### PAPER • OPEN ACCESS

# Fabrication & Characterization of AIAS/pSi Heterojunction Solar Cell

To cite this article: Hanan K Hassun et al 2018 J. Phys.: Conf. Ser. 1003 012110

View the article online for updates and enhancements.

### **Related content**

- <u>Calculations of bound states in the</u> <u>valence band of AIAs/GaAs/AIAs and</u> <u>AIGaAs/GaAs/AIGaAs quantum wells</u> S Brand and D T Hughes
- Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application
   BushraK H AlMaiyaly, Bushra H Hussein and Auday H Shaban
- THE DOUBLE-LINED SPECTROSCOPIC BINARY PSI ORIONIS. W. Lu

## Fabrication & Characterization of AIAS/pSi Heterojunction Solar Cell

Hanan K Hassun<sup>1</sup>, Auday H Shaban, Ebtisam M T Salman

Department of physics College of Education For Pure Science Ibn AlHaitham University of Baghdad Baghdad Iraq

hanan.kadhem@yahoo.com

Abstract: Silver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different 1 thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectral photometer to study the energy6gap The electrical properties7of heterojunction were obtained by IV8 dark and illuminated9 and C10Vmeasurement The ideality1 factor and the saturation2current density were calculated Under illuminated3the open circuit voltage Voc4 short circuit current density Jsc6 fill factor 6FF and quantum efficiencies were calculated The builtin potential 7Vbi carrier concentration and depletion width are measured with different9 thickness

Keywords: nAIAS/pSi heterojunction thin films solar cell

#### **1. Introduction**

The ternary chalcopyrite compounds of the group I-III<sup>1</sup>-VI<sub>2</sub> direct gap semiconductors have been studied in recent years for solar cell applications due to their material properties as an absorbed layer for tandem solar cell light emitting diodes optoelectronics and nonlinear optical devices [1]AgInSe<sub>2</sub> was first prepared from the original binary compounds by Hahnet et al [2]AgInSe<sub>2</sub>thin films have been produced by several techniques such as coevaporation[34] ultrahigh vacuum pulsed laser deposition [5] horizontal Bridgman method [6] molecular beam epitaxial[7] and solid state microwave irradiation[8]The growing and properties of AIGS thin films and devices fabricated with various film compositions are presented[9]The aim of this study was focused on the fabrication and characterization of AIAS /pSi heterojunction for solar cells with different thin film thickness utilizing thermal evaporation technique

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

#### 2. Experimental

Polycrystalline AIAS material alloy was prepared by fusing the mixture of the appropriate quantities of the elements Ag In Al and Se of high purity 999999% in evacuating fused quartz ampoules The compound of  $AgIn_{1x}Al_xSe_2$  were sealed in a quartz ampoule at a base pressure of  $10^3$ TorrThe ampoule's temperature was raised from room temperature to 1200 K for five hour with a rate of 5 K/min in an electrical furnace The sample was left to cool slowly in the electrical furnace

The films of different thicknesses 100 150 and 200±20 nm were determined by using optical interferometer method and deposited by the thermal evaporation technique at room temperature using the Edward coating unit model E 306 of  $3 \times 10^6$ Torr using with molybdenum boat were prepared onto a glass slide substrate and single crystal pSi 111 The area of heterojunction solar cell was 1 cm Xray diffraction XRD was used in order to identify the structural of the deposited AgIn<sub>1x</sub>Al<sub>x</sub>Se<sub>2</sub> films The average crystallite size C<sub>s</sub> of AIAS thin films was calculated by using Scherer's formula [10]

$$C_{s} = \frac{0.94\lambda}{B\cos\theta_{B}}....(1)$$

 $\lambda = X$  ray wavelength  $\beta =$  full width at half maximum of the main peak and  $\theta =$  reflection angle The surface morphology and roughness were studied by atomic<sup>6</sup> force microscope AFM. The optical absorption spectrum of the preparedAgIn<sub>1x</sub>Al<sub>x</sub>Se<sub>2</sub> thin film will be considered through UV–VIS spectrophotometer at 25°C The energy gap E<sub>g</sub> and the absorption coefficient were determined by equations [11 12]

$$\alpha h \upsilon = D h \upsilon - E_g^{r}$$
<sup>(2)</sup>

**IOP** Publishing

$$\alpha = 2303 \text{ A/t}$$
 (3)

Where  $\alpha$  is the absorption coefficient D is a constant dependent on the properties of the bands hv is the photon energy eV Eg is the optical energy gap eVr is constant and may take values 2 31/2 3/2 reliant on the material and the type of the optical transition A is the absorbance and t is the film thickness

Hall Effect measurements have been managed by Vander Pauw Ecopia HMS 3000 to determining majority carrier concentrations type of carrier and their mobility in thin films

IV characteristics of Al AIAS /pSi heterostructures in dark and under light were measured The Current – Voltage characteristics in illumination and dark is description by the equation respectively [13]

$$I = I_{s} \left( \exp\left(\frac{qV}{\beta K_{B}T}\right) - 1 \right) - I_{L}....(4)$$

The ideality factor can calculated from equation

$$\beta = \frac{q}{K_B T} \frac{dV}{d(\ln I)}.$$
(5)

Where  $I_s$  Saturation current  $I_L$  Illumination current I The total current Solar cell current V applied voltage positive forward bias and negative for reverse bias T Temperature in Kelvin K<sub>B</sub> Boltzmann constant q electron charge  $\beta$  is the ideality factor related to the many physical properties of the heterojunction having a value between 1 and 2

The photovoltaic conversion efficiency and Fill Factor is given by [13]

$$\eta = \frac{P_m}{P_{in}} x 100\% = \frac{I_m V_m}{P_{in}} x 100\% \dots (6)$$

$$F.F = \frac{J_m V_m}{J_{sc} V_{oc}} \tag{7}$$

The capacitance–voltage C–V distinguishing for nAIAS/pSi heterojunction was obtained through LCZ meter at frequency = 10 MHz. The capacitance voltage measurements led to calculate different factors for example builtin potential junction capacitance charge carrier concentration and depletion region thickness from [14]

 $N_n$  and  $N_\rho$  are the donor concentrations in AgInAlSe<sub>2</sub>and the acceptor concentrations in pSi $\epsilon_n$  and  $\epsilon_p$  are the dielectric constants of nAgInAlSe<sub>2</sub> and pSi respectively  $V_{bi}^{\ i}$  is the built1 in potential and V is the applied voltage

$$W = \frac{\varepsilon_s}{C_0}.....(9)$$

$$\varepsilon_s = \frac{\varepsilon_n \varepsilon_p}{\varepsilon_n + \varepsilon_p}....(10)$$

Where W is the width of the depletion region  $C_o$  is the capacitance at zero biasing voltage and  $\varepsilon_s$  is the dielectric constant of heterojunction

#### 3. Results and discussion

Figure 1'shows the XRD spectrum of different thickness 100 150 and 200 ±20 nm of AIAS thin films deposited on glass The patterns show that all the films have three main crystalline peaks the first peak located at  $2\theta \approx 2518^{\circ}$  with the 112preferred orientation while the second peak appeared at  $2\theta \approx 335^{\circ}$  with the 211 and the third peak appeared at  $2\theta \approx 427^{\circ}$  with the 204 Table 1 show all the peaks observed in all films By increasing the film thickness the locations of the measured diffraction peaks do not change significantly but the intensities of the peaks increases This is due to the improvement of crystalline of the films being and crystallite size become larger from 1723 to 591 nm when increased the film thickness [15]



Figure 1. XRD patterns for AIAS thin films deposited on glass with different thicknesses 100,150 and 200 nm

| Table 1. Structural parameters of AIAS thin films at different thicknesses |       |          |     |            |      |  |
|----------------------------------------------------------------------------|-------|----------|-----|------------|------|--|
| Thicknessnm                                                                | 20Deg | dhklExpÅ | hkl | βDeg       | CSnm |  |
|                                                                            | 2518  | 3532     | 112 |            |      |  |
| 100                                                                        | 335   | 267      | 211 | 04933 1723 | 1723 |  |
|                                                                            | 427   | 2115     | 204 |            |      |  |
|                                                                            | 256   | 3475     | 112 |            |      |  |
| 150                                                                        | 3382  | 2647     | 211 | 0253       | 336  |  |
|                                                                            | 4278  | 2111     | 204 |            |      |  |
|                                                                            | 257   | 3462     | 112 |            |      |  |
| 200                                                                        | 3392  | 2639     | 211 | 0144       | 591  |  |
|                                                                            | 429   | 2105     | 204 |            |      |  |

'Figure 2' shows the AFM images of three dimensional 3D surface morphology of AIAS thin films with different thickness The surface roughness values and the grain size were measured and illustrated in table 2This is also supported by the Xray diffraction data The average diameter of AIAS thin films



Figure 2. 3D AFM images of AIAS with thicknesses a 100 nm b 150 nm and c 200 nm

|             | Tuble 2 The average grain size of and roughness for thirds and interest differences |                      |       |  |  |  |
|-------------|-------------------------------------------------------------------------------------|----------------------|-------|--|--|--|
| Thicknessnm | Grain size GSnm                                                                     | Roughness average nm | rmsnm |  |  |  |
| 100         | 992                                                                                 | 1278                 | 1695  |  |  |  |
| 150         | 128                                                                                 | 1424                 | 1943  |  |  |  |
| 200         | 152                                                                                 | 3843                 | 6590  |  |  |  |

| <b>Table 2</b> The average g | rain size | GS and roug | ghness for | AIAS t | hin films at | different thickness |
|------------------------------|-----------|-------------|------------|--------|--------------|---------------------|
|------------------------------|-----------|-------------|------------|--------|--------------|---------------------|

In order to probe the energy transitions within AIAS films the optical properties measurements were studied The Absorbance and Transmittance spectrum of AIAS thin films was calculated as a function of wavelength at different thickness in figure 3The Absorbance spectrum for AIAS thin film increase with the increase of thickness The Absorbance values were between 40% and 85% These results agree with other researchers [15]



Figure 3. The Absorbance and Transmittance spectrum of AIAS with different thickness 100 nm 150 nm and 200 nm

The behavior of the transmittance spectra is opposite totally to that of the absorbance spectra From Figure 4 we can observe that the  $\alpha$  values which has been calculated using equation 3 indeed own high amount reached above  $10^5$  cm<sup>1</sup> It was pointed that the  $\alpha$  values in general increases as a function of different thickness which is attributed to an increase in absorbance of used films we found that the value of  $\alpha$  increases from  $0612 \times 10^5$  cm<sup>18</sup> with the increase of thickness The value of Eg<sup>opt</sup> decreases from 198 to 172 to 155 eV with increase of thickness as shown in figure 4 The decrease in the band gap Eg<sup>opt</sup> values may be describable of the increase in defect states near the bands this result is in agreement with reference [4]



**Figure 4. a**Variation αhυ<sup>2</sup> verse photon energy **b** absorption coefficient verse photon energy of AIAS with different thickness 100 nm 150 nm and 200 nm

The type of charge carriers concentration n and Hall mobility  $\mu_H$  has been estimated from Hall measurements These values are listed in table 3 The negative sign of the Hall coefficient indicates that the conductive nature of the film is ntypeie Electrons are the majority charge carriers ie Hall voltage decreasing with the increasing of the current The carrier concentration of the order  $10^{16}$ cm<sup>3</sup> is in a good agreement with reference [16] We can notice from table 3 that the carrier concentration and mobility increases with increasing of thickness

| Table 5 than parameters for AIAS thin thins at different the Kness |            |                                   |          |      |  |  |
|--------------------------------------------------------------------|------------|-----------------------------------|----------|------|--|--|
| Thicknessnm                                                        | $R_{ m H}$ | $\mu_{\rm H} {\rm cm}^2/{\rm VS}$ | $n cm^3$ | ρΩcm |  |  |
| 100                                                                | 8928571    | 7440476                           | 7E+16    | 12   |  |  |
| 150                                                                | 753012     | 125502                            | 83E+16   | 6    |  |  |
| 200                                                                | 6416838    | 1604209                           | 974E+16  | 4    |  |  |

Table 3 Hall parameters for AIAS thin films at different thickness

'Figure 5' illustrated IV curve of manufactured AIAS/Si heterojunction solar cells with different thickness100 150 and 200  $\pm$ 20 nm at RTUsing equations 6 7 was the conversion efficiency and Fill Factor calculation as show in finger 5 and table 4the photo current produced by the 100 mW/cm<sup>2</sup> white lamp the results obtained where there is a clear increase in the value of the open circuit voltage V<sub>oc</sub> and the value of short circuit current density J<sub>sc</sub> maximum for both the current and the voltage value V<sub>m</sub>J<sub>m</sub> and the value of efficiency solar cell in terms of efficiency increases in general with increasing thickness and this goes back as we have already improved the increase the surface roughness the absorption coefficient and charge carriers this result agrees with [17]



Figure 5. IV plots for AIAS/Si solar cell at thickness 100 150 200 nm in dark and under light

| Thickness<br>nm | V <sub>oc</sub><br>Volt | J <sub>sc</sub><br>mA/cm <sup>2</sup> | V <sub>max</sub><br>Volt | J <sub>max</sub><br>mA/cm <sup>2</sup> | FF      | η % |
|-----------------|-------------------------|---------------------------------------|--------------------------|----------------------------------------|---------|-----|
| 100             | 02                      | 12                                    | 01                       | 10                                     | 0416667 | 1   |
| 150             | 024                     | 25                                    | 015                      | 17                                     | 0425    | 255 |
| 200             | 029                     | 32                                    | 017                      | 20                                     | 0366379 | 34  |

Table 4. The parameter for AIAS/Si heterojunction with respect to thicknesses

The ideality factor  $\Phi b$  and  $J_s$  of the AgInAlSe<sub>2</sub>/Si heterojunction solar cell are gained from the grade of the straight line region forward bias in IV plots under dark by using equation 5 as show in figure 6 and Table 5the behavior of the current are change exponentially with voltage at V < 02 VThe decrease of ideality factor and  $\Phi b$  with the increasing of thickness while  $J_s$  increase This result agrees with [18]



Figure 6 ln J with V for forward bias for AIAS/Si junction in dark with respect to thicknesses

| Thickness <sup>*</sup> nm | Ideality Factor | Saturation Current DensityJ <sub>s</sub> mA/cm <sup>2</sup> | Barrier <sup>*</sup> HeightΦbeV |
|---------------------------|-----------------|-------------------------------------------------------------|---------------------------------|
| 100                       | 2193752         | 0000911882                                                  | 060075                          |
| 150                       | 18263971        | 0003345965                                                  | 056708                          |
| 200                       | 1668541         | 0008229747                                                  | 054377                          |

Table 5. Ideality Factor and  $J_S$  for AIAS /Si junction at different thicknesses

The capacitance voltage measurements led to calculate built in potential junction capacitance carrier concentration and depletion width Figure 7 illustrated  $1/C^2V$  relation with respect to thickness amount For all samples it can be seen that junction capacitance is decrease with increasing bias voltage which can be explained by the expansion of depletion layer with the built in potential



**Figure 7.**  $1/C^2$  as a function of reverse bias voltage for AIAS/Si heterojunction

'Figure7 'illustrated CV behavior of AIAS/Si solar cell Table 6 illustrated the relation between  $C_o$  and thickness which is reversely relative This behavior was attributed to the increase in W which tends to the improve  $V_{bii}$  The increasing of W due to increases in thickness because of the increasing in  $N_D$  which leads to a decrease of the capacitance The CV measurements show that the heterojunction of abrupt type because the relationship between inverted square amplitude  $1/C^2$  with a voltage voltage of reverse bias is lined

| Thicknessnm | 1000000000000000000000000000000000000 | $\frac{W = \epsilon_s / C_0 \text{ nm}}{W = \epsilon_s / C_0 \text{ nm}}$ | V <sub>bi</sub> Volt | N <sub>D</sub> cm <sup>3</sup> |
|-------------|---------------------------------------|---------------------------------------------------------------------------|----------------------|--------------------------------|
| 100         | 6454972244                            | 669                                                                       | 05                   | 523001E+15                     |
| 150         | 50                                    | 783                                                                       | 075                  | 633278E+15                     |
| 200         | 4472135955                            | 876                                                                       | 09                   | 77731E+15                      |

Table 6. Variables of AIAS /Si heterojunction with different thickness

#### 4. Conclusions

After characterizing and analyzing the performance of the samples the conclusions are summarized as follows

The AIAS thin films were successfully deposited on glass and silicon substrates by thermal evaporation technique The XRD analysis shows that all the deposited films were polycrystalline and the crystallite size was highly oriented in 112 direction AIAS films exhibits a high value of absorption coefficient in the visible range of the electromagnetic spectrum the optical transitions in AIAS are direct and value of optical energy gap decreases with increasing of thickness *IV* measurements analyzed minutely for rectifying and photovoltaic behaviors For AIAS/Si heterojunction solar cell the ideality factor and J<sub>S</sub> are obtained with respect to different thickness The diode exhibits an ideal behavior when the ideality factors become less than 2 The measurements were carried out under illuminate by incident power density equal to about 100 mW/cm<sup>2</sup> The forward relativity between quantum and thickness will get the maximum values of efficiency 34 when the thickness t = 200nm while CV curves showed that the abrupt type for prepared devices

#### References

- M Kaleli T Colakoglu M Parlak 2013 Production and characterization of layer by layer sputtered singlephase AgInSe2thin film by thermal selenization Applied Surface Science 286 171 176
- [2] H Hahn G Frank W Klingler AD Meyer G 1952 StöergerTernareChalkogenideZeitschrift fur AnorganischeChemie 271 153 170
- [3] MC Santhosh Kumar and B Pradeep 2009 Effect of H<sup>+</sup> irradiation on the optical properties of vacuum evaporated AgInSe<sub>2</sub>thin films Appl Surf Sci255 8324 8327
- [4] JJ Lee JD Lee BY Ahn HS Kim KH Kim 2007 Structural and Optical Properties of AgInSe2 Films Prepared on Indium Tin Oxide Substrates J KorPhysSoc50 1099 1103
- [5] H Mustafa D Hunter AK Pradhan UN Roy Y Cui A Burger Synthesis and characterization of AgInSe<sub>2</sub> for application in thin film solar cells *Thin Solid Films***515** 7001 7004
- [6] IV Bodnar 2004 Properties of AgGa<sub>x</sub>In<sub>1-x</sub>Se<sub>2</sub> Solid Solutions Inorg Mater 40 914918
- [7] K Yamada N Hoshino T Nakada 2006 Crystallographic and electrical properties of wide gap Ag In<sub>1-x</sub>Gax Se<sub>2</sub>thin films and solar cells SciTechnolAdv Mater**7** 4245
- [8] JW Lekse AM Pischera JA Aitken 2007 Understanding solidstate microwave synthesis using the diamondlike semiconductor AgInSe2 as a case study Mater Res Bull **42** 395403
- [9] Keiichirou Yamada Nobuyuki Hoshino TokioNakada 2006 Crystallographic and electrical properties of wide gap Ag In<sub>1-x</sub>Ga<sub>x</sub> Se2 thin films and solar cells Science and Technology of Advanced Materials7 42 45
- [10] BD Cullity 1978 Elements of XRay diffraction 2nd edition copyright © by Addison Wesley

Publishing company Inc

- [11] RutuparnaMohanty 2012 Electronic Properties of Ternary and Binary Compounds Thesis Submitted for the Award of the Degree of Master of Science Department of Physics National Institute of Technology
- [12] MA Omer 1975 Elementary Solid State Physics AddisoWe sly Publishing
- [13] D A Neamen 2003 Semiconductors physics and Devices Basic Principles Third edition copyright© McGraw Hill Companies *Inc*
- [14] S M Sze 2007Physics of semiconductors Devices Third edition copyright<sup>®</sup> by John Wiley & Sons Inc
- [15] S Murugana and KR Muralib 2014 Structural Optical and Electrical Studies on Pulse Plated AgInSe<sub>2</sub>Films ACTA PHYSICA POLONICA A**126** 3 727731
- [16] Kenji Yoshino Aya Kinoshita Yasuhiro Shirahata Minoru Oshima Keita Nomoto Tsuyoshi YoshitakeShunji Ozaki Tetsuo Ikari 2008 Structural and electrical characterization of AgInSe<sub>2</sub> crystals grown by hotpress method *Journal of Physics Conference Series*14
- [17] Raviendra D JK1985 Sharma nCdS pAgInSe<sub>2</sub> solar cells by electro deposition physics status solidi a*Application and materials science***88** 1 365368
- [18] S Mridha M Dutta Durga 2009Basak Photo response of nZnOpSiheterojunction towards ultraviolet visible lights thickness dependent behavior*J Mater Sci Mater Electron***20** 376