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Abstract: In this study, a platinum(II) complex ([Pt(H2L)(PPh3)] complex) containing a thiocarbo-
hydrazone as the ligand was tested as an anti-proliferative agent against ovarian adenocarcinoma
(Caov-3) and human colorectal adenocarcinoma (HT-29) through MTT assays. Apoptotic markers
were tested by the AO/PI double staining assay and DNA fragmentation test. Flow cytometry
was conducted to measure cell cycle distribution, while the p53 and caspase-8 pathways were
tested via immunofluorescence assay. Results demonstrated that the cytotoxic effect of the Pt(II)-
thiocarbohydrazone complexes against Caov-3 and HT-29 cells was highly significant, and this
effect triggered the activation of the p53 and caspase-8 pathways. Besides, apoptosis stimulated
by the Pt(II)-thiocarbohydrazone complex was associated with cell cycle arrest at the G0/G1 phase.
These findings suggest that the target complex inhibited the proliferation of Caov-3 and HT-29 cells,
resulting in the arrest of the cell cycle and induction of apoptosis via the stimulation of the p53 and
caspase-8 pathways. The present data suggests that the Pt(II)-thiocarbohydrazone complex could
also be a promising chemotherapeutic agent for other types of cancer cells.

Keywords: Pt(II) complex; anticancer activity; apoptosis; DNA fragmentation; p53; caspase-8

1. Introduction

Cancer is a critical disease of interest to scientists due to its long history of being among
the leading causes of death [1]. There is no single disorder representing cancer; rather, it
is a collection of disorders marked by the uncontrollable outgrowth of cells. Tumors are
a serious risk of lethal disease with no geographic location or organ limits; they induce
an annual worldwide mortality exceeding 12.7 million individuals. Mutated genes that
regulate growth and are involved in DNA repair, cell division, and death typically causes
tumor diseases [2].

Cancer can occur accidentally when a portion of the genetic code is miscopied, whereas
DNA damage by chemical, viral, or radiation exposure may lead to cancer induced by the
environment. Previous studies on the development of anticancer strategies include various
instances related to the interactions of metal ions or metal-containing compounds with
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biological targets. Selecting the ligand in a metal complex is as essential as selecting the
metal due to its effectiveness on biological systems [3–6]. In pharmacology, heterocyclic
compounds play a significant role in the composition of the drug formula.

Purine, thiosemicarbazone, imidazole, and benzohydroxamic ligands containing dif-
ferent donor atoms that can chelate metal ions can exert different anti-cancer functions.
In vitro and in vivo investigations of several anticancer drugs containing metal ions showed
more potent antineoplastic actions than that of cisplatin [7–10]. Anticancer drugs based
on platinum (Pt) still constitute an essential part of vast regimens of chemotherapy [4].
Although they cause toxicity as a part of their side effects, they also lead to drug resis-
tance [11–13]. Meanwhile, the mechanism of action of Pt against cancer cell lines remains
unclear. The three foremost steps related to antitumor action are as follows: cell uptake
of drugs; the interplay of the drug with DNA, including intervention with the activities
of transcription and/or replication; and the platinum-DNA lesion that evokes cell death,
which depends on the activation of the signal transduction pathways [14].

The cytotoxicity of platinum-based drugs induced by the activated platinum species
binding to intracellular targets is predominantly dependent on DNA. Following the recog-
nition of the DNA adducts by the cellular systems, three concurrent potential pathways
are involved. In the first pathway, DNA can be repaired. In the second, the damaged
DNA fragment can be bypassed. In the third, apoptosis can take place. Inhibition of
transcription assumes the common way to evoke cell apoptosis after treatment with Pt
compounds [15]. Based on the potency of platinum complexes as anticancer agents to
obtain new more effective and less toxic drug candidates than cisplatin, this work explores
the activity of a Pt(II)-thiocarbohydrazone complex as a potential anticancer agent. The
attractiveness of thiocarbohydrazones for developing new metal-based drugs relies on their
structural diversity providing interesting coordination chemistry and promising biological
implications [16,17].

The Caov-3 cell line is an epithelial morphology main line of ovarian cancer cells.
They are susceptible to adriamycin, cisplatin, and vinblastine. Improvements in ovarian
cancer outcomes are expected, particularly for ovarian clear cell carcinomas (OCCA), from
a clear understanding of molecular pathology that may drive early detection approaches
and effective treatment [18]. Thus, the present study was performed to evaluate the anti-
proliferative and pro-apoptotic effects of the Pt(II)-thiocarbohydrazone complex on Caov-3
and HT-29 cell lines. Our results explained the possible mechanisms involved in the effect
of this complex on the used cell lines, namely, mitochondrial damage and the p53 and
caspase-8 pathways.

2. Results and Discussion
2.1. Pt(II) Complex as Anti-Proliferative Agent against Caov-3 and HT-29 Cells

In this study, we measured the cytotoxic effect of the Pt(II) complex at different times as
shown in Figure 1. The IC50 values of the Pt(II) complex following 24 h exposure of the can-
cer cell line was 3.34 µg mL−1 for Caov-3 and 10.32 µg mL−1 for HT-29. Whereas, the IC50
values for 48 h exposure to the complex were 2.41 µg mL−1 for Caov-3 and 4.25 µg mL−1

for HT-29 cancer cell lines. The IC50 values for 72 h exposure were 1.74 µg mL−1 for Caov-
3 and 2.5 µg mL−1 for HT-29 cancer cell lines. These results indicated that prolonged
treatment significantly reduced the IC50. These results agree with the previous study of
Jain et al. [19].

The activity of the here-presented Pt complex was compared with that of cisplatin (a
clinically-used anticancer drug) in analogy to other works on platinum complexes [20,21];
the IC50 values of [Pt(H2L) (PPh3)], presented in Figure 1, resulted lower demonstrating
greater cytotoxic effects than cisplatin towards the same cancer cell lines. While other
study of Paschke et al. verified that the CholCOO(CH2 )n CH(CH2 NH2 ) Pt2 CBDC
(carbo-ChAPt) as well as the CholCOO(CH2)n CH(CH2 NH2 ) PtCl2 (cis- ChAPt) showed
similar cytotoxicity against testicular cancer cells as their partner compounds carboplatin
and cisplatin [11].
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After treating the cell lines with the IC50 concentrations of the tested compound for 24, 48, 
and 72 h, dual cell staining and fluorescence microscope visualization were performed to 
recognize changes in nuclear morphology [21]. The treatment of cells with IC50 concentra-
tions of the [Pt(H2L)(PPh3)] complex led to disruption of the membrane and vacuoles of 
the lysosomes compared with untreated cells with effects increased with the incubation 
time (Figure 2). The same results were observed after treated the Caov-3 and HT-29 cells 
with cisplatin. The results showed the high potential of the platinum complex to cause cell 
death due to the ability of the molecules to penetrate through the membrane [22,23]. A 
mixture of AO/PI dyes was used to further examine the potential of the tested compound 
to induce cancer cell death. In this process, the structure of the nuclei of the cells was 
observed to be intact, with a stable bright green color. Compared with the membranes of 

Figure 1. (left lane) Cytotoxicity of [Pt(H2L)(PPh3)] against Caov-3 and HT-29 cells at different time
(24, 48 and 72 h). IC50 for Caov-3 cells were 3.34, 2.41, 1.74 µg mL−1, respectively. While, for HT-29
cells were 10.32, 4.25, 2.5 µg mL−1, respectively. (right lane) Structure of Pt(II) complex.

2.2. Pt(II) Complex Induces Apoptosis in Caov-3 and HT-29 Cells

The (AO/PI) dual stain is a fluorescent combination stain that enables to detection
of morphological modification in the nucleus by producing distinctive fluorescent colors.
Apoptotic cells have increased fluorescence stain permeability to the plasma membrane.
After treating the cell lines with the IC50 concentrations of the tested compound for 24, 48,
and 72 h, dual cell staining and fluorescence microscope visualization were performed to
recognize changes in nuclear morphology [21]. The treatment of cells with IC50 concentra-
tions of the [Pt(H2L)(PPh3)] complex led to disruption of the membrane and vacuoles of
the lysosomes compared with untreated cells with effects increased with the incubation
time (Figure 2). The same results were observed after treated the Caov-3 and HT-29 cells
with cisplatin. The results showed the high potential of the platinum complex to cause cell
death due to the ability of the molecules to penetrate through the membrane [22,23]. A
mixture of AO/PI dyes was used to further examine the potential of the tested compound
to induce cancer cell death. In this process, the structure of the nuclei of the cells was
observed to be intact, with a stable bright green color. Compared with the membranes of
untreated cells, the membranes of cancer cells treated with the test compounds exhibited
less integrity apoptotic cells typically display nuclei that are distinguished by their red to
green color, while their chromatin condensation differs. The morphological changes in the
treated cells indicated that apoptosis rather than necrosis caused the observed cell death.
Through the combination of the AO stain into DNA, cells suffering from early cell death or
apoptosis were identified, leading to the emission of bright green fluorescence after 24 h.
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Mild apoptosis was observed during therapy in the form of condensed chromatin and
membrane blebbing, which are apoptosis-related time-dependent morphological features.
Additionally, the same dose of the Pt(II) complex caused late apoptosis events after 48
and 72 h that were recognized through many changes that included binding between
two stains and damaged DNA, leading to the emission of a reddish-orange color. In the
present work, we measured the possibility that inducing apoptosis was related to the
anti-proliferation events in the tested cancer cell line Caov-3 and HT-29 after treatment
with the Pt(II) complex.
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Figure 2. Fluorescence microscopy images of cell lines stained with AO and PI. Cells were treated
with IC50 concentrations of [Pt(H2L)(PPh3)] complex at different times.

2.3. Pt(II) Complex Causes DNA Fragmentation in Caov-3 and HT-29 Cells

The formation of nucleosome units from the breakdown of DNA is one of the main
characteristics of apoptosis. To identify the fragmentation of the nucleic acid inside the
cancer cells, the ovarian adenocarcinoma and colorectal adenocarcinoma cell lines (Caov-3
and HT-29, respectively) were incubated with the corresponding IC50 values of the Pt-
complex for 48 and 72 h. After lysing and extracting the nucleic acid of the cell lines, gel
electrophoresis was used to identify the changes in the nucleic acid. As shown in Figure 3,
a comparison of nucleic acid fragmentation at 72 h for both cell lines showed a ladder range
from 500 bp to 1000 bp. These results confirmed the formation of nucleosome units as
compared with the control cell line, indicating the death of the cells via apoptosis [24]. No
ladder was observed in the control cells. Thus, the cytotoxic effect of the treatment with the
Pt complex allowed the crumbling of apoptotic DNA, and cell death was possibly mediated
via an apoptotic mechanism. The replication of DNA molecule can be inhibited through a
breakdown in its molecule, which is caused by inter-nucleosome cleavage accompanied
with apoptosis, proposing that linalool-Gold nanoparticles GNP (LG) and linalool-GNP-
CALNN peptide (LGC) can evoke fragmentation and damage in nucleic acid via different
free radicals [25]. The reason behind this kind of DNA cleavage is the cleavage among
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the exposed linker regions of nucleosomes in response to the stimulation of endogenous
endonucleases [26].
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Figure 3. DNA fragmentation assay. Lane A: 1000 bp molecular weight marker, Lane B: untreated
cells, Lane C: treated cells for 48 h, Lane D: treated cells for 72 h.

2.4. Effect of the Pt(II) Complex in Mitochondrial Membrane Potential of Caov-3 and HT-29 Cells

The mitochondria play a crucial and essential role in inducing apoptotic activities
through cell death stimulation. Changes in this organ are characterized by the loss of its
membrane potential (∆ψm) and the release of cytochrome c protein into the cytoplasm,
leading to caspase-3 via the caspase-9 pathway. In this study, apoptosis was detected
using flow cytometry assay according to the manufacturer’s protocol. An important and
relevant marker for the apoptotic cell death process is the reduction in mitochondrial
membrane potential. The mitochondrial membrane potential level was examined after
staining the cells with the Rh123 probe via flow cytometry. The number of apoptotic cancer
cells after Pt(II) complex treatment was calculated. A significant increase in apoptosis due
to Pt(II) complex treatment was observed in Caov3 and HT-29 cells (Figure 4), while no
change observed after treated the normal cell line Rat embryonic fibroblast (REF) cells.
The same results were seen after treated cancer cells with cisplatin as shown in (Figure 5).
A significant decrease in cancer cells treated with the Pt(II) complex at IC50 for 24 h was
noted in the Rh123 stain, which corresponded to the depletion of mitochondrial membrane
potential compared with the untreated control cell classes.



Pharmaceuticals 2021, 14, 509 6 of 14Pharmaceuticals 2021, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. Effect of [Pt(H2L)(PPh3)] complex on the loss of mitochondrial membrane potential. Figure 4. Effect of [Pt(H2L)(PPh3)] complex on the loss of mitochondrial membrane potential.



Pharmaceuticals 2021, 14, 509 7 of 14Pharmaceuticals 2021, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. Effect of cisplatin on the loss of mitochondrial membrane potential. 

2.5. Cell Cycle Analysis 
As shown in Figure 6, the DNA content of cells was replicated during the synthesis 

phase (S phase), whereas the cells in the Gap0 (G0) and Gap1 (G1) phases had unrepli-
cated nucleic acid. Meanwhile, the Gap2 (G2) and mitosis (M) phases showed replicated 
nucleic acid. In the flow cytometry analysis, the sub-G0/G1 peak was observed in histo-
grams due to the degradation of nucleic acid and the formation of hypodiploid. Sub-
G0/G1 is a selected marker of cellular apoptosis [27]. Analysis by flow cytometry of the 
ovarian adenocarcinoma and colorectal adenocarcinoma was carried out after respective 
IC50 treatments of the Pt complex for 48 and 72 h. The histogram showed a gradual in-
crease in the sub-G0/G1 phase during the incubation period. The results showed the ca-
pacity of the Pt complex to induce the apoptosis pathway of Caov-3 and HT-29 cancer 
cells via the G0/G1 phase [28]. 

Figure 5. Effect of cisplatin on the loss of mitochondrial membrane potential.

2.5. Cell Cycle Analysis

As shown in Figure 6, the DNA content of cells was replicated during the synthesis
phase (S phase), whereas the cells in the Gap0 (G0) and Gap1 (G1) phases had unreplicated
nucleic acid. Meanwhile, the Gap2 (G2) and mitosis (M) phases showed replicated nucleic
acid. In the flow cytometry analysis, the sub-G0/G1 peak was observed in histograms
due to the degradation of nucleic acid and the formation of hypodiploid. Sub-G0/G1 is
a selected marker of cellular apoptosis [27]. Analysis by flow cytometry of the ovarian
adenocarcinoma and colorectal adenocarcinoma was carried out after respective IC50
treatments of the Pt complex for 48 and 72 h. The histogram showed a gradual increase in
the sub-G0/G1 phase during the incubation period. The results showed the capacity of
the Pt complex to induce the apoptosis pathway of Caov-3 and HT-29 cancer cells via the
G0/G1 phase [28].
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Figure 6. Cell cycle analysis of Caov-3 and HT-29 cell line after treatment with platinum(II) complex
at different times as indicated. Bars show mean ± SEM.

2.6. Pt(II) Complex Induces the P53 and Caspase-8 Pathways

The tumor suppressor p53 gene and caspase enzymes are helpful in the regular
monitoring of cells, and they prevent them from transforming into cancerous cells. When a
cell shows any pattern of malignancy, an activation process of the mechanisms responsible
for DNA repair is initiated for the restoration of the altered DNA [29,30]. To confirm
that the Pt(II) complex caused the induction of p53 and caspase-8, an immunofluorescent
test was performed. Figure 7 demonstrates p53 and caspase-8 induction in the cell lines
following treatment with the Pt(II) complex. The fluorescence of p53 and caspase-8 was
very low in the control cells, but p53 and caspase-8 immunofluorescent signaling were very
clear in the treated Coav-3 and HT-29 cells. The signal was disappeared when the normal
cell line REF was treated with the same complex. While the results demonstrated that
cisplatin induces apoptosis in Caov-3 and HT-29 cell lines through the p53 and caspase-8
pathway as shown in Figure 8. These results suggested that the Pt(II) complex can induce
apoptosis via p53 and caspase-8.
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primary and secondary antibodies. Scale bar 10 µm.
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Figure 8. Cisplatin induces apoptosis through p53 and Caspase-8 pathway. Immunofluorescence results
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fixed, permeabilized, and then stained with primary and secondary antibodies. Scale bar 10 µm.

3. Materials and Methods
3.1. Preparation and Characterization of the Pt Complex

The Pt(II) complex preparation and characterization methods were identical to those
previously described [17].

3.2. Maintenance of Cell Cultures

Caov-3 and HT-29 cancer cell lines were used. These cell lines were kept in RPMI-1640
in the presence of fetal bovine serum (10%), penicillin (100 units mL−1), and streptomycin
(100 µg mL−1). Cells were passaged in trypsin-EDTA, reseeding was at 80% confluence
(twice a week), and incubation was at 37 ◦C [31].
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3.3. MTT Assay

The cytotoxicity test was carried following prior methods [32]. Cells were seeded
at 1 × 105 cells mL−1 in wells of microtiter plates supplied with RPMI and permitted to
adhere overnight. Dilutions of the platinum complex (0.39–50 µg mL−1) were prepared.
The tested compound’s solutions were added in triplicate and incubated for 24, 48 and 72 h.
Thereafter, the MTT solution was added to the cells. The medium was aspirated following
the incubation period, and the DMSO solution was added to the wells. Absorption was
calculated on a microplate reader for each well under a wavelength of 492 nm. Regression
analysis was conducted to extract the concentration for 50% inhibition of cell growth (IC50).

3.4. Double Staining with Acridine Orange (AO)–Propidium Iodide (PI)

The ability of the platinum complex to induce apoptosis was investigated using
AO/PI. In brief, after 24 h of seeding cells on 12-well glass slides, they were exposed to the
IC50 preparations of the tested compound for 24, 48, and 72 h. Dual fluorescent dyes were
inserted into each well after washing twice with PBS. To observe the cells, a fluorescent
microscope was used [33].

3.5. Nucleic Acid Fragmentation Induction

DNA fragmentation analysis was performed based on the method in the kit guide
of magnesium tissue culture for DNA extraction. Cell lines were exposed to IC50 concen-
trations of the compounds for 48 and 72 h. Cells with a density of 1.5 × 106 cell mL−1

were used for this experiment. After reaching the confluence, the cells were detached
and suspended in PBS. Centrifugation (1200 rpm, 4 ◦C, and 10 min) was performed to
remove the media, followed by dissolving with DNA loading buffer and enforcement to
agarose gel. Electrophoresis was run following staining with ethidium bromide. Nucleic
acid fragmentation was observed by using a UV illuminator device [34].

3.6. Cell Cycle Investigation via Flow Cytometry

Flow cytometry was used to investigate the cell cycle in exposed ovarian adenocar-
cinoma and colorectal adenocarcinoma (Caov-3 and HT-29) cell lines treated with the Pt
complex. In brief, cells (5 × 104 cells mL−1) were exposed to the IC50 concentration of the
Pt complex for the three-time duration (24, 48, and 72 h). After cell fixation, washing with
PBS was conducted to remove excess ethanol. Propidium iodide (PI; 10 mg mL−1) was
used to stain the exposed cells for 1 h at 37 ◦C. RNase A (10 mg mL−1) was employed to
prevent the PI stain from binding with DNA molecules. The DNA content of the treated
cells was investigated by flow cytometry [35].

3.7. Potential Assay of the Mitochondrial Membrane

Rh123, a fluorescent dye repossessed by lively mitochondria without cytotoxicity,
determines the critical apoptotic events in cells treated with the Pt complex. This dye was
used before and after treatment with the Pt complex to study the membrane potential
of mitochondrial cells. In brief, 24 h seeding of cells in 96-well plates was followed by
treatment with the IC50 dose of the extracted active compound and staining with Rh123
dye at 2.5 M for 1 h at 37 ◦C. The cells were detached by 0.5% trypsin-EDTA and then
centrifuged at 300 rpm for 5 min. Cells were suspended in FACS buffer and calculated by
flow cytometry, and histograms were created [36].

3.8. Immunofluorescence Assay

In brief, cells were first processed by washing with PBS, fixation with PFA (4%, 30 min,
RT), permeabilization with Triton-X (0.5%, 30 min, RT), and blocking with normal goat
serum (10%, 30 min). Subsequently, cells were treated with 1 µg mL−1 of each of the
primary antibodies of anti-p53 and anti-caspase-8 (24 h at 4 ◦C) and washed with PBS
three times. Cells were treated with 1 mg mL−1 of each of the secondary antibodies (Alexa
Fluor 488-conjugated goat anti-rabbit IgG or Alexa Fluor 568-conjugated goat anti-mouse
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IgG) for 2 h at RT. After additional washing of the cells three times using PBS, they were
examined under a fluorescent microscope [37].

3.9. Statistical Analysis

Unpaired t-test (GraphPad Prism 6, San Diego, CA, USA) was employed to statisti-
cally process the data, which were shown as the mean ± SEM of the three replicates per
experiment [38].

4. Conclusions

This work provides a model of a Pt complex with thiocarbohydrazone ligand playing
a dianionic role in chelating platinum. The ligand provides two tridentate binding pockets
that could be of the NNN or NNS sort based on the geometry of the ligand, due to the exis-
tence of two indolic rings in the framework. The platinum(II) complex had extraordinary
cytotoxic effects on ovarian adenocarcinoma and colorectal adenocarcinoma and provided
a confirmation to a role of intrinsic pathways in the induction of apoptosis in these cells.
Additionally, further in vitro and in vivo experiments are needed to fully evaluate the
potential of this compound in terms of the optimal dose, route of administration, and
usefulness as an efficient chemotherapeutic drug in treating different types of cancers.
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