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Abstract 

 

The theory of scale relativity (ScR) is based on the extension of 

the principle of relativity of motion to include relativity of scale. 

Fractal space-time is the basis of this new theory as formulated by 

Nottale. Applications of this theory encompass diverse fields from 

microphysics, cosmology and complex systems. Previously, direct 

numerical simulations using this theory in quantum physics as 

performed by Hermann have resulted in the appearance of the correct 

quantum behavior without resorting to the Schrödinger equation. 

However these simulations were performed for only one limited case 

of a particle in an infinite one-dimensional square well. Hence, there 

is a need for more such applications using this theory to establish its 

validity in the quantum domain. 

 

In the present work, and along the lines of Hermann, ScR theory 

is applied to other standard one-dimensional quantum mechanical 

problems. These problems are: a particle in a finite one-dimensional 

square well, a particle in a simple harmonic oscillator (SHO) potential 

and a particle in a one-dimensional double-well potential. Some 

mathematical problems that arise when obtaining the solution to these 

problems were overcome by utilizing a novel mathematical 

connection between ScR theory and the well-known Riccati equation. 

Then, computer programmes were written using the standard 

MATLAB 7 code to numerically simulate the behavior of the quantum 

particle in the above potentials utilizing the solutions of the fractal 

equations of motion obtained from ScR theory. Several attempts were 

made to fix some of the parameters in the numerical simulations to 



obtain the best possible results in a practical computer CPU time 

within the limited local computer facilities. 

 

Comparison of the present results for the particle probability 

density in the three potentials with the corresponding results obtained 

from conventional quantum mechanics by solving the Schrödinger 

equation, shows very good agreement. This agreement was improved 

further for some cases by utilizing the idea of thermalization of the 

initial particle state and by optimizing the parameters used in the 

numerical simulations such as the time step and number of coordinate 

divisions.  

 

It is concluded from the present work that ScR theory can be 

used as a basis for describing the quantum behavior without reference 

to conventional quantum mechanics. Hence, it can also be concluded 

that the fractal nature of space-time, which is the basis of ScR theory, 

is the origin of the quantum behavior observed in these problems. 

 

More applications to potentials in more than one-dimension, 

including asymmetric potentials, would give greater confidence along 

these lines. Also, the novel mathematical connection between ScR 

theory and the Riccati equation, that was previously used in quantum 

mechanics without reference to ScR theory, needs further 

investigation in future work. 
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Chapter One 

Introduction 

 

The beginning of the last century has witnessed the 

advent of two important events in physics , namely; the 

formulation of the theory of relativity by Einstein [1 -7] and 

quantum mechanics by Schrödinger, Heisenberg, Dirac and 

others [8-13]. While the theory of relativity (special and 

general) is well-founded on physical (geometrical) basis    

[1-7], quantum mechanics is considered as an axiomatic 

theory based on purely mathematical rules.  It was first 

introduced as a non-relativistic theory [8-15]. There is still a 

difficulty in understanding the connection between 

mathematical tools and the physical interpretation in 

quantum mechanics [16-18]. Also, the appearance of the 

constant ħ (Dirac constant) in the Schrödinger equation is 

considered as one of the mysteries of quantum mechanics 

[16-18]. Another mystery is the wave nature of the solution 

to the Schrödinger and other relativistic quantum mechanical 

equations. This wave nature is axiomatically connected with 

the non-classical probabilistic behavior of quantum systems 

in analogy with the electromagnetic wave of classical 

electromagnetism and its connection with the probabilistic 

nature of photons in light fields with some differences [18-

20]. 



Attempts to introduce Einstein's principle of special 

relativity into quantum mechanics has resulted in relativistic 

quantum mechanical wave equations for relativistic particles 

such as the Klien-Gordon equation and the Dirac equation 

[9-17]. 

 

More serious attempts to reconcile the principle of 

relativity with quantum mechanics have faced grave 

difficulties [15] even though some real progress has been 

made in this direction [16,18]. The reason for these 

difficulties is usually traced back to the different nature of 

the two fields stated at the beginning of this chapter , 

namely; the geometrical nature of relativity theory and 

axiomatic (non-geometrical) nature of quantum mechanics 

[8-12]. 

 

Attempts to geometrize quantum mechanics to ease its 

twining with relativity theory in  a single more general theory 

were also made based on more than one direction [16,18]. A 

more serious attempt in this direction can be traced back to 

Feynman [21] who studied the geometrical structure of 

quantum paths and showed that the trajectory of a quantum 

particle is continuous and non-differentiable [22-24]. At that 

time the connection between non-differentiability and the 

concept of fractals and the modern field of fractal geometry 

(see Appendix A) was not well established. Later, Abbot and 

Wise [25] reconsidered the problem of the geometrical 

structure of quantum paths in terms of the concept of fractals 



and they demonstrated that the trajectory of a quantum 

particle varies with the resolution. Hence, they showed that 

the fractal dimension D (see Appendix A) of this trajectory 

is 2 [26-28]. Going further in this direction, Ord [29] 

considered fractal space-time as a geometric analogue of 

relativistic quantum mechanics. He proposed two field 

equations for the description of what he called fractalons 

based on a random walk in space-time trajectories and 

subsequently related these equations to the free particle 

Klien-Gordon and Dirac equations [29]. 

 

Building on these geometrical concepts, and taking the 

fractal space-time concept more seriously into consideration, 

Nottale [30-32] introduced his theory of scale relativity 

(ScR) to reformulate quantum mechanics from first 

principles. The theory of ScR extends Einstein's principle of 

relativity of motion to scale transformations of resolutions. 

In other words, it is based on giving up the axiom of 

differentiability of the space-time continuum [30-39]. The 

new framework as formulated by Nottale  generalizes the 

standard theory of relativity and includes it as a special case 

[31-35]. Three consequences arise from this withdrawal of 

differentiability of space - time [31-32,36,37], namely ;  

 

(i) The geometry of space-time must be fractal, i.e., 

explicitly resolution-dependent. This leads to non- 

classical behavior as a consequence.  



(ii) The geodesics of this non-differentiable space-time 

are themselves fractal and infinite in number.  

(iii) Time reversibility is broken at the infinitesimal 

level. This is again a behavior which has no 

analogue in classical systems. 

 

According to Nottale [30-32], the ScR approach is 

expected to apply not only at small scales (quantum domain) , 

but also at very large space-time scales (cosmological 

domain) although with different interpretation. Nottale     

also shows the applicability of his ScR theory to systems in 

the middle, namely; complex systems [31,40]. Therefore, 

there are three domains for the application of this theory  

which are microphysics[31,36,38],cosmology [31,36,39] and 

complex systems [31,40,44]. 

 

Most of the work done  on  ScR  theory by  Nottale  

[30-46] and others [47-52] in the quantum domain has 

focused on the formal side of the development of this theory 

and its application to put quantum mechanics on more sound 

physical basis, i.e., deriving most of it from ScR theory and 

fractal space-time. This sometimes obscures how the 

quantum probabilistic behavior arises as a result of the 

fractal nature of space-time. For this reason, there appears to 

be a need for a direct application of ScR theory to quantum 

problems so as to reveal this connection in a clear fashion. 

In this respect, Hermann [53] was the first to apply directly 

the fractal equations of motion obtained from ScR theory in 



terms of a large number of explicit numerical ly simulated 

trajectories for the case of the quantum-mechanical problem 

of a free particle in an infinite one-dimensional box [8-12]. 

He constructed a probability density from these trajectories 

and recovered in this way the solution of the Schrödinger 

equation without explicitly using it. The results of this work 

as originally obtained by Hermann [53] are considered as 

pioneering in this respect since they show the importance of 

the direct application of ScR theory to quantum systems to 

reveal how quantum behavior arises from the fractality of 

space-time and the validity of this theory and also as laying 

the ground for the numerical methods needed in such 

applications.  

 

Aim of the Present Work: 

Hermann [53] promised to do other similar applications 

to establish this validity in a more general sense. However,  

survey of literature did not indicate any such applica tions by 

him or other researchers in this field. Direct correspondence 

with him about this matter indicated the correctness of the 

results of this survey and emphasized the importance of 

pursuing further applications along the same lines [54]. 

 

It is believed that the results of such applications are 

important to prove the direct validity of ScR theory in more 

general cases and not in a single isolated case as done by 

Hermann [53]. Besides, such more applications are expected 



to reveal novel concepts, such as the connection between 

ScR theory and the Riccati equation [55-58] as revealed in 

the present work which were not observed by Hermann [53], 

as will be discussed in details later.  

 

Motivated by this, in the present thesis the quantum 

behavior of a particle in a finite one-dimensional square well 

potential, simple harmonics oscillator potential and double 

well potential is demonstrated by means of numerical 

simulations without using the Schrödinger equation or any 

conventional quantum axiom, along the lines of 

Hermann[53]. The results obtained in the present work are 

compared with the results obtained from conventional 

quantum mechanics. In this manner, the present work can be 

considered as an extension of Hermann's work [53] to the 

problems above. 

 

 

The main conclusion of the present work is the validity 

of Hermann's method for more general examples taken from 

one-dimensional quantum mechanics. Besides , a novel 

connection between ScR theory and the Riccati equation is 

revealed, which need to be explored in future work along 

with other aspects. 

To this end, this thesis is organized as follows. Chapter 

two presents a theoretical background to relativity theory 

and quantum mechanics as far as the present work is 

concerned, and discusses the need for extension of the 



principle of relativity. Chapter three introduces the concept 

of fractal space-time, the general structure of ScR theory and 

gives a theoretical background for non-relativistic quantum 

mechanics in the new ScR approach. Chapter four includes a 

review of Hermann's work [53]. It also includes the 

application of Hermann's scale-relativistic approach (HScR) 

to the problem of a particle in a finite square well potential. 

Chapter five applies this HScR approach to a particle in a 

simple harmonic oscillator potential (SHO). The application 

of this approach to the problem of a particle in a double well 

potential is presented in chapter six. Chapter seven gives a 

discussion, conclusions and suggestions for possible 

extensions of the present work. Finally, some mathematical 

concepts related to fractal geometry, the Riccati equation, 

Cantorian fractal space-time and the computer programming 

performed in the present work are presented in appendices 

A, B, C and D respectively. 

 

 

 

 

 

 

 

 

 

 



Chapter Two 

Relativity and Quantum Mechanics 

 

Our current understanding of the laws of physics can be broadly 

categorized into two main theories, namely; the theory of relativity 

and quantum mechanics. The theory of relativity includes the special 

and general theories of relativity as well as classical mechanics. 

Quantum mechanics traditionally includes its development into 

quantum field theories. 

 

In this chapter an attempt is made to give some theoretical 

background to these theories as far as the theory of scale relativity, 

which is the subject of this thesis, is concerned. This may help in 

laying the grounds for the applications that are to be given in the 

following chapters. 

 

(2-1) Relativity in Physics:  

Galilean relativity states that: "Motion is like nothing" [1-5]. 

Although at first sight it may seem trivial, the explicit expression of 

this imposes principal universal constraints on possible forms that 

physical laws take. In 1905, Einstein introduced the principle of 

general relativity which states that: "The laws of physics must be of 

such nature that they apply to systems of reference in any kind of 

motion"[1-2]. In this form, this statement implies strictly the relativity 

of motion. Special relativity leads to the constraint that no velocity can 



exceed some universal velocity (c) which is the velocity of light in 

vacuum (≈3×10
8
 m/s). 

 

Poincare in 1906 and Minkowski in 1909 [1,2,5] introduced the 

abstract four-dimensional space that is called space-time continuum or 

simply the four-space or (3+1)-space. Thus, in terms of this space-

time, a homogeneous Lorentz transformation [1,2,3,5] 

)4,3,2,1,(
4

1




ixx j

j

iji   can be interpreted as a rotation of the system of 

coordinates in the four-space. The Minkowskian space-time is 

characterized by the invariant [1,2]: 

)( 222222 dzdydxdtcds         --------- (2.1)  

 

under any transformation from one inertial coordinate system to 

another . Eqn. (2.1) can be rewritten as: 

2222 ddtcds              ----------- (2.2)  

 

where d is the spatial distance between two space points in the 

physical space in which two events occur, while dt is the difference in 

time of occurrence of the two events. 

 

General relativity is a theory based on fundamental physical 

principles, namely; the principles of general covariance and of 

equivalence. The principle of general covariance states that: "The 

general laws of nature are to be expressed by equations which hold 

good for all system of coordinates, that is, are covariant with respect 

to any substitutions whatever". While , the principle of equivalence 

states that : "At a given event point, all laws of nature have same form 



as in the special relativity , when expressed in term of locally 

Lorentzian coordinates" [1,2,5]. From these principles, Einstein 

constructed the theory of general relativity, whose equations are 

constraints on the possible curvatures of space-time. Einstein's 

equations can be written in the form [1-6]:  

R μυ - 
2

1
R gμυ – λg gμυ = ¥ Tμυ     ---------- (2.3) 

 

where the g 's are tensorial metric potentials which generalize the 

Newtonian gravitational scalar potential, R μυ is the scalar curvature, 

g  is the cosmological constant, T  is the energy-momentum tensor,  

¥ = 
4

~
8

c

G
 , G

~
 is the gravitational constant(≈ 6.6742×10

-11
 N m

2
 kg

-2
) 

and ,=0,1,2,3 . 

Eqn. (2.3) is invariant under any continuous and differentiable 

transformation of coordinate systems. The general relavistic invariant 

is [1-6]: 



 dxdxgds 2

           --------- (2.4) 

where Einstein's summation convention on repeated upper and lower 

indices is implied . The covariant derivative D can be used to express 

how the curvature of space-time implies that the variation of physical 

entities (such as vectors and tensors) for infinitesimal coordinate 

variation depends also on space-time itself, as [1-3]: 








 AAAD       ---------- (2.5) 

which generalizes the partial derivatives (  ) where 
A  is 4-vector . 



In this expression, the effect of the curvature of space-time (i.e., of 

gravitation) is described by the Christoffel symbols 
 that has the 

form [1-3]: 

)(
2

1



 gggg        -------- (2.6) 

which plays the role of the gravitational field . 

The covariant derivatives do not commute, so that their 

commutator leads to the appearance of a four-indices tensor, which is 

called Rimmann tensor R
  

ρ defined as [1-3]: 

λρμυυμ AA)DDDD(                   ---------- (2.7) 

By contraction of indices in the Riemann tensor, the symmetric 

second-rank Ricci tensor       can be formed [1,3,4,6]: 

pλg           --------- (2.8) 

or  

λ

υρμλ

λ

ρλμυ

υ

μρυμυ  ρρρ

ρ                   --------- (2.9) 

The quantity 
μυg   is called the scalar curvature [1,2] . 

    The equation of motion of a free particle is that of inertial motion 

[1,3]: 

                         DV=0                           --------(2.10) 

where V is the 4-velocity of the particle . This equation becomes the 

geodesics equation [1,3,5,6]: 

0)/)(/(/ 22  dsdxdsdxdsxd 




       ------- (2.11) 
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(2.2) Quantum Mechanics: 

Classical physics deals with macroscopic phenomena. Most of 

the effects with which classical theory is concerned are either directly 

observable or can be made observable with relatively simple 

instruments. When physicists turn their attention to the study of 

atomic systems, they find the concepts and methods of classical 

macroscopic physics inapplicable directly to atomic phenomena. In 

the period from 1925 to 1930, an entirely new theoretical discipline, 

quantum mechanics, was developed by Schrödinger, Heisenberg, 

Dirac and others [8-15]. 

 

In Young's interference experiment [8-10], particles seem to 

behave in certain situations as if they were waves. This interference 

experiment suggested several new ideas [8,11]: 

1- Probability enters into quantum mechanics in a fundamental and 

non-classical way. Considering light as a stream of photons 

reveals an associated wave the amplitude of which plays the role 

of a probability amplitude. The square of the amplitude (i.e, the 

wave intensity) gives a measure of the probability of finding a 

photon at a particular point. 

2- In the case of a photon and, presumably for other particles as 

well, the probability amplitude propagates as a typical wave. 

3- For photons, the wave amplitude contains all the information 

available about the photon probability distribution, thus, the 

wave function for a particle is sometimes called the state 

function of the particle. 



The paradox of a particle which sometimes behaves like a wave 

or of a wave which sometime behave like a particle can thus be 

resolved by noting that the wave plays the role of probability 

amplitude in the probabilistic description of particles [8,11]. 

 

In non-relavistic quantum mechanics, there are axioms which are 

given briefly in the following [8-11,59]: 

1- The complex wave function  associated with a physical 

system contains all relevant information about the behavior of 

the system and thus describes it completely. In other words, any 

meaningful question about the result of an experiment 

performed upon the system can be answered if the wave 

function is known. The quantity *=
2
 is to be interpreted as 

a probability density for a particle in the state  . In the 

measurement of the position of the particle, the probability 

rdrP


)( of finding it in a volume element dxdydzrd 


 at the 

point r


is proportional to ( r


)
2 rd


 . 

2- If two solutions 1 and 2 of the system are known, they obey 

the principle of superposition, so that other solutions can be 

constructed of the form : 

 = 1a 1 + 2a 2            ---------(2.12) 

with arbitrary choice of the constants 1a  and 2a  . The function  will 

satisfy the same condition of continuity and integrability that are 

satisfied by 1 and 2. 

3- An operator ̂ representing an observable quantity must, for 

every state  , yield an expectation : 

< ̂  > =* ̂   rd

 ( , ̂  )    --------- (2.13) 



 

which is real . ̂must satisfy the condition : 

( , ̂  ) = ( , ̂ )* = ( ̂  , )          ---------- (2.14) 

 

for every function  to which it may be applied . A linear operator 

which obeys eqn. (2.14) is called a Hermitian operator. This rule is 

sufficient to insure that the eigenvalues of ̂  are real, for if  is an 

eigenfunction of ̂  belonging to the eigenvalue i , then : 

( , ̂  ) = ( , i ) = i ( , )            ---------- (2.15) 

where i is real . 

4- Any state function can be expanded as 



N

n

nna
1

  in an 

orthonormal basis set {n; n=1, 2, 3…N}, and 
2

na gives the 

probability that the system is in the n
th

 eigenstate. 

5- The time evolution of the system satisfies the Schrödinger 

equation : 

)/(ˆ ti                 ---------- (2.16) 

where the Hamiltonian ̂  is a linear Hermitian operator . 

6- Immediately after a measurement, the system is in the state 

given by the first measurement. This is von Neumann's axiom 

[31,36]. This axiom is necessary to account for experiments: for 

example, after a spin measurement, the spin remains in the state 

given by the measurement; just after a measurement of position 

(at t+t, t> 0), a particle  is in the position given by the 

measurement . Its absence may give a false impression of 

quantum mechanics as a theory where precise prediction can 



never be done, while this depends on the pure or mixed 

character of the state of the system. It underlies the 

phenomenon of reduction of the wave packet [8-12]. 

 

The position and momentum wave functions may be derived one 

from the other by a reciprocal Fourier transform [8-12]. From this 

comes the Heisenberg inequality or uncertainty principle [31,36,38]: 

2/px               -----------(2.17) 

 

which implies the non-deterministic character of quantum trajectories. 

Also, the solution of the Schrödinger equation for a free particle leads 

to the introduction of the de Broglie length and time: the phase of the 

complex wave function is /)( Etpx , where p  and E  are the 

classical momentum and energy of the particle. The de Broglie 

periods, h / p  and h / E , correspond to a phase variation of 2 . The de 

Broglie length and time are [10,14,18]: 

Ep /;/          --------- (2.18) 

Then, the quantum phase becomes [5,6,31]: 

)//(  tx            --------- (2.19) 

From the above six axioms, it is clear that there are mysteries in 

quantum mechanics such as [31]: 

1- The mysterious character of the quantum rules, such as 

that to a real momentum p


, there corresponds a 

complex operator )/( ri


  acting on a complex 

probability amplitude. 

2- There is a complex plane in quantum mechanics. It is 

not clear where this complex plane lies. 



3- Quantum mechanics is an axiomatic theory rather than 

a theory of principle. The physical origin of the axioms 

of quantum mechanics is not clearly understood. 

 

(2.3) The Need for a More General Principle of               

Relativity: 

According to relativity and quantum theories, any object can be 

described by coordinate systems which are ),,,( tzyx  [1-6,8-12]. The 

resolution of space-time is the minimal unit that may be used when 

characterizing the length or time interval by a final number. The 

perfect description of any physical system must include the 

measurement errors or uncertainties. Then, the complete information 

about the position and time of the system is not only the space-time 

),,,( tzyx  but also the resolutions ),,,( tzyx   [31,36,38]. This 

analysis is important in the quantum interpretation since the results of 

measurement become dependent on the resolution, as a consequence 

of Heisenberg's relation [30,31,36,38]. Here, the quantum behavior is 

a consequence of a fundamental and universal dependence of space-

time itself on resolution which is revealed in any measurement, 

namely; that the quantum space-time has properties of a fractal (see 

appendix A). In this way, Heisenberg's relations tell that the results of 

measurements of momentum and energy are relative to the state of 

scale of the reference system [31,36]. 

 

The super system can now be defined as a system which 

contains the usual coordinates and spatio-temporal resolutions, i.e.,  



),,,,,,,( zyxtzyxt   [30,31,38]. Applying the laws of nature to any 

coordinate super system gives an extension of the principle of 

relativity [1-3]. This extension in the principles of relativity gives a 

new theory of relativity which is the scale relativity (ScR) theory as 

first introduced by Nottale [30-32] in 1993. 

 

This theory states that: "the fundamental laws of nature apply 

whatever the state of scale of the coordinate system". The state of a 

reference system is characterized by the resolutions at which a system 

is observed. It can be defined only in a relative way. The main idea of 

the theory is to give up the arbitrary hypothesis of differentiability of 

space-time [30,31,36,38]. This theory reformulated quantum 

mechanics from first principles. Which are the covariance and 

geodesics equations, by considering the particle as geodesic in fractal 

space-time (see Sec. (3-1)). ScR theory applies in three domains 

which are microphysics, cosmology and complex systems 

[31,33,34,37,40,41] (see Sec. (3.2)) .              

 

 

 

 

 

 

 

 



Chapter Three 

Fractal Space-Time, Scale Relativity and 

Quantum Mechanics 

 

(3.1) Fractal Space-Time:  

In relativity theory and quantum mechanics, an event is 

described by 4 coordinates which are ),,,( tzyx  [1-6,8-12] . One puts 

apart properties like charge, spin, ect, but this fact does not mean that 

knowing only one ),,,( tzyx  is sufficient to determine the evolution 

of a system but that the necessary physical quantities only depend on 

zyx ,, and t [60,61]. Space-time gives the set of all possible 

),,,( tzyx quadruplets and their transformations. In relativity theory, 

space-time is continuous, curved and differentiable [1-3]. This kind of 

space-time cannot account for the quantum properties of matter. 

While, in quantum mechanics, space-time is in principle flat, 

Minkowskian and differentiable [60,61]. Here, there is a contradiction 

with relativity theory. That has led to attempts to include another kind 

of space-time in quantum mechanics. The role played by resolutions 

of space-time led Nottale [30-32] to give up the (implicit) hypothesis 

of the differentiability of space-time, which implies its fractal (see 

Appendix A) and curved nature. This has important physical 

consequences; one can demonstrate the continuous but non-

differentiable nature of space-time as a consequence. One can also 

demonstrate that a non-differentiable function is explicitly resolution  



()-dependent, and that its length L( x ) tends to infinity where the 

resolution interval  tends to zero , i.e., L = L(ε)ε→0 → 

[30,32,34,46,57,58,59]. 

 

The assumption of continuous but non-differentiable space-time 

proposes the concept of fractal space-time [62-64] which explicitly 

depends on resolutions. It can be defined as "Space–Time-Zoom" with 

5 dimensions ),,,,( Dtzyx  [62,63] where D is the fractal dimension 

(see Appendix A) which is a variable and plays the role of a 5
th

 

dimension . The roots of the concept of fractal space-time go back to 

Feynman [21] who found that the trajectory of a quantum path is 

continuous but non-differentiable. Then, Ord [29] introduced this 

concept as a geometric analogue of relativistic quantum mechanics. 

 

In a fractal space-time, there is an infinite number of fractal 

geodesics [30,31] between any two points, so particles can be 

identified with one particular geodesic of the family. Also, fractal 

space–time implies a breaking of time reflection invariance 

[31,33,35]. These properties of fractal space-time come from non- 

differentiability. A theory based on these concepts is ScR theory 

which was introduced by Nottale [48,63,64]. El Naschie [65] has 

attempted to go still one step further to give up continuity also. This 

leads to the concept of Cantorian fractal space-time (see Appendix C). 

 

(3.2) General Structure of ScR Theory:  

The theory of ScR is constructed by completing the standard 

laws of classical physics (motion in space / displacement in space-



L 

 

time) by new scale laws in which the space-time resolutions are 

playing for scale-transformations the same role of velocities in motion 

transformation. There are several levels of scale laws according to the 

historical development of the theory of motion [30,31,32,34,36,38]: 

 

(3.2.1) Galilean Scale Relativity: 

1- Standard Fractal Laws 

A power-law scale dependence is frequently encountered in 

many natural systems. It is described geometrically in terms of fractals 

(see Appendix A) and also algebraically in terms of the 

renormalization group [30-32]. Such simple scale-invariant laws can 

be identified with the Galilean version of scale–relativistic laws 

[30,31]. 

 

Let L be a non-differentiable coordinate. Because there is a link 

between non-differentiability and fractality, L is an explicit function  

L () of the resolution interval . Firstly, assume that L() satisfies a 

simple scale differential equation, then, this leads to the first order 

differential equation [31,32,33]: 





)/(nd

nd




           ------------ (3.1) 

where  is a constant and  is a fundamental scale . The solution of 

this equation is the fractal power-law dependence: 

  L = L0 (λ/ε)
δ
                  ------------- (3.2)  

where  is the scale dimension, i.e., =D–DT, where D is the fractal 

dimension (see Appendix A) and DT is the topological dimension . 

The Galilean structure of the group of scale transformations that 
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L 
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corresponds to this law can be verified in a straightforward manner 

from the fact that it transforms under a scale transformation  as 

[30-32,36,38]: 












nnn  )(

)()(

00

         ------------ (3.3) 

and,  

()=() . 

 

This transformation has the structure of the Galileo group [1,30,31] 

exactly, confirmed by the law of composition of dilations  

which can be written as: 

  nnn                ------------- (3.4) 

where ρ= ∕ , ρ= ∕ and ρ= ∕ . 

 

2- Breaking of the Scale Symmetry: 

In general, when the scale variation of L depends on L only, the 

first order differential equation becomes [30,31,34,36]: 

)(
)(





nd

d


           ----------- (3.5)  

where the function (L) is apriori unknown; that is to take the simple 

case [31] . Using the Taylor expansion of the pertubative approach 

eqn. (3.5) can be rewritten as:  

.... ba
nd

d

        --------- (3.6) 

where a  and b  are two real constants . The solution of eqn. (3.6) is 

[30,31,34,36]: 

L( x ,ε) = L0( x ) [1+( x ) (λ/ε)
-b

]    ------------ (3.7) 

 



where )(xb is an integration constant and L0=- a /b . These 

notations allow one to choose )(x such that < )(2 x >=1. Provided 

a 0, eqn. (3.7) clearly shows two domains. Assume, first b <0:  

a- When >> , this leads to 1)/)(( bx   , and L is independent 

of scale . Eqn. (3.7) gives a fractal (scale invariant) behavior at 

small scale and a transition from fractal to non-fractal behavior 

at scales larger than some transition scale . Only the particular 

case a =0 yields unbroken scale invariance, L = L0 (λ/ε)
δ
 where 

= -b  .  

b- When << , this leads to 1)/)(( bx  , then L is given by a 

scale invariant fractal-like power law with fractal dimension 

D=1- ; so L ),( x  = L  )/(0  . 

While, in the case b >0, the solutions are mirror symmetric of the case 

b <0 as shown in fig. (3.1). One obtains an asymptotic fractal power 

law (resolution-dependent) at either large or small scales and 

transition to scale-independence toward classical domain 

(intermediate scales) [36]. The scale dependence is at large scale and 

is broken to give scale independence below the transition . The case 

b <0 is characteristic of microphysics (quantum mechanics in which 

=dB ≡ de Broglie length) [30,31,36], while the case b >0 is in the 

cosmological domain (=g 
 
≡

 
 cosmological constant) [30,31,36]. 

 

 

 

 



 

 

 

 

 

 

 

Fig.(3.1). Typical behavior of solution to the simplest linear scaled 

differential equation [36]. 

 

 

 

 

 

 

3- Euler - Lagrange Scale Equations: 

Nottale [31,32,36] has considered as primary variables the 

position L and the resolution  . The scale dimension  remains 

constant only in a particular situation (in the case of scale invariance). 

It plays for scale laws the same role of time in motion laws. The new 

approach is including the motion and scale behavior in the same 5-

dimensional (space-time-zoom) description. Then, the resolution can 

be defined as a derived quantity in terms of fractal space-time 

[10,14,15]: 

V



d

nd
n


  )/(                ----------- (3.8) 

 L 



where V is the velocity scale . The motion and scale laws can be 

constructed from a Lagrangian approach. In terms of the Lagrange 

function L ( n L,V,δ), then scale-action  S  can be constructed as 

[31,32,36]:

S = 
2

1





L ( n L, V, δ)dδ       --------- (3.9) 

Then, the Euler-Lagrange equation is [31,32,36]: 

nd

d










                   -------- (3.10) 

The simplest possible form for the Lagrange function is the equivalent 

for scales of what inertia is for motion, i.e.,L  V
2
 and  L / n L=0  

 

 

(no scale force) [31,32]. The Lagrange equation is in this case 

[31,32,36]: 

 0
d

d
V = constant           ----------- (3.11) 

The constancy of V )/( n  means that it is independent of scale-

time. 

 

 (3.2.2) Special Scale-Relativity: 

  The principle of ScR theory can be constructed from the 

general linear scale laws which have the structure of the Lorentz 

group [30,31]. The Lorentz group is obtained requiring linearity, and 

group law reflection invariance. Nottale [31,36] explains that in two 

S 
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dimensions, only three axioms are needed (linearity, internal 

composition law and reflection invariance) . He replaced the Galilean 

laws of dilation (eqn. (3.4)) by the more general Lorentzian law: 

2
1

c

nn

nn
n















         ------------- (3.12) 

In this equation, there appears a universal, purely numerical constant 

c= n  K, where K plays the role of maximal possible dilation[30,31]. 

The effect of scale symmetry breaking arises at some scale 0 to yield 

a new law in which the invariant is no longer a dilation Ќ; but 

becomes  length-time scale Λ. This means that there appears a 

fundamental scale that plays the role of impassable resolution, under 

dilation [30,31,33,34].  

Such a scale of length and time is an horizon for scale laws, in a way 

similar to the status of the velocity of light for motion laws. The new 

law of composition of the dilation and the scale-dimension becomes: 
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             ---------- (3.13) 

and  
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1
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0
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2






n

n







             ---------- (3.14) 

 

A fractal curve linear coordinate system becomes now scale-

dependent in a covariant way, namely; L=L0[1+(λ0/ε)
δ(ε)

] .  in the 

Λ 

Λ 



special scale relativity becomes explicitly varying with scale and it 

even diverges when  tends to the new invariant scales [31,39]. 

 

(3.2.3) Scale Dynamics:  

        Nottale [30-32] has taken non-linearity in scale into 

account. Such distortions may be attributed to the effect of scale 

dynamics, i.e., to a scale-field. Dynamic scale acts on the scale axis, 

not in space-time. In this case, Newton's equation of dynamics that 

comes from the Lagrange scale-equation is [30-32]: 

F 2

2




d

Lnd L
                ---------- (3.15) 

where  is a scale-mass and Г 




 d

nd

d

nd )/(
2

2 


L
  is a scale-

acceleration. When the scale-force F is constant, eqn. (3.15) can be 

rewritten as:

 
2

2

d

nd L
 G                             -------- (3.16) 

 

where G=F/ = constant . Eqn. (3.16) can be integrated as [30,31,36]:

V = V0+ G  

                    -------- (3.17) 

n L= n L0 + V0δ +
2

1
G δ

2
 

 

Nottale [31,36] redefines the integration constant , and finds:  
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Then, the scale dimension  becomes a linear function of resolution  

[30-32]. 

 

 (3.2.4) Quantum Scale-Relativity: 

       The previous two cases assume differentiability of scale 

transformations. If one assumes them to be continuous but non-

differentiable for space-time, one is confronted for scale laws with the 

same conditions that lead to quantum mechanics in space-time 

[31,36,38] (This will be discussed in more details in Secs. (3.4) and 

(3.5)). 

In addition to pure scale laws, Nottale explains the scale motion 

coupling and gauge [30,66,67] by the ScR theory as well. 

 

(3.3) Domains of Application of ScR Theory:  

The three fields of microphysics, cosmology and complex 

systems correspond to privileged fields of application of ScR theory. 

They can be described briefly as follows:  

 

(3.3.1) Microphysics: 

In this field, dx0 and dt 0; one expects ħ to have an 

effective value that varies with scale beyond the top quark energy 

(~172.6 GeV) [30-32]. Also, there is a new experiment that can be 

explained: associated with the free fall reference system for 

gravitation is an accelerating system. One may expect that some 

particle-fields could be absorbed in coordinate systems characterized 

by a "scale-acceleration" [30-32,36]. The resolution is defined with 



scale-velocity which is a derived quantity, then, one can introduce a 

second-derived quantity which is the scale-acceleration. In such a new 

 experiment, the resolution of the measurement apparatus should be 

variable in space-time, while scale-dependence should be no longer 

self-similar [30,31,36,38].  

 

 

 

(3.3.2) Cosmology: 

In this field, dx and dt  ; these are very large scales. 

Here the Lorentzian scale laws could be valid. In this domain, the 

resolution can be defined with the scale of the cosmological 

constant(~10
-47

 GeV) [31,36,39]. Here, new solutions can be brought 

to the problem of the vacuum energy density [31,36], of the Mach 

principle [1-5] and of the large number hypothesis [30,39]. 

 

       (3.3.3) Complex systems: 

For describing systems which have structures of density waves 

rather than solid objects, such as in the biological domain, one deals 

instead with the individual trajectories in the overall structure. In ScR 

theory, the complex structures can be described as density waves in 

terms of probability amplitudes which are solutions of a generalized 

Schrödinger equation [30,31,68]. This approach can be applied to the 

gravitational structures, that give several results, at scales ranging 

from planetary systems to large scale structure of the universe: Solar 

system [41], Extra-Solar, Planetary systems [42], Satellites of giant 

Planets [47] Planets around Pulsars [43], binary stars [31,36] and other 

systems . 



 

 

 

 (3.4) The Fractal Approach to Quantum 

Mechanics:  

Feynman [21] studied the geometrical structure of quantum 

paths. He showed that typical trajectories of quantum particles are 

continuous but non-differentiable and may be characterized by a 

fractal dimension 2. Though, Feynman evidently did not use the word 

"fractal", which was coined in 1975 by Mandelbrot (see Appendix A). 

Abbott and Wise [25], also studied the problem of the geometrical 

structure of quantum paths in terms of the concept of fractals. They 

showed that the length of a quantum mechanical trajectory varies with 

space resolutions as L x -1
 when  x <<dB (de Broglie length), and 

becomes independent of scale when  x >>dB. There are two points 

contained in this result. The first derives from the known expression 

for the scale divergence of a fractal curve [31,36,38]: 

 

L = L0 (dB ∕  x )
D-1    

       ---------- (3.19) 

 

This leads to the fractal dimension D=2 which agrees with Feynman 

and Abbott-Wise results. The second point is that the fractal structure 

does not persist whatever the scale, and that there is a fast transition 

from fractal to non-fractal behavior (D = 2 to D = 1) at about the de 

Broglie scale. Abbott and Wise [25] identify this transition with a 



quantum to classical transition [31,36]. Omitting fluctuations during 

the transition, i.e.,  x dB , the scale dependence reads [31,38]: 

L = L0[1+(λdB/δ x )
2(D-1)

]
1/2

                   ---------- (3.20) 

L is considered as a curvilinear coordinate along the fractal curve. It's 

scale diverges as L   t (1/D)-1
 in the fractal regime [31,38]. Nottale 

[38] introduced a renormalized coordinate ſ
i
=L(δ t /0)

1-(1/D)
 which 

remains finite . Each of the three coordinates can now be described as 

a fractal function of ſ
i
 and of the resolution  t , i.e., [38]: 

          x i
 = x i

(ſ
i
 ,δ t )  δ x i

 = V
 i
 δ t  + V (ſ

i
 ,δ t )(δ t /0)

1/D
    --- (3.21)

From this equation L can be recomputed, and this yields essentially 

the result of eqn. (3.20). The curvilinear coordinate ſ
i
 is a monotonous 

function of time, so that the functions of (ſ
i
,  t ) can be replaced by 

functions of (t ,  t ). 

 

This discussion holds in space–time; the four fractal functions 

depending on an invariant but scale-dependent proper time S, then, L 

can be renormalized in order to obtain a finite invariant 

)/1(1

0 )/$( DSs   , where $ is the classical invariant [30,37]. There is a 

difference between the classical invariant $ and the new invariant s. 

The proper time S is defined along the fractal trajectory which is 

allowed to run backward in classical time at very small scales, while 

the classical invariant $ is calculated only on classical differentiable 

trajectories for which all time intervals remain positive [31,38]. 

Nottale [31,36,38] introduced a new account of a compensation 

between the special relativistic contraction and the quantum scale-

divergence issuing from Heisenberg's relation. Accordingly, the 

element of proper time S varies as [31,38]: 



  DD ctcS
/12/122/1 )/1($             -------- (3.22) 

Then from Heisenberg's relation, the term (1-
2
/c

2
)
1/2

 can be written as 

[31,38]: 

(1-
2
/c

2
)

1/2
 = E0/E  ( t /0)     ---------(3.23) 

This equation leads to: 

S   t 2/D           
    ---------- (3.24) 

i.e.,  

S   t     for    D =2, 

while the limit c leads to $ = 0 . 

These formulas are expressed in terms of the finite differences 

, identified with resolutions when dealing with space and time 

variables. Eqn. (3.21) for D=2 is nothing but the basic relation 

describing a Wiener process [31,36,38]. This description leads to a 

reformulation of Nelson's stochastic mechanics [69,70] as shown in 

the next section. 

 

 (3.5) Quantum Mechanics as Mechanics in 

Non-Differentiable Space: 

Assuming space is continuous and non-differentiable, one can 

express the position vector of a particle by a finite, continuous fractal 

function x ( t , t ) [31,38]. Adopting the non-standard analysis (NSA) 

formulation, Nottale [31,32] replaced  t  by the differential d t . Then, 

the position vector between t  and t +d t  varies as [31,32]: 

 

x  ( t +d t ,d t )- x  ( t ,d t )=b+( x , t )d t ++( t ,d t )(d t /0)

--- (3.25) 

  



where  = 1/D ( = 1/2 in the quantum and Brownian motion), b+ is a 

forward velocity and + is a fractal function . 

        The variation of x  between t -d t  and t is then [31,32,38]: 

x ( t ,d t )- x ( t -d t ,d t )=b-( x , t )d t +-( t ,d t )(d t /0)

 ----- (3.26) 

 

where b- is the backward velocity . 

Eqns. (3.25) and (3.26) can be rewritten in terms of instantaneous 

velocities [31,32,36,38]: 

 

+( x , t ,d t ) = b+( x , t )++( t ,d t )(d t /0)
-1

   -------- (3.27) 

and  

-( x , t ,d t ) = b-( x , t )+-( t ,d t )(d t /0)
-1

  --------- (3.28) 

The non-differentiability is evident in these expressions, since in 

the quantum case -1=-1/2 so that d t -1
 is an infinite quantity. Eqns. 

(3.27) and (3.28) in NSA can be defined as [31,32,38]: 

 

V+=υ+(d t /0)
1-β

 

and                                      --------- (3.29) 

V-=υ-(d t /0)
1-β

 

 

Then, each component of V+ and V- is a finite number of the set R
*
 of 

non-standard reals [71]: in NSA any finite number of R
*
 can be 

decomposed in a unique way into the sum of a real (standard) number 

and an infinitesimal number [71]. Then, eqn. (3.29) becomes 

[31,32,38]: 





























1

0

1

0

)/(

)/(

dtbV

and

dtbV

    --------- (3.30) 



 

where b+ and b- being finite real numbers . 

In the differentiable case, only the classical part of the velocity 

remains, i.e., +=-=0, and the forward and backward velocities are 

equal [69]:  

   ),(),(lim),(),(lim
00

dtdttxdttxdttxdtdttx
tt




 ---(3.31) 

 

In the non-differentiable space-time, there is an infinity of 

geodesics between any couple of points, each of them having fractal 

properties, i.e., scale dependent. Their ensemble will define a 

probability amplitude. Fig. (3.2) shows the construction a non-

differentiable function by successive dissections. Its length tends to 

infinity when the resolution interval tends to zero [36]. Nelson 

[69,70], in his stochastic quantum mechanics, assumes an underlying 

Brownian motion of unknown origin which acts on particles in a still 

Minkowskian space-time, and then introduces non-differentiability. 

Nottale [31,32] assumes that the space-time itself is no longer 

Minkowskian nor differentiable. His hypothesis of non-

differentiability is essential and should hold down to the smallest 

possible length scales. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3.2) Construction of a non-differentiable function by successive 

dissections [36]. 

 

 

 

 

 

Nelson [69,70] defines mean forward and backward derivatives 

d+/d t  and d-/d t  as:  











t

tYttY
tY

dt

d

t

)()(
)( lim

0

     -------- (3.32) 

 

where Y(t) is any arbitrary function of t and < > is the mean  . 

Applying this equation to the position vector, one can introduce 

forward and backward mean velocities as [31,38,72,73]: 







  btx

dt

d
btx

dt

d
)(;)(       -------- (3.33) 

 

By combining the forward and backward derivatives of eqn. (3.32) in  

a complex derivative operator one obtains [31,32,36,38]: 

dt

ddidd

dt 2

)()(ð  
         ------ (3.34) 

 

Applying this equation to the position vector yields a complex 

velocity [31,32,36,38]: 

V 
22

)(
dt

ð  





bb
i

bb
UiVtx


     ------- (3.35) 

One can also define [10,11,18]: 

dt

dd

dt

d

dt

dd

dt

d u  





2

1
;

2

1
      --------(3.36) 

such that: 

x
dt

d
Ux

dt

d
V u


;

        --------(3.37) 

where V


 is the real part of the complex velocity V or, V


 is the 

classical velocity and, U


 is the imaginary part of the complex 

velocity; it is a new quantity arising from the non-differentiability 

[31,36,38] . In a statistical representation, the position vector x (t) is 

assimilated into a stochastic process which satisfies the relation [38]:  





















)(0)())(()(

)(0)())(()(

backwarddtfortddttxbtdx

and

forwarddtfortddttxbtdx





 -------(3.38) 

 



where dξ(t) is the fluctuation about the classical part b± which is 

Gaussian with mean zero , mutually and such that [31,34,38]: 

 

                               <dξ±idξ±j> = ± 2 D δijdt              -------(3.39)

 

where D stands for a diffusion coefficient , D 
m2


 and δij  is the 

Krönecker symbol defined previously . Also, dξ can be defined as 

[31,34,38]: 

 

Ddtd 2/12 )(2               --------- (3.40) 

where η is a stochastic variable such that < η>=0 and < η
2
>=1 . Eqn. 

(3.39) allows one to get a general expression for the complex 

derivative ð/dt. Consider a function ( x , t ), and expand its total 

differential to second order. One obtains [36]: 

ji

ji

dxdx
xx

dxdt
t

d










2

2

1
.


        ----- (3.41) 

To compute the forward and backward derivatives of , the mean 

value <d x i d x j> reduces to <dξ±i dξ±j> ; eqn. (3.41) becomes: 





 


.(/ b

t
dtd  D ∆)ƒ            -------- (3.42) 

 

where ∆ is the Laplacian (
2




) . Using eqn. (3.42), the expression 

for the complex time derivative operator becomes [31,34,38]: 

i
t





 .

dt

ð 
D ∆     --------- (3.43)  

 

Then, the passage from classical (differentiable) mechanics to the new 

non-differentiable mechanics can be achieved by replacing the 

V 
 

D 



standard time derivative d/dt by the new complex operator ð/dt. ð/dt 

plays the role of a quantum covariant derivative [31,36] . In terms of 

this new correspondence principle, the main steps which generalize 

classical mechanics can be indicated as follows [31,38]: 

Any mechanical system can be characterized by a Lagrange function 

L( x ,V, t ) ; then, the average stochastic action S is defined as 

[31,36,38]:

S 
2

1t

 

t

 < L ( x , V , t ) > d t            ----------- (3.44) 

 

Applying d/dt on the Lagrange function and replacing d/dt by ð/dt, 

leads to the generalized Euler-Lagrange equation [31,34,36,38]: 

ix








dt

ð
             ---------- (3.45) 

Other fundamental results of classical mechanics are also generalized 

in the same way. Assuming homogeneity of space in the mean, leads 

one to define a complex momentum as [31,34,36,38]: 

    




               ----------- (3.46) 

The variation of the action from a trajectory to another close-by 

trajectory, when combined with eqn. (3.45), yields, a generalization of 

another form of complex momentum as: 

P =S              ---------- (3.47) 

 

In Newtonian mechanics, the Lagrange function of a closed system 

can be generalized to [31,33,34,36]:  

L  mtx
2

1
),,(  U    --------- (3.48) 

L 

L L 

Vi

P 
 V 

V
2

 V 



 

where U is a scalar potential . The Euler-Lagrange equations keep the 

form of Newton's fundamental equation of dynamics as 

[31,33,36,38,68]: 

                  - U  
dt

ð
m  V           ----------- (3.49) 

which is written in terms of complex variables and derivative 

operator. 

 

 

(3.6) The Schrödinger Equation in a New 

Perspective: 

The concepts of fractal space-time and complex time derivative 

operator allow to recover the Schrödinger equation, then to generalize 

it [45,38,68]. The probability amplitude is defined by the relation 

[31,68]: 

ψ = e
iS/2m D

             ---------- (3.50) 

The complex velocity V appears as a gradient; the gradient for the 

complex action as [38,68]: 

V  = S /m                 ---------- (3.51) 

 

Then, ψ is related to the complex velocity by [68,73]: 

 

V =2i<
 
D >( n ψ)           ---------- (3.52) 

 

Now, the generalized Newton equation, eqn. (3.49), takes the form 

[31,38]: 



 U  =2im<D  >
dt

ð
 ( n  ψ)          ---------- (3.53) 

where ð and  do not commute, and D, which appears in the 

expression for 
dt

ð
 , is now a function of x . Both D and its mean <D > 

lead to the relation [36,38,68]: 

D ( x , t ) = < D >+ D ( x , t )        --------- (3.54)  

where <D > is a constant with respect to the variables x  and t , but 

may include an explicit scale-dependence in terms of time resolution 

t . Eqn. (3.53), then, can be written as: 

          U=2im< D >






t


+ V.- iD ( x ,t)∆







 ( n ψ)      ---- (3.55)  

Substituting eqns. (3.52) and (3.54) into eqn. (3.55) gives [31,38,68]: 

U=2im<D >






t


-2i<D >( n ψ).- i(<D >)+δD ( x ,t)







 ( n ψ)--(3.56) 

Using the three identities [31,68]: 
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
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
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
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2

2








nnn

nn

    -------- (3.57) 

then, eqn. (3.56) can be given in the form of a generalized 

Schrödinger equation [30,35,62]: 

 

ψn)δ()ψn(δ
dt

ψ
iψ

ψm































 



 21

2
  -----(3.58) 

Nottale [31,36,68], considered some special simplified cases: 
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1- D = constant = 
m2


: in this case D =0; the last two terms of 

eqn. (3.58) disappear. Eqn. (3.58) can be integrated and yields the 

Schrödinger equation[31,36,68]: 

ψ
2m

ψ
dt

iψ2 


       -------- (3.59) 

2- D = D (t) = D (t/)
(2/D)-1 

: this is the opposite case; the 

diffusion coefficient remains constant in terms of position and time, 

but it includes the effect of a fractal dimension different from 2. 

Then, the last two terms of eqn. (3.58) disappear. In this case 

Schrödinger's equation has the form: 

ψ
2mdt

ψ
)tδ(iψ)tδ(2 


            ------- (3.60) 

3- (D) = 0 or (D)<<1: in this case the diffusion coefficient 

depends on time but not on position . Then, the right hand side of 

eqn. (3.58) vanishes , so that it may be integrated to get: 

dt

ψd
iψψ)ψn(δ 

m



















 2

2



    -------- (3.61) 

where a is a constant of integration . Assuming that D /D remains 

<<1, the effect of the term D ψ( n ψ)
2
, which is extra to the 

standard Schrödinger equation, and the effect of D being a function of 

x and t, can be treated by perturbation. One gets an equation of the 

form [31,36,67]: 

            dt

ψd
iψψ)t,(δ

m

)t,(










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

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



 2
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-------(3.62) 
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where a  and b  are constants. The behavior of eqn. (3.62) is of 

interest to the future development of scale relativity into a field theory 

[31,38,67] . 

 

The statistical interpretation of the wave function ψ in eqn. 

(3.58) in terms of Ρ = ψψ
*
, giving the probability of presence of the 

particle, remains correct, since the imaginary part of the Schrödinger 

equation is the equation of continuity [38]: 

0)( 



PVdiv

t

P
       ---------(3.63) 

where V is a generalized classical velocity . 

 

(3.7) The Energy at Quantum Scales in the   

Non-Relativistic Case: 

 

The quantity which plays the role of energy in the present fractal 

approach to quantum mechanics does not have a quadratic form [48]. 

It is well known that the equation of motion for a free particle is given 

by [45]: 

0
dt

dV
     --------- (3.64) 

In this case, the energy is 
2

0
2

1
Vmfree  , which corresponds to the 

kinetic energy T = E –U of the particle. In the presence of an external 

potential U( x ), eqn. (3.64) becomes 
dt

dV
m U and the total 

energy is written as [31,46]: 



 2

2

1
mVE  U        --------- (3.65) 

This quantity satisfies [46]: 

1- The conservation equation 0
dt

dE
. 

2- The Hamilton–Jacobi [45] equation H
t





where 

m

p
H

2

2

U 

and p =mV. 

In the framework of scale-relativity, the Hamilton function H is a 

complex quantity which satisfies the complex Hamilton-Jacobi 

equation [50]: 

t


 = H                  ---------- (3.66) 

which corresponds to the equations of motion 
dt

 ð
U after 

differentiation . Pissondes [50] found that H = .
22

 dBc
i

m


P U. 

Therefore, the complex quantity E which satisfies the conservation 

equation: 

                  
dt

ð
E 0                        ---------- (3.67) 

when H = E  and P  = m V  , is: 
 

                  .
22

1
2

 dBmc
im


                          ---------- (3.68) 

 

Eqn. (3.68) is the equivalent of the equation of total energy which is 

obtained by applying the concepts of the ScR theory[50]. 

 (3.8) The Relativistic Case: 

$ 

 

S 

P 
 

P
2

 

E V V + U  



In this case, starting from the hypothesis that space-time is non–

differentiable, one can see as in Secs. (3.4) and (3.5) that the 

trajectories of particles are fractals [31,38]. Hence one can be define a 

scale-dependent invariant which is a proper time S on these 

trajectories [46,50]. In the relativistic, case all equations that one get 

for the  non-relativistic case can be re-written by replacing [46,50,51]: 

         








St

vectorfourxx )(

     -------- (3.69) 

Therefore, one can write [45,49,50] : 

        
   ddSbdx )(                -------- (3.70) 

with  

dSδξdξd μυυμ  2        ------- (3.71) 

where       
mc2


   . 

 

The quantum - covariant derivative then becomes [46,50,51]: 

μ

μ

μ

μ

i
SdS

ð





       --------- (3.72) 

                

where V
μ
 is the four-dimensional complex velocity. As for the 

Schrödinger equation, one can get the free particle Klien-Gordon 

equation [31,36,46] using this approach. Also, using the definition of 

gauge invariance [31,66,67], one can get the Klien-Gordon equation 

with electro-magnetic field [50,51] in a similar manner. Finally, the 

Dirac equation is derived when the Klien-Gordon equation is re-

written in a quaternionic form [50,51]. 
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Chapter Four 

Application of ScR Theory to Problems 

of a Particle in Potential Wells 

 (4.1) Potential Wells: 

The one-dimensional square well potential is a simple example 

which shows discrete energy levels of a particle in quantum 

mechanics [8-12]. There are two simple types of square well 

potentials, namely; the infinite square well and the finite square well. 

In the first type, the potential energy U( x ) in the region – a < x < a , 

as shown in Fig. (4.1-a), is equal to zero while U( x ) =  for | x |> a . 

The second type has a  sudden jump in the potential energy at the 

walls, U( x ) = U0 for | x |> a  as shown in Fig. (4.1-b) [8-12]: 

 

 

 

 

 

 

 

 

 

Fig. (4.1) Two types of square well potentials [1,2,3]: 

a- infinite square well                   b- finite square well 
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In this chapter, a review of Hermann's work (HScR) [53], who 

applied the principle of ScR theory to the infinite square well will be 

given. Also, the prediction the behavior of a quantum particle in a 

one-dimensional finite square well potential that can be obtained 

without writing explicitly the Schrödinger equation nor using any 

conventional quantum axiom, along the lines of Hermann, will be 

obtained using HScR . 

 

(4.2) Review of ScR Theory Applied to a Particle          

in an Infinite One-Dimensional Square Well 

Potential (IODSW): 

 

Hermann [53] obtained, by means of numerical simulation, the 

behavior of a quantum particle in an infinite one-dimensional square 

well (IODSW) potential. The one-dimensional infinite square well 

potential used by Hermann [53] extends from x =0 to x = a  in 

contrast with that shown in Fig. (4.1) which extends from x = - a  to 

x = a . He achieved this by using the non-differentiability hypothesis, 

not going further in the scale relativistic description. Hermann found 

that it is possible to simulate some simple quantum mechanical 

problems by using the equivalence of non-differentiable mechanics 

and quantum mechanics that was showed by Nottale [31,36,38]. In 

this application, Hermann started from the complex Newton equation 

(eqn. (3.49)) and separated this equation into real and imaginary parts. 

Since the potential U is a real quantity, then the equations of motion 

are: 







V

t
m( D ∆U + (V.)V - (U.)U) = - U        -------- (4.1)  

and  





U

t
m(  D  ∆V + (V.)U + (U.)V) = 0       --------- (4.2) 

Since U  is constant  for – a < x < a  and the average classical velocity 

V of such a particle, which is the sum of the forward and backward 

velocity is expected to be zero, then Hermann reduced the equations 

of motion to the form [53]: 

0
2

1 2 







))(U)(U(      ------- (4.3) 

and  

0)( 



xU

t
               --------- (4.4) 

 

Eqn. (4.4) shows that U is a function of x  alone, and eqn. (4.3) can be 

solved in one-dimension as: 

 

)c
c

tan(c)(U 2

1

1
2

2
2          -------- (4.5) 

where c1 and c2 are integration constants. In HScR, U is considered as 

a difference of velocities and, hence, interpreted it as a kind of 

acceleration [53]. The boundary conditions can then be used to 

calculate the integration constants. Hence, eqn. (4.5) becomes: 

)
ππn

tan(
πn

)(U
2

2


 

       -------- (4.6) 

where the infinite square well is of size a . Eqn. (3.38) was then used 

to define the position vector as: 
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)t(ξddt).
ππn

tan(
πn

)t(d 
2

2  

         --------- (4.7) 

 

where d+(t) is now a random variable of Gaussian distribution and is 

of width dt2 . Taking 2 Ddt=1 as done by Hermann [53], then 

eqn. (4.7) becomes: 

)1,0()
2

tan()( Nx
a

n

a

n
tdx 


       -------- (4.8) 

where N(0,1) is a normalized random variable. Also, Hermann [53] 

used the following expression for the energy based on the previous 

work of Pissondes [50] as: 

2

222

1

2 πn

mcE        --------- (4.9) 

which is exactly the quantum energy for particle in an infinite square 

well of size a when the substitution D ħ/2m is made. 

The HScR numerical simulations were performed using eqn. (4.8). 

The output of these simulations give the probability density ƒ( x ) of 

the presence of the particle in the infinite potential well. These 

simulations were done by dividing the box of size a  into 600 pieces 

and counting the number of time steps the particle is in each specific 

sub box. In his scheme, the x  position in the one-dimensional box is 

drawn horizontally, and number of occurrences vertically. The results 

are then compared with conventional quantum mechanics 

(P( x )=sin
2
(

a

xn
)) [8-12] by calculating the standard deviation ζζ 

and the correlation coefficient ρρ which are defined as [53]: 
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and 
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



N

i

N

N

i

PiP

PiP

    --------- (4.11) 

where N is the number of pieces , P( i ) ≡ P( x ) and f( i ) ≡ f( x ) . 

 

In this section, the results of applying a computer program (see 

Appendix D) built following the HScR method are presented. The 

same results that Hermann obtained are achieved again. Fig. (4.2) 

shows the results of first attempt modeling with n=3 for 5×10
8
 steps 

and with n=9 for 10
8
 steps. In the HScR method, two ways to improve 

the results were suggested [53]. They are:  

1- using more steps in time . 

2- restarting the simulation after many steps in time with a new 

starting position . This leads to a better thermalization of the 

system . 

 

Fig. (4.3) shows the improved results obtained in the present work 

with n=3 and n=9 for 10
8
 steps by using the thermalization process. 

The convergence between the HScR results and conventional quantum 

mechanics is clear by the values of ζζ (approaching zero) and ρρ 

(approaching one). 

The results of this application, which were originally obtained 

by Hermann [53], are important since they show the importance of the 

direct application of ScR theory to quantum mechanics in revealing 



the validity of this theory. Hermann [53] promised to do other similar 

applications to further establish this validity, but survey of literature 

did not reveal any such applications by him or other researchers in the 

field. Direct correspondence with him about this subject confirmed 

this and emphasized the importance of pursuing further applications 

along the same lines [54]. 

 

It is believed that performing such applications is important to 

prove the direct validity of ScR theory in the more general sense. 

Besides, Hermann [53] did not refer to the interaction with Riccati 

equation which will be presented in Sec.(4.3) as an original 

contribution in the present work. 
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Fig. (4.2) Probability density for a particle in IODSW potential (a)      

n=3 and (b) n=9, without the thermalization process,  

obtained by following the same lines of calculations as 

Hermann [53]. 
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8
   x =100    ζζ =0.4217    ρρ = 0.8574 

n= 3   a =600   cc=5*10
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  x =100    ζζ = 0.2857    ρρ= 0.9273  



                                         

0 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x/a

f(
x
).

a

present simulations

Std. Q.M.

 
                                                                      

                                                      (a) 
 

 

 

 

0 0.1 0.2 0.3 0.4 0..5 0.5 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x/a

f(
x
).

a

present simulations

Std. Q.M.

 
                                                              

                                                     (b) 
 

Fig. (4.3) Probability density for a particle in IODSW potential (a) 

n=3 and (b) n=9, with the thermalization process, obtained 

by following the same lines of calculations as Hermann [53].  

 

 

n=3   a =600   cc=10
8
    ss=1000   ζζ =0.0416   ρρ=0.9983 

n=9   a =600   cc=10
 8

   ss=6000   ζζ = 0.01035  ρρ = 0.9893 
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(4.3) Application of ScR Theory to the Problem of a 

Particle in a Finite One-Dimensional Square Well 

(FODSW) Potential: 

 

The energy diagram for the finite one-dimension square well 

(FODSW) potential is as shown in Fig. (4.1.b). The quantum 

mechanical problem of a particle moving in this potential well has 

served as a test ground for the basic findings of quantum mechanics 

since its discovery [8-12]. The solvable nature of this problem on the 

mathematical side is one reason for its adoption as a model for many 

real physical situations [9-11]. This section is devoted to the treatment 

of this problem on the basis of the direct application of ScR theory 

along the lines of Hermann [53] reviewed for the infinite analogue of 

this problem in the previous section. 

 

(4.3.1) Solution of the equation of motion: 

          As for a particle in an infinite square well potential, one may 

start with the complex Newton equation (eqn. (3.49), and separate this 

equation into real and imaginary parts. Also, for this problem the 

average classical velocity V of the particle is expected to be zero [53]. 

Then the equations of motion reduce to the forms of equations (4.3) 

and (4.4) as: 














0U
dt

U).U(U            

    -------- (4.12) 

If one takes the 1
st
 of eqns. (4.12) and rewrite it for one-dimension as : 

xm
xUxU

xx 


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





 1
))(

2

1
)(( 2 U (x)    -------- (4.13) 

U D
 

 



 

then, integrating, one obtains: 

m
cxUxU

x

1
)(

2

1
)( 3

2 



D U (x)    -------- (4.14) 

 

where c3 is a constant of integration . According to the HScR method 

[53], c3=E/m. Then eqn. (4.14) can be written in the form: 



2
)()( 2  xU

m
xU

dx

d
 (U (x) – E ) --------- (4.15) 

 

where 
m2


D  . Eqn. (4.15) has the form of a Riccati equation 

[55,56] (see Appendix B) . To solve this equation, one may transform 

it into a 2
nd

 order differential equation [55,56] which is: 

 

0)()()( 2  xyxqrxyr              ---------- (4.16) 

where [55,56], 

)(

)(1
)(

xy

xy

r
xU


                       -------- (4.17) 

and y(x) is an arbitrary function of x . 

 

From eqn. (4.15), it follows that: 

(
2

)(;


 xq
m

r  U (x) – E )  --------- (4.18) 

Using eqn. (4.18), eqn. (4.16) becomes: 

0)())((
2

)(
22

2

 xyEx
m

xy
dx

d
       


       ------- (4.19) 

Depending on the values of E, there are two general classes for the 

solution of eqn. (4.19) [8,9,74] which are: 

U 

D
 

 

D
 

 



1- bound state solution if E < U0; the particle is confined to the 

region of potential well . 

2- free particle state solution if E > U0 ; the particle is free to 

reach x  = ±  . 

In this problem, the case E < U0 will be taken. As shown in Sec.(4.1), 

there are three regions of potential in the problem of a finite square 

well that are [8-12]: 

 


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



axat
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xaat

x

        

    0

    

)(            ---------- (4.20) 

Then, the general solutions of eqn. (4.19) are given by [9-12,74]: 
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sin   cos)(
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2

1


     ------- (4.21) 

where G, G, A, B, H and H are arbitrary constants, κ
22 /mE and 

2

0
2 /)E(mK   . Applying the boundary conditions for x ± , 

this leads to )(xy 0 . Then, one can rewrite eqn. (4.21) as: 
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
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
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1


      ------- (4.22) 

The next step is to apply the matching conditions at the boundaries 

between regions, which requires that both function and its derivative 

U 

U 0 

U 0 

U 



be continuous. In this way, one gets a set of four homogeneous linear 

equations with four unknowns [74]: 

(i) for   x  = - a  : 
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aBaAKGe
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cossin
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           ---------- (4.23) 

 

(ii) for  x = a   : 
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These equations can be rewritten in matrix form as: 
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where the matrix M is given by: 
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    --------- (4.26) 

The trivial solution of eqn. (4.25) is A= 0 , B=0 , G=0 and H=0 [74] . 

While for a non-trivial solution to exist the condition [74]: 

det M=0          ------- (4.27) 

  κ   

  ----- (4.25)  



must be satisfied. To simplify, one eliminates coefficients G and H. 

Then eqn. (4.25) becomes the 22 matrix equation [74]: 
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      ------ (4.28) 

 

For this equation to have a non-trivial solution, the determinant of the 

coefficients must be equal to zero, or: 

0)tan)(tan(2   aKKa      -------- (4.29) 

Then , there are two solutions which are [74]: 

  

a-  κ tan κ a =K , this means B=0 and y2(x)=Acosκx    -------- (4.30) 

b- Ktan κ a = κ , this means A=0 and y2(x)=Bsinκx     -------- (4.31) 

 

Eqn. (4.30) corresponds to even parity solutions while eqn. (4.31)   

corresponds to odd parity solutions. These equations can be simplified 

by introducing the new dimensionless variables: 

                       a   and  ŋ = K a             ------ (4.32) 
 

From the definition of κ and K, one can write:  
κ

2

22 2



m
K  U0      -------- (4.33) 

 

Using eqn. (4.32), one can rewrite eqns. (4.30), (4.31) and (4.32) in 

the forms: 

                   ŋ =    tan         -------- (4.34) 

                  ŋ = -    cot         -------- (4.35) 

2
2

0
2

2
2 2

 a
m


        -------- (4.36) 

ŋ  U 



where the dimensionless parameter  measures the volume of the 

potential U0 a
2
 in unit of ħ

2
/2m . 

 

To determine the values of κ and K in eqns. (4.34) and (4.35), 

one may solve these equations graphically together with eqn. (4.36)        

[8-12,74] . 

 

Figs. (4.4) and (4.5) give the intercepts for the even parity 

solution (eqn. (4.34)) and odd parity solution (eqn. (4.35)) for two set 

of values of the potential volume parameter (=1and 4)and (=2and6) 

for the even and odd parity solutions respectively . In these figures,    

κ is drawn horizontally and ŋ vertically. The dashed curve is that of 

 tan   (for even parity) or  cot   (for odd parity). The continues 

curve is that of ŋ2
+

2
=

2
. 
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Fig. (4.4) Graphical solution of Eqn. (4.32) (even parity solution), for 

(a) α = 1 and (b) α = 4. 
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             (b)   

    Fig. (4.5) Graphical solution of Eqn. (4.33) (odd parity solution), 

for (a) α = 2 and (b) α = 6. 
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The values of κ and K ( and ŋ ) corresponding to the solutions 

of eqns. (4.34), (4.35) and (4.36) can be determined from Figs. (4.4) 

and (4.5). Then, one can calculate the state energy and the function 

)(xy for different values of  in the following way: 

 

(i) for  =1 (equivalent to n=1) ,   0.7391 and ŋ = 0.673. 

This is called the ground state energy , which is: 
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     --------- (4.37) 

and eqn. (4.20) can be re-written for even parity solutions as: 
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According to eqn. (4.17), the function U( x ) can be defined by using 

eqn. (4.36) as: 
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As in Hermann [53], U( x ) is treated as a difference of velocities, i.e., 

it is a kind of acceleration. Thus, the equation of position coordinate 

(eqn. (3.38)) has the following form, which is a stochastic process 

[53]: 
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(ii)  = 2 (equivalent to n = 2) ,   1.9 and  ŋ = 0.638 , the 

energy is: 
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and eqn. (4.20) can be re-written for odd parity solutions as: 
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Also,  
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and,  




























axfortddt

axafortddtx
a

axfortddt

ma
tdx

)(.638.0

)()
9.1

cot(9.1

)(.638.0

)(








     -------(4.44) 

(iii)  = 4 (equivalent to n = 3) ,  = 3.61 and  ŋ = 1.75, the 

energy is: 
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and eqn. (4.20) for even parity solutions becomes: 
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Also,  
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and,  
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(iv)  = 6 (equivalent to n = 4) ,  = 5.23 and ŋ = 2.95, the 

energy is: 

2

2

613
ma

.E


       --------- (4.49) 

and eqn. (4.20) for odd parity solutions becomes: 
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Also,  
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and,  
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(4.3.2) Numerical Simulations  

To simplity eqns. (4.40), (4.44), (4.48) and (4.52), one can take 

2D dt=1 [53], then, these equation become: 

(i)  = 1 
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(ii)  = 2 
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(iii)     = 4 
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(iv)  = 6 
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Numerical simulations are performed using eqns. (4.53), (4.54), 

(4.55) and (4.56) which represent trajectory equations of the particle 

for different value of . The output of these simulations gives the 

probability density ƒ( x ) of the particle in a finite square well 

potential. To construct it, one divides the region into 1801 pieces 

(boxes), which give better results. This choice comes after many tests. 

Here, one choose the step of time cc equal to 510
8
 which gives better 

results after many tests. The x  position in the region will be drawn 

horizontally and the number of occurrences vertically. So, a point of 

the curves to be drawn has to be understood as ( x , y ); x  is the 

number of boxes and y  is the number of steps for which the particle 

was in box x . The results are always normalized by multiplying the 

number of occurrences in each box by the total number of boxes 

which is a . 



 The probability density P( x )of conventional quantum 

mechanics which will be compared with the present results is given 

by: 

 (i) for even parity solutions: 
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and, 

         (ii) for odd parity solutions: 
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where  61

~
,...,

~
NN  are normalization constants [8-12]. 

 For  = 1 , 2 , 4 and 6  is given by [74]: 

(i)  = 1  
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(ii)  = 2  
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 (iii)      = 4 
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(iv)  = 6 
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The comparison between the present results and the results of 

conventional quantum mechanics is further facilitated by calculating 

the standard deviation ζζ and correlation coefficient ρρ (eqns. (4.10) 

and (4.11)). 
 

Figs. (4.6) and (4.7) show a first attempt of modeling for  = 1 

and 4 (even parity solutions) and for  = 2 and 6 (odd parity solutions) 

respectively. Here, the time step has been chosen as 5×10
8
. The 

numerical simulations start with arbitrary point which is x =100 



(corresponding to box no. 100). The continuous curves indicate the 

results of the present simulations and the dashed curves the results of 

conventional quantum mechanics, with the same normalization as the 

numerical results. In these figures, there is a clear difference between 

the present results and the results of quantum mechanics, that is 

measured by  and ρρ. 
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 Fig. (4.6) Probability density for even parity solutions corresponding 

to a particle in a FODSW potential (a) α=1 and (b) α=4 

without thermalization process. 

α =1   a =1801   cc=5*10
8
    x =100   ζζ =0.0032   ρρ=0.9997 

α =4   a =1801   cc=5*10
8
    x =100   ζζ =0.0336   ρρ=0.9854 
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  Fig. (4.7)  Probability density for odd parity solutions corresponding 

to a particle in a FODSW potential (a) α=2 and (b) α=6, 

without thermalization process. 

 

 

α =2   a =1801   cc=5*10
8
    x =100   ζζ =0.0214   ρρ=0.9945 

α =6   a =1801   cc=5*10
8
    x =100   ζζ =0.037   ρρ=0.9938 



Hermann [53] indicated in his work that the simulations were 

restarted after 10
5
 steps, or more, with a new starting position, then, 

better thermalization of the system is obtained and convergence is 

increased. Tests in the present work indicated that the thermalization 

process as used by Hermann [53] cannot be applied here without 

fixing additional parameters. This required very long computer time 

and, therefore, was not adopted in the present work. However, these 

tests also indicated that the present results can be improved by 

increasing the number of divisions of a  (i.e., number of boxes). Fig. 

(4.8) shows the results obtained for =6 after increasing the number 

of boxes from 1801 to 2201. 
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Fig.(4.8) Probability density for α=6 (odd parity solution) 

corresponding to a particle in a FODSW potential after 

increasing the number of boxes. 

 

 

 

α = 6   a =2201   cc=5*10
8
   x =100   ζζ =0.00283   ρρ=0.9946 



Chapter Five 

Application of ScR Theory to the Problem of a 

Particle in a Simple Harmonic Oscillator 

Potential 

 (5.1) The Simple Harmonic Oscillator Potential:  

The one-dimensional system, known as linear or simple 

harmonic oscillator (SHO), is the system consisting of a particle of 

mass m moving on the x-axis under the influence of a restoring force 

that is proportional to the displacement of the particle from some fixed 

point on the axis. This system is conservative, and the force – kx 

(where k  is the force per unit displacement) is the negative gradient of 

the potential function U(x)=
2

1
kx

2
. The energy diagram for the SHO 

is shown in Fig. (5.1) where the parabola is the potential function 

2

1 kx
2
 and x1 and x2 are the classical limits of motion [9,10,11] . The 

one-dimensional SHO is very important for the quantum mechanical 

treatment of problems such as the vibration of individual atoms in 

molecules and in crystals [10,11]. 

 

 

 

 

 

 

Fig. (5.1) Energy diagram of the SHO [9,10,11] 
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In this chapter, the problem of a particle moving in one 

dimensional SHO will be treated by applying the principle of ScR 

theory along the lines of Hermann [53]. To the best of our knowledge, 

this problem has not been treated elsewhere [53,54] . 

 

(5.2) Solution of the Equation of Motion: 

As for the problem of a particle in an infinite square well (see 

Ch. 4), one may start from the complex Newton equation (eqn. (3.49)) 

and separate the equation into real and imaginary parts. Also, here the 

average classical velocity is expected to be zero because the SHO is a 

symmetric system. Then, the equation of motion becomes:  

x
xUxU

xx 











))(

2

1
)(( 2

 D U    ---------- (5.1) 

The potential of the one-dimensional SHO can be written as
22

2

1
xm , 

where ω is the angular frequency. Then, eqn. (5.1) becomes: 
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x
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


   -------- (5.2) 

Integrating and rearranging terms in the resulting equation, one 

obtains: 

0
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1
)( 4

222  cxmxUxU
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d

DDD
   --------- (5.3) 

where c4 is a constant of integration. Letting c4=E/m (according to 

Hermann's work) [53], then eqn. (5.3) becomes: 

0
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)( 22

2
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E
x

m
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m
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where    
m2


D . The last equation has the form of a Riccati equation 

[55] (see Appendix B). As for a particle in a finite square well 

  

D
 

 



potential (Sec. (4.3)), to solve this equation, one may transform it into 

a 2
nd

 order differential equation [56] . Then, eqn. (5.4) becomes: 

0)()
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1
(

2
)( 22
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 xyxmE

m
xy 


       -------- (5.5) 

Its solution is [9,10,57]: 
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exp()(
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xH
x

Axy nnn           -------- (5.6) 

where An is a constant and Hn is a Hermite polynomial of order n 

[9,10,57] and n=0,1,2,… .  Then, Un(x) is given by: 

))()(()( xHxxH
m

xU nnn



       -------- (5.7) 

Using the equality )()( 1 xxnHxH nn   [9,10,57] then, eqn. (5.7) 

becomes: 

))(/)((2()( 1 xHxHnx
m
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

      -------- (5.8) 

The equation of position coordinate (eqn. (3.38)) can then be written 

as:  

)())(/)((2()( 1 tddtxHxHnx
m

tdx nn   


    -------- (5.9) 

 

(5.3) Numerical Simulations: 

As before, eqn. (5.7) represents a stochastic process [53]. Here, 

in the problem of a one-dimensional SHO, it was found that the 

assumption 2D dt=1 is not useful for the present simulations since it 

gives bad results for the present application. Then, one starts to adjust 

the value of dt until one approaches a specific value for which 

meaningful results are obtained. It was found that a value of        



dt=10
-3

(


m
) is suitable for the present simulations. It seems that this 

value of dt is related to the period of the motion in the SHO potential. 

It is expected that a suitable value which gives meaningful numerical 

simulation results is that which leads to a sufficient number of time 

steps during one period so as to give meaningful counts. This is a 

consequence of the statistical nature of these simulations which 

requires better statistics to be meaningful. Then, eqn. (5.9) becomes: 

)1,0(10))(/)((2(10)( 3

1

3 NxHxHnxtdx nn





       -- (5.10) 

where the choice of units was made such that 1 m . 

 

As for the case of the particle in an infinite square well, the 

numerical simulations are performed using eqn. (5.10) for different 

values of the quantum number n (n=0 , 1, 2, 3, 4 and 5) . A total of 

601 boxes and time steps of 10
8
 and 5×10

8 
steps were used, as in 

Hermann's work [53] .The results of the present numerical simulations 

are compared with the probability density of conventional quantum 

mechanics, that is, 
2

)()( 22 x

nn exHNxP   where 2/1!2/1 nN n

n   is 

the normalization constant [9,11,12] . 

 

As for the case of a particle in an infinite square well potential, 

the output of the present simulations gives the probability density of a 

particle in a SHO potential. Figs. (5.2), (5.3) and (5.4) show the results 

of numerical simulations for n = 0, 1, 2, 3, 4, and 5 with 10
8
 timesteps. 

These numerical simulations started with arbitrary particle at the 

position x =2. Also, the output of the simulations was normalized by 

multiplying it with a constant q whose value depends on the number 

of divisions of the region (here, q=50). 
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Fig. (5.2) Probability density for a particle in a SHO potential (a) n= 0 

and (b) n= 1, without thermalization process. 

 

 

 

 

 

 

 

 

 

 

 

n = 0   a =601   cc=10
8
    x =2   ζζ =0.0016   ρρ=0.9999 

n = 1   a =601   cc=10
8
    x =2   ζζ =0.0034   ρρ=0.9995 
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Fig. (5.3) Probability density for a particle in a SHO potential (a) n= 2 

and (b) n= 3, without thermalization process. 

 
 

 

 

 

 

n = 2   a =601   cc=10
8
    x =2   ζζ =0.0127   ρρ=0.9914 

n = 3   a =601   cc=10
8
    x =2   ζζ =0.0124   ρρ=0.9905 
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                                                                           (b) 

 

 

 

 

Fig. (5.4) Probability density for a particle in a SHO potential (a) n= 4 

and (b) n= 5, without thermalization process. 

 

 

 

n = 4   a =601   cc=10
8
    x =2   ζζ =0.0173   ρρ=0.9807 

n = 5   a =601   cc=10
8
    x =2   ζζ =0.0197   ρρ=0.9742 



Here, it was found, after some numerical tests, that the 

thermalization process [53] is useful to improve the present results. 

Fig. (5.5) shows the results of such numerical tests for n=2, 3 and 5 

which have starting points ss = 100 and 200. These starting points are 

chosen after many attempts and were found to give better results from 

other choices. The improvement is clear from the values of ζζ and ρρ 

compared with Figs. (5.3) and (5.4). 

 

Also, as stated in Ch.4, the present results can also be improved 

to increase convergence between them and the results of quantum 

mechanics by using more time steps. Fig. (5.6) shows the results 

obtained this way, for n = 3. It appears that there is a better agreement 

with the results of conventional quantum mechanics compared with 

the results from a thermalization process for n=3 (see Fig. (5.5)). 

 

It was also found that, in the present problem, convergence 

between the results of numerical simulations and those of 

conventional quantum mechanics can be improved by increasing the 

number of boxes. This is clear in Fig. (5.7), where it appears that there 

is better agreement between the two results for n=3 when the number 

of boxes was increased to 1201. 
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Fig. (5.5) Probability density for a particle in a SHO potential (a) n=2, 

(b) n=3and (c) n=5, with thermalization process. 
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n = 3   a =601   cc=10
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n = 5  a =601   cc=10
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    ss=200   ζζ =0.0173   ρρ=0.9780 
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Fig. (5.6) Probability density for a particle in a SHO potential with 

n=3 for longer time steps (cc=5×10
8
). 
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Fig. (5.7) Probability density for a particle in a SHO potential with 

n=3 after increasing the number of boxes. 

 

n = 3   a =601   cc=5*10
8
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8
    x =2   ζζ =0.0082   ρρ=0.9959 



 

Chapter Six 

Application of ScR Theory to the Problem of 

a Particle in a Double Well Potential 

 

(6.1) The Double Well Potential: 

When a particle of mass m is moving in one-dimension in the 

presence of a potential that has the form [10,75]: 



















otherwise

abxbafor

baxfor

x

0

)(||)(0

)(||

)(         ------- (6.1) 

 

then, this system is called a double well potential. The energy diagram 

for this system is shown in Fig. (6.1) [75]. This potential is used as a 

one-dimensional model of molecules [10,75]. 

In this chapter, the application of ScR theory to problem of         

a particle in a double well potential for the case E<U0 will be 

discussed.  

 

 

 

 

 

Fig. (6.1) The double well potential [75]. 
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(6.2) Solution of the Equation of Motion : 

The solution of the equation of motion for this problem follows 

the same approach as for  the problem of an infinite square well 

treated in chapter four. Again the average classical velocity is 

expected to be zero since the double well potential is a symmetric 

system. Then, the equation of motion becomes: 

))((
2

)()( 2 ExxU
m

xU
dx

d



        -------- (6.2) 

 

Again, eqn. (6.2) has the form of a Riccati equation [55]. It can be 

rewritten in the form of a 2
nd

 order differential equation (see Sec. 

(4.3)) as [56]: 

0)())((
2

)(
22

2

 xyEx
m

xy
dx

d


        ------- (6.3) 

 

But here, the potential U( x ) have the values that are shown in eqn. 

(6.1).Then, there are two solutions of eqn. (6.3); the even and odd 

parity solutions. This comes from following the same procedure that 

was followed in Sec. (4.3). Then, the solutions are [55]:  
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for even parity , and  
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for odd parity, where Q and J are arbitrary constants. 

 

First, the even parity solutions of eqn. (6.4) will be discussed. 

The boundary conditions for these equations at x =± )( ab   lead to 

y ( x )=0 , while the matching conditions at x =± )( ab  are [55]: 

(i) at  x = - )( ab  : 
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(ii) and, at  x = )( ab  : 
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Eqns. (6.6) and (6.7) lead to the self-consistency equation for the even 

parity solutions which is [75]: 

        )(tanh2cot abKKa           -------- (6.8) 

This equation, together with the relation 2

2

22 2
          



m
K (see eqn. 

(4.33)), can be solved graphically to determine the values of κ and K 

in a similar manner to Sec. (4.3).While, for the odd parity solutions, 

the self-consistency equation becomes: 

  )(coth2cot abKKa         -------- (6.9) 

U0 



Fig. (6.2) shows the graphical solutions of the self-consistency 

equation for the double well potential, for  = 3. If one lets b =2 a  

then, one can get from the graphical solutions that χ= 35.1a  and 

ŋ=K )( ab  = 2.679 for  = 3, for the even parity solutions. While, for 

the odd parity solutions one has 35.1a and K )( ab  = 2.679 too. 

Then, eqns. (6.4) and (6.5) become: 
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for even parity , and  
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for odd parity . 
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Fig. (6.2) The graphical solution of the self consistency condition for 

the double well potential ( α = 3). 

 

 

 

According to eqn. (4.17), the function U )(x  is given in terms of 

an arbitrary function y )(x  as 
)(

)(1
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xy
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r
xU


  . Here, in this problem 

r =-m/ħ, then, U )(x  can be written as: 
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for even parity, and  
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for odd parity. 

 

Finally, the equation of position coordinate (eqn. (3.38)) has the 

following form, which represents a stochastic process [53]: 
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for even parity solutions , and : 
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for odd parity. 

 

 

 

 

 



(6.3) Numerical Simulations: 

  If one lets 2D dt=1 (see Ch. 4), eqns. (6.14) and (6.15) 

become: 
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for even parity solutions, and  
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for odd parity solutions. In a manner similar to Sec. (4.3), numerical 

simulations are performed using eqns. (6.16) and (6.17) that represent 

trajectory equations of the particle in a double well potential for  = 3. 

Here, it was found after some numerical tests that the division of the 

region into 1801 boxes give good results when the time steps are taken 

as 5×10
8
. 

As for the problem of a particle in a finite square well, the numerical 

simulation results obtained here are compared with the probability 

density P( x ) of conventional quantum mechanics is given by: 

       (i) for even parity solutions: 
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  (ii) for odd parity solutions: 
























)()()(sin
~

||)()
)(

(sinh
~

)()()(sin
~

)(

22

12

22

11

22

10

abxabforbax
a

N

xabforx
ab

N

abxbaforbax
a

N

xP







  

where  127

~
,...,

~
NN  are normalization constants [75]. 

For  = 3, P(x) is given by [75]: 
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for even parity solutions, and 
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for odd parity solutions. 



Fig. (6.3) shows the results obtained from a first simulation 

attempt for  = 3 for even and odd parity solutions. This simulation is 

started from an arbitrary point. It was found through numerical tests 

that these results can be improved by a thermalization process [53]. 

 

Fig. (6.4) shows the results obtained this way for a starting point 

ss= 21 which gives the best results after many tests for different values 

of ss. 
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 Fig. (6.3) Probability density for α = 3 without thermalization process 

for (a) even parity solution and (b) odd parity solution. 
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Fig. (6.4) Probability density for α = 3 with thermalization process for 

(a) even parity solution and (b) odd parity solution. 
 

 

 

 

 

α =3   a =1801   cc=5*10
8
    ss=21   ζζ =0.0099   ρρ=0.9994 

α =3   a =1801   cc=5*10
8
    ss=21   ζζ =0.0297   ρρ=0.9987 



Chapter Seven 

Discussion, Conclusions and Suggestions 

 

(7.1) Discussion: 

Quantum mechanics is a well-founded theory as far as the 

mathematical formulation is concerned [8-15]. Numerical predictions 

of physical phenomena in the microscopic world based on quantum 

mechanics are considered to be in very good agreement with 

experiments so far [8-12]. On the conceptual side, however, quantum 

mechanics has faced grave difficulties [29-31]. Attempts to overcome 

these difficulties have followed more than one path. The approach to 

overcoming the conceptual difficulties of quantum mechanics based 

on scale relativity (ScR) theory as formulated by Nottale [30-32] is 

one of them. It's main idea is to give up the differentiability of space-

time and, hence, use fractal geometry as a basis to predict the quantum 

behavior [30-32] . 

This approach is usually considered as lying outside main stream 

physics [76]. However, its reliance on the well-founded mathematics 

of fractal geometry makes it one of the plausible approaches in this 

field. Applications of the scale relativistic approach to many fields in 

quantum physics have been discussed by many authors 

[30,31,36,38,49]. Also, applications in other fields are available 

[31,40-44] . 

However, in such a situation, direct numerical applications 

would be of help in explaining the relationship between the concept of 

fractal space-time, as formulated in ScR, and the quantum behavior. In 



particular, it is of interest to see directly through numerical 

simulations how the quantum behavior arises as a consequence of the 

fractality of space-time. Preliminary attempts to do so were performed 

by Hermann [53]. The present work was an attempt to expand on the 

work of Hermann by performing similar simulations for other 

quantum-mechanical problems not treated by him or by others [54]. 

Such a program may seem as a direct extension of Hermann's work. 

However, as it appears from the work in this thesis, there are many 

difficulties that were to be overcome to obtain meaningful results that 

can be compared with conventional quantum mechanical results. On 

the mathematical side, the discovery of a novel relationship with the 

well-known Riccati equation has helped in solving some of these 

difficulties. While, on the numerical side, special attempts to optimize 

the solution parameters for the problems treated in this thesis were 

needed to obtain the required results. Such optimization involved 

using the concept of thermalization, as advocated in this field by 

Hermann [53], but in a new perspective necessary for the present 

work. 

Looking at the present work in this way, one can see that the aim 

set up at the beginning has been achieved. More details about the 

conclusions related to this are given in the next section. However, 

more work has to be done to understand other aspects related to this 

work as indicated in Sec. (7.3). 

 (7.2) Conclusions: 

The main conclusions from the present work are as follows:  

(i) Hermann [53] has shown that a quantitative correct prediction 

of the behavior of a quantum particle in an infinite one-dimensional 



square well potential can be obtained without explicitly writing the 

Schrödinger equation nor using any conventional quantum axiom. It 

can be concluded from the present work that this fact is even correct 

for other one-dimensional quantum mechanical problems. This leads 

one to conclude from the present work that ScR is a well-founded 

theory for deriving quantum mechanics from the concept of fractal 

space-time. 

 

(ii) Even though many of the aspects of Hermann’s work were 

used in the present work as they are, the application of his approach to 

the present quantum mechanical problems was not a direct one. 

Successful applications were not achievable without, among other 

things, a new adjustment for the time step dt after some deeper 

understanding of the underlying particle motion in some problems. It 

is expected that this understanding is necessary when attempts are 

made to solve other quantum mechanical problems. 

 (iii) The appearance of the Riccati equation in connection with 

ScR theory in the present work, and the use of this equation in 

conventional quantum mechanics in previous works [57,58] leads one 

to conclude that this equation is deeply rooted in the quantum 

mechanical behavior . 

 

(iv) It is also concluded from the attempts made in the present 

work to improve the numerical simulation results by parameter 

optimization, that such attempts are successful in improving the 

results, and further improvement is possible, but requires more 

computer time. 

 



(v) The computer time taken by the simulations performed for 

the quantum mechanical problems dealt with in the present work was 

always found to be much longer than that required for conventional 

quantum mechanical solutions based on the Schrödinger equation. The 

last solutions are even, in some problems, analytical and do not 

require much computer time. This leads to the conclusion that the 

present approach based on ScR theory is not for solving quantum 

mechanical problems directly. Rather, its main intention is to expose 

the relationship between the quantum behavior and the fractality of 

space-time, which is still a far reaching aim. 

 

(7.3) Suggestions for Further Work: 

A number of suggestions for further work can be stated as 

follows: 

(i) Even thought the present work has reached the aim as set for 

it in chapter one, it is felt that similar applications to other quantum-

mechanical problems will certainly increase confidence in the 

conclusions. Of these additional applications one mentions a particle 

in a double harmonic oscillator potential, a particle in a central 

potential and the hydrogen atom. Treatment of other problems for 

which the average classical velocity is not zero (asymmetric 

potentials), as well as problems in more than one–dimension, would 

also be helpful in this direction . 

 

(ii) The appearance of the Riccati equation in the present work 

needs to be further investigated, and the connection with the previous 



use of this equation in conventional quantum mechanical problems 

needs to be explored. 

 

 (iii) The success of the direct numerical simulation approach 

based on ScR theory in the present work in obtaining the quantum 

mechanical probabilities encourages attempts to investigate the direct 

quantification of other aspects of quantum mechanics and its axioms 

based on similar numerical simulations for suitably chosen quantum 

mechanical setups. In this connection the correspondence, the 

complementarily and the duality principles may be mentioned as 

examples which need to be investigated along these lines in any future 

work. This would establish these principles as a direct consequence of 

the fractality of space-time in the quantum domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix (A) 

Fractal Geometry 

 

(A.1) Definition of a Fractal: 

The roots of fractal geometry go back to the 19
th

 century, when 

mathematicians started to challenge Euclid’s principles [77]. 

Euclidean geometry gives a first approximation to the structure of 

physical objects. It cannot easily describe non-linear shapes and non-

integral systems [78,79]. Then, there is a need to a new geometry to 

describe these systems. Mandelbrot [78] introduced the term "fractal" 

to describe objects that are irregular and have many of the seemingly 

complex shapes [78,80]. 

 

A geometric object whose dimension is fractional is called 

fractal. Fractals are self-similar or self-affine. For self-similar fractals, 

any small part of a fractal can be magnified to get the original fractal 

[78,81]. The common examples of this type of fractals are the Koch 

curve, the Koch snowflake and the Seirpinski triangle, as show in Fig. 

(A.1) [78,82]. While, in self-affine fractals, a smaller piece of the 

whole appears to have undergone different scale reductions in the 

longitudinal and transverse directions. Examples of this latter type of 

fractals are shown in Fig. (A.2) [78,81,82]. 



 

 
 

(a) 

 

 
 

(b) 

 

 

 
(c) 

Fig. (A.1) Common self-similar fractals [78]: (a) Seirpinski triangle, 

(b) Koch curve and (c).Koch snowflake. 



   

(a)This fractal is self-affine instead of self-similar because the                                                                

pieces are scaled by different amounts in the x- and y-directions. The   

coloring of the  pieces on the right emphasizes this[82].  

 
 

(b)  The Wiener Brownian motion (WBM)[78,81]. 

 
Fig (A.2) Common self-affine fractals. 

 

 

(A.2) Definitions and Methods of Calculation of 

Fractal Dimension:  

Mandelbrot [78], Davis [82], Nikora [83], Rosso [84] and 

Takaysu [85] point out that there are many methods to define and 

calculate the fractal dimension. Here, the common methods in this 

field will be explained briefly. 



 

(A.2.1) Similarity dimension: 

The similarity dimension, which is based on the idea that fractals 

are usually self-similar objects is sometimes called the fractal 

dimension [78]. To motivate the definition of similarity dimension, 

one considers sets which are topologically one, two,…ect dimensional 

[78]. The following equation can be used to calculate fractal 

dimension in this case [77]: 

       N   r
d
 =C            ------ (A.1) 

where N  is the number of equal parts , d is the similarity dimension, r 

is the side length of each part and C is a constant . By taking C=1, the 

similarity dimension can be defined as[77]: 

r
n

n
d

1





         ------- (A.2) 

It is known that .. simtop dd   [77]. For example, a square )2( TD  can be 

divided into four squares N = 4, then 
2

1

1
r  , 2

2

4
. 

n

n
d sim




 [77] (see 

Fig. (A.3)). 

 

 

 

 

 

 

       Fig. (A.3) A square divided into 4 squares of side length 1/2 [77]. 
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(A.2.2) Box dimension:  

This represents another method for measuring the fractal 

dimension. This dimension is defined as follows : if X is a bounded 

subset of the Euclidean space, and ε ≥ 0, then, let N  (X,ε) be the 

minimal number of boxes in the grid of side length ε which are 

required to cover X . One can say that X has box dimension D if the 

following limit exists and has value D: 

 





 1

)),((

lim
0 n

Xn






          ------ (A.3) 

Consider for example the Seirpinski gasket (see Fig. (A.4)) [82]. One 

can show that it can be covered by 4 squares of side length 1, 12 

squares of side length 1/2, 36 squares of side length 1/4. In general, 

the minimum number of squares of side length 1/  needed to cover the 

Seirpinski gasket is 4×3 .  

Hence, the box dimension of the Seirpinski gasket is [77,78]: 
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Fig. (A.4): The box dimension for the Seirpinski gasket [82]. 

(A.2.3) Divider dimension:  

A fractal curve has fractal (or divider) dimension D if its length 

L can be measured with rods that have length ℓ and it is given by 

[77,78,82]: 

DCL  1*         --------- (A.4) 

where C is a constant that is a certain measure of the apparent length . 

Eqn. (A.4) must be true for several different values of ℓ . For example, 

consider the Koch curve [78]. It appears to have length L= (4/3)
 
 when 

measured with rods of length )
3

1
(    . Hence: 

)1()
3

1
()

3

4
( DC    

This implies that: 

3

1
)1()(

4

3
nDCnn    

When C = 1, then  2619.1
3

4
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n

n
D




as expected [78,82]. 
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Appendix (B) 

The Riccati Equation 

 

(B.1) Definition of the Riccati Equation: 

In mathematics, a Riccati equation is any ordinary differential 

equation that has the form [55]: 

2

210 )()()( RxqRxqxqR        --------- (B.1) 

where )()(),( 21 xqandxqxqo  are known functions of x  . 

 

(B.2) Solution of the Riccati Equation: 

The Riccati equation is not amenable to elementary techniques 

in solving differential equations, except as follows. If one can find any 

solution R1, then, the general solution is obtained as [55,56]: 

R = R1 +          -------- (B.2) 

 

Substituting eqn. (B.2) in the Riccati equation (eqn. (B.1)) yields, 

R׳ + ׳ = q0 + q1 (R1 +  ) + q2 (R1 +  )
2    

     ------ (B.3)

and since, 

R׳  = q0 + q1R + q2 R
2
 

                     --------(B.4) 

q1=׳  + 2q2R1  +q2  
2
 

then, 

(q1 + 2q2R1)=׳  =q2  
2       

--------- (B.5) 

which is a Bernoulli equation [55] . The substitution that is needed to 

solve this Bernoulli equation is [55,56]:  



 = 
1-2

 = 
1

         --------- (B.6) 

Substituting  

Z
RR

1
1          --------- (B.7) 

 

directly into the Riccati equation yields the linear equation [55,56]: 

2121 )2( qZRqqZ          -------- (B.8) 

 

Then, the general solution to Riccati equation is given by eqn. (B.7) 

[55,56], where Z  is the general solution to the aforementioned 

equation [55,56]. 

 

The Riccati equation (B.1) can be rewritten in the form [55,56]: 

2

1Rr
dx

dR
P          --------- (B.9) 

where Rxqxq )()( 10 P  and )(21 xqr   . This differential equation 

may not be solvable analytically . One may write [55]: 

1r
R              ---------- (B.10) 

where  ( x ) is a new dependent variable replacing R( x ) . Then [55]: 

2

1

1

2

1

2

1 r

r

rr
R




     --------- (B.11) 

By substituting eqns. (B.9) and (B.10) into eqn. (B.8), the last 

equation becomes: 

r1 P   r1 + ׳  1׳r – ״ 
2
   = 0     -------- (B.12) 
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This is a linear homogeneous second-order differential equation for 

( x ) . It has the general solution [55,56]: 

 )()()( xOgxWfx       --------- (B.13) 

 

where W and O are integration constants and f  and g  are series 

[55]. Hence, from eqn. (B.10): 

))()((

)()(
)(

11

1

1 xgxfCr

xgxfC

r
xR






         ---------- (B.14) 

where C1 = W/O. 

(B.3) The Riccati Equation in Quantum Mechanics: 

In quantum mechanics, Price [58] observed that the Schrödinger 

equation in one-dimension can be reduced to a Riccati form. It can be 

derived from both the one-dimensional Schrödinger equation [58] and 

one-space and one-time Klein-Gordon equation [58] in the form: 

0),,()()( 1

2  ErdrRrR U     --------- (B.15)  

 

where 1d  is some function of r (position vector), U (potential) and the 

eigenvalue E (energy). 

The Dirac equation for a combination of scalar potential U, 

four-component vector potential V
~

,and anomalous magnetic moment 

term~ , when all three terms have spherical symmetry, leads to the 

Riccati equation for a nodeless state [58]: 

0)
~

()
~

(~2/2 2  UU mVEmVERrKRR      ---- (B.16) 

 

Finally, one can observe that all quantum systems have a Riccati form 

when one uses the Schrödinger, Klein-Gordon and Dirac equations to 

solve these systems [58]. 
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Appendix C 

Cantorian Fractal Space-Time 

 

(C-1) The Cantor Set: 

The Cantor set, 
(0)

, [78] is a fractal dust which is densely packed 

into a set of topological dimension zero (a point) as shown in                

Fig.( C-1). The Hausdorff dimension [78,81] of this fractal set is equal 

to the golden mean 2/)15(   [86-89]. Other Cantorian sets,      


(i)

(-<i<), are constructed in a similar way [88-89]. 

 

 

 

 

 

 

 

 

 

 

Fig. (C-1) The Cantor Set [78] 

 

(C-2) () 

Theory and Fractal Space-Time: 

The construction of the set 
()

 [65,86-89] contains an infinite 

number of sets 
(i)

(-<i<). The index i labels the topological 



dimension of the smooth space into which the fractal set is densely 

packed [65,89] . 
()

 is considered the basis for the construction of 

fractal space-time by El-Naschie [65,86-88]. 

 

The main conceptual idea of El-Naschie's work is a 

generalization of what Einstein considered the geometry of space-time 

on the large to be a curved four-dimensional space [1-5]. El-Naschie 

[65,86-88] in his theory assumes that space-time at quantum scales is 

far from being smooth, but rather resembles a stormy ocean. The 

crucial step in 
() 

theory was to identify the stormy ocean with 

vacuum fluctuations and in turn to model these fluctuations using the 

mathematical tools of non-linear dynamics, complexity theory and 

chaos theory and number theory [86,87,90]. 

 

(C-3) Relation of () 

Theory to ScR Theory: 

There is a strong relation between 
()

 theory based on Cantorian 

fractal space-time and the fractal space-time underlying the ScR 

theory. However, whereas cantorian fractal space-time is a 

mathematical concept the fractal space-time underlying ScR theory is 

based on Nottale's generalization of the relativity principle to scales 

[30-32]. 

It is expected that El-Naschie's 
() 

theory [65,86-88] will have 

far reaching applications in many fields of physics [65,86-90] and not 

only quantum physics [86,87,90] . Hence, it may furnish a new more 

accurate look at the laws of nature. 

 

 



Implement for 0: a  

  x  > a  & 0> x  

Input n, cc, x =100, a , A=n*π/ a  

 

END 

Yes 

No 

START 

 

P(x)=(2/ a )^0.5 *sin^2(A* x ) 

 

Implement loop for step of time until cc. 

 

d x =A*tan(-A* x )+random no. 

           x = x +d x  

Compute no. of occurrences f( x ) in 

each box  

 

Compute ζζ and ρρ 

 

Plot  P( x ) and f( x ) 

 

Appendix (D)      Computer Programming 
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Flowchart (1).A schematic illustration of the different part of the 

program to calculate probability density of particle in 

an infinite square well potential. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart (2). A schematic illustration of the different part of the 

program to calculate probability density of particle in a 

finite square well potential (even  parity). 

 

 

 

Implement  for  - a : a  

Input cc, x =100, a ,χ,ŋ, Ñ1,Ñ2,Ñ3 

Divide region into  a  boxes 

 

START 

- a  < x  < a  

 

P(x)= Ñ2^2*cos^2(χ* x / a ) 

P( x )=Ñ1 ^2*exp(2*ŋ* x  / a )   for x <- a  

P( x )=Ñ3^2*exp(-2*ŋ* x  / a )  for x > a  

 
Implement  loop for step of time until cc. 

 

- a  < x  < a  

 

             d x = - ŋ + random no. for x  > a  

            d x =  ŋ + random no. for x  < - a  

             x = x +d x . 

 

 d x = -χ *tan(χ* x / a )+ random no.                                 

             x = x +d x . 

Compute no. of occurrences f( x ) in each box  

 

Compute ζζ and ρρ 

 

Plot  P( x ) and f( x ) 

 

Yes 

Yes 

No 

No 

END 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart (3). A schematic illustration of the different part of the 

program to calculate probability density of particle in a 

finite  square well potential (odd parity). 

 

Implement  for  - a : a  

Input cc, x =100, a ,χ,ŋ, Ñ4,Ñ5,Ñ6 

Divide region into  a    boxes 

 

START 

- a < x  < a  

 

P( x )=Ñ5^2*sin^2(χ* x / a ) 

P( x )=Ñ4^2*exp(2*ŋ* x  / a )   for x <- a  

P( x )=Ñ6^2*exp(-2*ŋ* x  / a )  for x > a hi how r 

u 

 

 
Implement  loop for step of time until cc. 

 

- a  < x  < a  

 

d x = - ŋ + random no. for x  > a  

           d x =  ŋ + random no. for x  < - a  

              x = x +d x . 

 

 d x = -χ *cot(χ* x / a )+ random no.                                 

             x = x +d x . 

Compute no. of occurrences f( x ) in each box  

 

Compute ζζ and ρρ 

 

Plot  P( x ) and f( x ) 

 

END 

Yes 

Yes 

No 

No 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart (4) A schematic illustration of the different part of the. 

program to calculate Probability density of particle in 

SHO potential. 

Plot  P( x ) and f( x ) 

Implement  for  - ℓ: ℓ 

Hn=exp(- x ^2/2)d^n/d x ^n(exp(- x ^2/2) 

      P( x )=Nn^2 *Hn^2*exp(- x ^2) 

Implement  loop for step of time until cc. 

      Hn=exp(- x ^2/2)d^n/d x ^n(exp(- x ^2/2) 

d x =(- x -2*n[Hn-1/Hn] )*zz+random no.*(zz)^0.5 

      x = x +d x . 

x  > a /2 & - a /2> x  

Compute ζζ and ρρ 
 

Compute no. of occurrences f( x ) in each box. 

Input n,cc, x =2, a , zz=10^-3,ℓ. =12 

END 

Divide region into a  boxes 
 

Yes 

No 

START 

Nn=(2^n*n!*π^0.5)^-0.5 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Flowchart (5). A schematic illustration of the different part of the 

program to calculate probability density of particle in a 

double well potential (even parity). 

 

Implement  for  -3 a :3 a  

Input cc, x =100, a , χ, ŋ, Ñ7,Ñ8,Ñ9 

Divide region into 3 a   boxes 

 

START 

- a  < x  < a  

 

P(x)= Ñ8^2*cosh^2(ŋ * x / a ) 

P( x )=Ñ7 ^2*sin^2( χ / a *( x -3 a ))   for 3 a > x > a  

P( x )=Ñ9 ^2*sin^2(χ / a *( x +3 a ))   for - a > x >-3 a  

Implement  loop for step of time until cc. 

 

- a  < x  < a  

 

    d x = χ cot(χ /a*( x -3a)) + random no. for 3 a > x > a  

    d x =- χ cot(χ /a*( x +3 a )) + random no. for - a > x >-3 a  

     x = x +d x . 

 

 dx= ŋŋ *tanhh(ŋ * x / a )+ random no.                                 

                  x = x +d x . 

Compute no. of occurrences f( x ) in each box  

 

Compute ζζ and ρρ 

 

Plot  P( x ) and f( x ) 

 

Yes 

Yes 

No 

No 

END 
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Flowchart (6). A schematic illustration of the different part of the 

program to calculate probability density of particle in a 

double well potential (odd parity). 

 

 

 

Implement  for  -3 a :3 a  

Input cc, x =100, a , χ, ŋ,Ñ10,Ñ11,Ñ12 

Divide region into 3 a   boxes 

 

- a  < x  < a  

 

P( x )=Ñ11 ^2*sinh^2(ŋ * x / a ) 

P( x )=Ñ10 ^2*sin^2(χ / a *( x -3 a ))   for 3 a > x > a  

P( x )=Ñ12 ^2*sin^2(χ / a *( x +3 a ))   for - a > x >-3 a  

Implement  loop for step of time until cc. 

 

- a  < x  < a  

 

d x = χ cot(χ / a *( x -3 a )) + random no. for 3 a > x > a  

 d x = χ cot(χ / a *( x +3 a )) + random no. for - a > x >-3 a  

     x = x +d x . 

 

 d x = ŋ *coth(ŋ * x / a )+ random no.                                 

                 x = x +d x . 

Compute no. of occurrences f( x ) in each box  

 

Compute ζζ and ρρ 

 

Plot  P( x ) and f( x ) 

 

END 

Yes 

Yes 

No 

No 

START 
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