 ∈ N, we have
[𝑘]𝑞 = 1 − 𝑞𝑘1 − 𝑞 = 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞𝑘 󳨀→ 𝑘. (4)

Quite a number of great mathematicians studied the
concepts of 𝑞-derivative, for example, by Gasper and Rahman
[3], Aral et al. [4], Li et al. [5], and many others (see [6–15]).

Making use of the 𝑞-derivative, we define the subclasses
S∗𝑞 (𝛼) andC𝑞(𝛼) of the classA for 0 ≤ 𝛼 < 1 by

S
∗
𝑞 (𝛼) = {𝑓 ∈ A : Re(𝑧𝐷𝑞 (𝑓 (𝑧))𝑓 (𝑧) ) > 𝛼, 𝑧 ∈ U} ,

C𝑞 (𝛼) = {𝑓 ∈ A : Re(1 + 𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑓 (𝑧)))𝐷𝑞𝑓 (𝑧) )

> 𝛼, 𝑧 ∈ U} .

(5)

These classes are also studied and introduced by Seoudy and
Aouf [16].
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Noting that

𝑓 ∈ C𝑞 (𝛼) ⇐⇒
𝑧𝐷𝑞𝑓 ∈ S∗𝑞 (𝛼) ,
lim
𝑞→1

S
∗
𝑞 (𝛼) = {𝑓 ∈ A : lim𝑞→1Re(

𝑧𝐷𝑞 (𝑓 (𝑧))𝑓 (𝑧) ) > 𝛼, 𝑧

∈ U} = S
∗ (𝛼) ,

lim
𝑞→1

C𝑞 (𝛼) = {𝑓

∈ A : lim
𝑞→1

Re(1 + 𝑧𝑞𝐷𝑞 (𝐷𝑞 (𝑓 (𝑧)))𝐷𝑞𝑓 (𝑧) ) > 𝛼, 𝑧

∈ U} = C (𝛼) ,

(6)

whereS∗(𝛼) andC(𝛼) are, respectively, the classes of starlike
of order 𝛼 and convex of order 𝛼 in U ([17, 18]).

Next, we state the 𝑞-analogue of Ruscheweyh operator
given byAldweby andDarus [8] that will be used throughout.

Definition 1 (see [8]). Let 𝑓 ∈ A. Denote by R𝜆𝑞 the 𝑞-
analogue of Ruscheweyh operator defined by

R
𝜆
𝑞𝑓 (𝑧) = 𝑧 +

∞∑
𝑘=2

[𝑘 + 𝜆 − 1]𝑞![𝜆]𝑞! [𝑘 − 1]𝑞! 𝑎𝑘𝑧
𝑘, (7)

where [𝑘]𝑞! given by is as follows:

[𝑘]𝑞! = {{{
[𝑘]𝑞 [𝑘 − 1]𝑞 ⋅ ⋅ ⋅ [1]𝑞 , 𝑘 = 1, 2, . . . ;
1, 𝑘 = 0. (8)

From the definition we observe that if 𝑞 → 1, we have
lim
𝑞→1

R
𝜆
𝑞𝑓 (𝑧) = 𝑧 + lim𝑞→1[

∞∑
𝑘=2

[𝑘 + 𝜆 − 1]𝑞![𝜆]𝑞! [𝑘 − 1]𝑞! 𝑎𝑘𝑧
𝑘]

= 𝑧 + ∞∑
𝑘=2

(𝑘 + 𝜆 − 1)!(𝜆)! (𝑘 − 1)!𝑎𝑘𝑧𝑘 =R
𝜆𝑓 (𝑧) ,

(9)

whereR𝜆 is Ruscheweyh differential operator defined in [19].
Using the principle of subordination and 𝑞-derivative,

we define the classes of 𝑞-starlike and 𝑞-convex analytic
functions as follows.

Definition 2. For 𝜑 ∈ 𝑃 and 𝜆 > −1, the class S∗𝑞,𝜆(𝜑) which
consists of all analytic functions 𝑓 ∈ A satisfies

𝑧𝐷𝑞 (R𝜆𝑞 (𝑓 (𝑧)))
R𝜆𝑞 (𝑓 (𝑧)) ≺ 𝜑 (𝑧) , |𝑧| < 1. (10)

Definition 3. For 𝜑 ∈ 𝑃 and 𝜆 > −1, the class C𝑞,𝜆(𝜑) which
consists of all analytic functions 𝑓 ∈ A satisfies

1 + 𝑧𝑞𝐷𝑞 (𝐷𝑞 (R𝜆𝑞𝑓 (𝑧)))𝐷𝑞 (R𝜆𝑞𝑓 (𝑧)) ≺ 𝜑 (𝑧) ,
|𝑧| < 1, 0 < 𝑞 < 1.

(11)

To prove our results, we need the following.

Lemma4 (see [18]). If𝑝(𝑧) = 1+𝑐1𝑧+𝑐2𝑧2+⋅ ⋅ ⋅ ∈ 𝑃 of positive
real part is in U and 𝜇 is a complex number, then󵄨󵄨󵄨󵄨󵄨𝑐2 − 𝜇𝑐21 󵄨󵄨󵄨󵄨󵄨 ≤ 2max {1; 󵄨󵄨󵄨󵄨2𝜇 − 1󵄨󵄨󵄨󵄨} . (12)

The result is sharp given by

𝑝 (𝑧) = 1 + 𝑧1 − 𝑧 ,
𝑝 (𝑧) = 1 + 𝑧21 − 𝑧2 .

(13)

Lemma 5 (see [18]). If 𝑝(𝑧) = 1+ 𝑐1𝑧+𝑐2𝑧2 + ⋅ ⋅ ⋅ is a function
with positive real part, then

󵄨󵄨󵄨󵄨󵄨𝑐2 − ]𝑐21 󵄨󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{

−4] + 2, if ] ≤ 0;
2, if 0 ≤ ] ≤ 1;
4] − 2, if ] ≥ 1.

(14)

2. Main Results

Now is our theoremusing similarmethods studied by Seoudy
and Aouf in [16].

Theorem 6. Let 𝜑(𝑧) = 1 +𝐵1𝑧 +𝐵2𝑧2 + ⋅ ⋅ ⋅ ∈ 𝑃. If 𝑓 given by
(1) is in the class S∗𝑞,𝜆(𝜑) and 𝜇 is a complex number, then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵1𝑞 ([𝜆]2𝑞 + 𝑞2𝜆 (1 + 𝑞) ([𝜆]2𝑞 + 1))
⋅max{1,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐵2𝐵1 +

[𝜆]𝑞 + 𝑞𝜆 − 𝜇 ([𝜆]𝑞 + 𝑞𝜆 (1 + 𝑞))
𝑞 ([𝜆]𝑞 + 𝑞𝜆) 𝐵1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} .

(15)

The result is sharp.

Proof. If 𝑓 ∈ S∗𝑞,𝜆(𝜑), then there is a function 𝑤(𝑧) in U with𝑤(0) = 0 and |𝑤(𝑧)| < 1 in U such that

𝑧𝐷𝑞 (R𝜆𝑞 (𝑓 (𝑧)))
R𝜆𝑞 (𝑓 (𝑧)) = 𝜑 (𝑤 (𝑧)) . (16)

Define the function 𝑝(𝑧) by
𝑝 (𝑧) = 1 + 𝑤 (𝑧)1 − 𝑤 (𝑧) = 1 + 𝑝1𝑧 + 𝑝2𝑧2 + ⋅ ⋅ ⋅ . (17)
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Since 𝑤(𝑧) is a Schwarz function, immediately Re(𝑝(𝑧)) > 0
and 𝑝(0) = 1. Let

𝑔 (𝑧) = 𝑧𝐷𝑞 (R𝜆𝑞 (𝑓 (𝑧)))
R𝜆𝑞 (𝑓 (𝑧)) = 1 + 𝑑1𝑧 + 𝑑2𝑧2 + ⋅ ⋅ ⋅ . (18)

Then from (16), (17), and (18), obtain

𝑔 (𝑧) = 𝜑(𝑝 (𝑧) − 1𝑝 (𝑧) + 1) . (19)

Since

𝑝 (𝑧) − 1𝑝 (𝑧) + 1 = 12 [𝑝1𝑧 + (𝑝2 −
𝑝212 ) 𝑧2

+ (𝑝3 + 𝑝314 − 𝑝1𝑝2)𝑧3 + ⋅ ⋅ ⋅]
(20)

we have

𝜑(𝑝 (𝑧) − 1𝑝 (𝑧) + 1) = 1 + 12𝐵1𝑝1𝑧
+ [12𝐵1 (𝑝2 −

𝑝212 ) + 14𝐵2𝑝21] 𝑧2
+ ⋅ ⋅ ⋅ .

(21)

From the last equation and (18), we obtain

𝑑1 = 12𝐵1𝑝1,
𝑑2 = 12𝐵1 (𝑝2 −

𝑝212 ) + 14𝐵2𝑝21 .
(22)

A simple computation in (18) and knowing that [𝑛]𝑞 − 1 =𝑞[𝑛 − 1]𝑞, we obtain
𝑧𝐷𝑞 (R𝜆𝑞 (𝑓 (𝑧)))

R𝜆𝑞 (𝑓 (𝑧))
= 1 + 𝑞 [𝜆 + 1]𝑞 𝑎2𝑧
+ {𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 𝑎3 − 𝑞 [𝜆 + 1]2𝑞 𝑎22} 𝑧2
+ ⋅ ⋅ ⋅ .

(23)

Then, from last equation and (18), we see that

𝑑1 = 𝑞 [𝜆 + 1]𝑞 𝑎2,
𝑑2 = 𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 𝑎3 − 𝑞 [𝜆 + 1]2𝑞 𝑎22 , (24)

or equivalently, we have

𝑎2 = 𝐵1𝑝12𝑞 [𝜆 + 1]𝑞 ,

𝑎3 = 𝐵12𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 (𝑝2 −
𝑝212 )

+ 𝐵2𝑝214𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞
+ 𝐵21𝑝218𝑞2 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 .

(25)

Therefore

𝑎3 − 𝜇𝑎22 = 𝐵12𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 {𝑝2 − ]𝑝
2
1} , (26)

where

] = 12 [1 − 𝐵2𝐵1
− [𝜆]𝑞 + 𝑞𝜆 − 𝜇 ([𝜆]𝑞 + 𝑞𝜆 (1 + 𝑞))𝑞 ([𝜆]𝑞 + 𝑞𝜆) 𝐵1] .

(27)

By an application of Lemma 4, our result follows. Again by
Lemma 4, the equality in (15) is gained for

𝑝 (𝑧) = 1 + 𝑧1 − 𝑧
or 𝑝 (𝑧) = 1 + 𝑧21 − 𝑧2 .

(28)

ThusTheorem 6 is complete.

Similarly, we can prove for the classC𝑞,𝜆(𝜑). We omit the
proofs.

Theorem 7. Let 𝜑(𝑧) = 1 +𝐵1𝑧 +𝐵2𝑧2 + ⋅ ⋅ ⋅ ∈ 𝑃. If 𝑓 given by
(1) is in the classC𝑞,𝜆(𝜑) and 𝜇 is a complex number, then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵12𝑞 [3]𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞
⋅max{1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵2𝐵1 +
[2]2𝑞 − 𝜇 [3]𝑞 [𝜆 + 2]𝑞

𝑞 [2]2 𝐵1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} .

(29)

The result is sharp.

Taking 𝜆 = 0 in Theorem 6, we have the corollary for the
class S∗𝑞 (𝜑) as follows.
Corollary 8. Let 𝜑(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧2 + ⋅ ⋅ ⋅ ∈ 𝑃. If 𝑓 given
by (1) is in the class S∗𝑞 (𝜑) and 𝜇 is a complex number, then󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤ 𝐵1𝑞 (1 + 𝑞) max{1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐵2𝐵1 +

1 − 𝜇 (1 + 𝑞)
𝑞 𝐵1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} .
(30)

The result is sharp.
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Taking 𝑞 → 1 and 𝜆 = 0 in Theorem 6, we obtain the
following.

Corollary 9. Let 𝜑(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧2 + ⋅ ⋅ ⋅ , 𝐵1 ∈ 𝑃. If 𝑓
given by (1) is in the class S∗𝑞,𝜆(𝜑) and 𝜇 is a complex number,
then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵12 max{1, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐵2𝐵1 +

1 − 2𝜇1 𝐵1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} . (31)

By using Lemma 4, we have the following theorem.

Theorem 10. Let 𝜑(𝑧) = 1+𝐵1𝑧+𝐵2𝑧2 + ⋅ ⋅ ⋅ with 𝐵1 > 0 and𝐵2 ≥ 0. Let
𝜎1 = ([𝜆]𝑞 + 𝑞

𝜆) (𝐵21 + 𝑞 (𝐵2 − 𝐵1))
([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝐵21 ,

𝜎2 = ([𝜆]𝑞 + 𝑞
𝜆) (𝐵21 + 𝑞 (𝐵2 + 𝐵1))

([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝐵21 .
(32)

Let 𝑓 given by (1) be in the class S∗𝑞,𝜆(𝜑). Then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{{{{{{{{{{{{{

𝐵2𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 +
𝐵21𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 (

[𝜆]𝑞 + 𝑞𝜆 − ([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝜇
𝑞 ([𝜆]𝑞 + 𝑞𝜆) ) , if 𝜇 ≤ 𝜎1;

𝐵1𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 , if 𝜎1 ≤ 𝜇 ≤ 𝜎2;
− 𝐵2𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 −

𝐵21𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 (
[𝜆]𝑞 + 𝑞𝜆 − ([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝜇

𝑞 ([𝜆]𝑞 + 𝑞𝜆) ) , if 𝜇 ≥ 𝜎2.
(33)

Proof. First, let 𝜇 ≤ 𝜎1
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵12𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 [−4] + 2]
≤ 𝐵2𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞
+ 𝐵21𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 (

[𝜆]𝑞 + 𝑞𝜆 − ([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝜇
𝑞 ([𝜆]𝑞 + 𝑞𝜆) ) .

(34)

Now, let 𝜎1 ≤ 𝜇 ≤ 𝜎2; then using the above calculation, we
obtain

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵1𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 . (35)

Finally, if 𝜇 ≥ 𝜎2, then
󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐵1𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 [4] − 2]

− 𝐵2𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞
− 𝐵21𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 (

[𝜆]𝑞 + 𝑞𝜆 − ([𝜆]𝑞 + 𝑞𝜆 [2]𝑞) 𝜇
𝑞 ([𝜆]𝑞 + 𝑞𝜆) ) .

(36)

Similarly, we can prove for the classC𝑞,𝜆(𝜑) as follows.
Theorem 11. Let 𝜑(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧2 + ⋅ ⋅ ⋅ with 𝐵1 > 0 and𝐵2 ≥ 0. Let

󰜚1 = [2]𝑞 (𝐵
2
1 + 𝑞 (𝐵2 − 𝐵1))[3]𝑞 𝐵21 ,

󰜚2 = [2]𝑞 (𝐵
2
1 + 𝑞 (𝐵2 + 𝐵1))[3]𝑞 𝐵21 .

(37)

If 𝑓 given by (1) is in the classC𝑞,𝜆(𝜑), then

󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{{{{{{{{{{{{{

𝐵12𝑞 [3]𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 [
𝐵2𝐵1 + (

[2]2𝑞 − [3]𝑞 [𝜆 + 2]𝑞 𝜇
𝑞 [2]2𝑞 )𝐵1] , if 𝜇 ≤ 󰜚1;

𝐵12𝑞 [3]𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 , if 󰜚1 ≤ 𝜇 ≤ 󰜚2;
𝐵12𝑞 [3]𝑞 [𝜆 + 1]𝑞 [𝜆 + 2]𝑞 [−

𝐵2𝐵1 − (
[2]2𝑞 − [3]𝑞 [𝜆 + 2]𝑞 𝜇

𝑞 [2]2𝑞 )𝐵1] , if 𝜇 ≥ 󰜚2.
(38)
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Taking 𝜆 = 0 inTheorem 10, we obtain next result for the
class S∗𝑞 (𝜑).
Corollary 12. Let 𝜑(𝑧) = 1 + 𝐵1𝑧 + 𝐵2𝑧2 + ⋅ ⋅ ⋅ with 𝐵1 > 0
and 𝐵2 ≥ 0. Let

𝜎1 = 𝐵
2
1 + 𝑞 (𝐵2 − 𝐵1)[2]𝑞 𝐵21 ,

𝜎2 = 𝐵
2
1 + 𝑞 (𝐵2 + 𝐵1)[2]𝑞 𝐵21 .

(39)

If 𝑓 given by (1) is in the class S∗𝑞 (𝜑), then󵄨󵄨󵄨󵄨󵄨𝑎3 − 𝜇𝑎22 󵄨󵄨󵄨󵄨󵄨

≤
{{{{{{{{{{{{{{{{{{{

𝐵2𝑞 [2]𝑞 +
𝐵21𝑞 [2]𝑞 (

1 − [2]𝑞 𝜇𝑞 ) , if𝜇 ≤ 𝜎1;
𝐵1𝑞 [2]𝑞 , if𝜎1 ≤ 𝜇 ≤ 𝜎2;
− 𝐵2𝑞 [2]𝑞 −

𝐵21𝑞 [2]𝑞 (
1 − [2]𝑞 𝜇𝑞 ) , if𝜇 ≥ 𝜎2.

(40)
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