See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332550963

Pairwise Completely Regular in Double Topological Spaces

Article • January 2011

CITATIONS	READ
0	28
2 authors:	

(4t) Rewayda Abo-Alsabeh | University Of Kufa |
| :--- |
| 15 PUBLICATIONS 6 CITATIONS |

Enas Yahya Abdullah
University Of Kufa
84 PUBLICATIONS 22 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Mathematica program View project

Project Multidisciplinary Research \square View project

Pairwise Completely Regular in Double Topological Spaces

Rewayda R. Mohsin ${ }^{1}$ and Enas Y. Abdullah ${ }^{2}$
${ }^{1}$ Math-Dep. Coll. of Math. and Com. Sci.
${ }^{2}$ Math-Dep. College of Edu.
University of Kufa, Najaf, Iraq
ISSN -1817-2695

Abstract

The concept of intuitionistic topological space was introduced by Çoker. The aim of this paper is to generalize notions between bitopological spaces and double topological spaces and

 also give a notion of pairwise completely regular for double-topological spaces.
1-Introduction

The concept of a fuzzy topology introduced by Çhange [2], after the introduction of fuzzy sets by Zadeh. Later this concept was extended to intuitionistic fuzzy topological spaces by Çoker in [4]. In [5] Coker studied continuity, connectedness, compactness and separation axioms in intuitionistic fuzzy topological spaces. In this paper, we follow the suggestion of J.G. Garcia and S.E. Rodabaugh [7] that (double fuzzy set) is a more appropriate name than (intuitionistic fuzzy set), and therefore adopt the term (double-set) for the intuitionistic set, and (double-topology) for the intuitionistic topology of Dogan Çoker, (this issue), we denote by Dbl-Top the construct (concrete texture over set) whose objects are pairs (X, τ) where τ is a double-topology on X. In section three, we discuss making use of this relation between bitopological spaces and double- topological spaces, we generalize a notion of completely regular for double- topological space in section four.

2-Preliminaries

Throughout the paper by X we denote a non-empty set. In this section we shall present various fundamental definitions and propositions. The following definition is obviously inspired by Atanassov [1].
2.1. Definition. [3] A double-set (Ds in brief) A is an object having the form $A=<x, A_{1}$, $\mathrm{A}_{2}>$, Where A_{1} and A_{2} are subsets of X satisfying $A_{1} \cap A_{2}=\phi$. The set A_{1} is called the set of members of A, while A_{2} is called the set of non- members of A.
Throughout the remainder of this paper we use the simpler $A=\left(A_{1}, A_{2}\right)$ for a double-set.
2.2. Remark. Every subset A of X is may obviously be regarded as a double-set having the form $A^{\prime}=\left(A, A^{c}\right)$,
Where $A^{c}=X \backslash A$ is the complement of A in X.
We recall several relations and operations between $\mathrm{DS}^{\prime s}$ as follows:
2.3. Definition. [3] Let the DS's A and B on X be the form $A=\left(A_{1}, A_{2}\right)$, $\mathrm{B}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, respectively. Furthermore, let $\left\{A_{j}: j \in J\right\}$ be an arbitrary family of DS's in X, where $A_{j}=\left(A_{j}^{(1)}, A_{j}^{(2)}\right)$. Then
(a) $A \subseteq B$ if and only if $A_{1} \subseteq B_{1}$ and $A_{2} \supseteq B_{2}$;
(b) $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$;
(c) $\bar{A}=\left(A_{2}, A_{1}\right)$ denotes the complement of A ;
(d) $\cap A_{j}=\left(\cap A_{j}^{(1)}, \cup A_{j}^{(2)}\right)$;
(e) $\cup A_{j}=\left(\cup A_{j}^{(1)}, \cap A_{j}^{(2)}\right)$;
(f) []$A=\left(A_{1}, A_{1}^{c}\right)$;
(g) $\left\rangle A=\left(A_{2}^{c}, A_{2}\right)\right.$;
(h) $\phi=(\phi, X)$ and $\underset{\sim}{X}=(X, \phi)$.

In this paper we require the following:
(i) ()$A=\left(A_{1}, \phi\right)$ and $)\left(A=\left(\phi, A_{2}\right)\right.$.

Now we recall the image and preimage of DS's under a function.
2.4. Definition. [3,9] Let $x \in X$ be a fixed element in X. Then:
(a)The DS given by $x=\left(\{x\},\{x\}^{c}\right)$ is called a double-point (DP in brief X).
(b)The $\operatorname{DS} \underset{\underline{\underline{x}}}{x}=\left(\phi,\{x\}^{c}\right)$ is called a vanishing double-point (VDP in brief X).
2.5. Definition. [3, 9]
(a) Let $\underset{\sim}{x}$ be a DP in X and $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ be a DS in X . Then $\underset{\sim}{x} \in A$ iff $x \in A_{1}$.
(b) Let $\underset{\sim}{x}$ be a VDP in X and $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ a DS in X . Then $\underset{\sim}{x} \in A$ iff $x \notin A_{2}$.

It is clear that $x \in A \Leftrightarrow \underset{\sim}{x} \subseteq A$ and that ${ }_{x \in A} \Leftrightarrow \underset{\sim}{x} \subseteq A$.
2.6. Definition. [5] A double-topology (DT in brief) on a set X is a family τ of DS's in X satisfying the following axioms:

T1: $\phi, \underset{\sim}{X} \in \tau$,
T2: $G_{1} \cap G_{2} \in \tau$ for any $G_{1}, G_{2} \in \tau$,
T3: $\cup G_{j} \in \tau$ for any arbitrary family $\left\{G_{j}: j \in J\right\} \subseteq \tau$.
In this case the pair (X, τ) is called a double-topological space (DTS in brief), and any DS in τ is known as a double open set (DOS in brief). The complement \bar{A} of a DOS A in a DTS is called a double closed set (DCS in brief) in X.
2.7. Definition. [5] Let (X, τ) be a DTS and $\mathrm{A}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ be a DS in X .

Then the interior and closure of A are defined by:

$$
\begin{aligned}
\operatorname{int}(A) & =\bigcup\{G: G \text { is a } D O S \text { in } X \text { and } G \subseteq A\}, \\
\operatorname{cl}(A) & =\cap(H: H \text { is a } D C S \text { in } X \text { and } A \subseteq H\}, \text { respectively. }
\end{aligned}
$$

It is clear that $\mathrm{cl}(\mathrm{A})$ is a DCS in and $\operatorname{int}(\mathrm{A})$ a DOS in X . Moreover, A is a DCS in X iff $\mathrm{cl}(\mathrm{A})$ $=\mathrm{A}$, and A is a DOS in X iff $\operatorname{int}(\mathrm{A})=\mathrm{A}$.
2.8. Example. [5] Any topological space (X, τ_{0}) gives rise to a DT of the form
$\tau=\left\{A^{\prime}: A \in \tau_{0}\right\}$ by identifying a subset A in X with its counterpart $\mathrm{A}^{\prime}=\left(\mathrm{A}, \mathrm{A}^{\mathrm{c}}\right)$, as in Remark
2.2.

3- The Constructs Dbl-Top and Bitop:
We begin recalling the following result which associates a bitopology with a double topology.
3.1. Proposition. [5] Let (X, τ) be a DTS.
(a) $\tau_{1}=\left\{A_{1}: \exists A_{2} \subseteq X\right.$ with $\left.A=\left(A_{1}, A_{2}\right) \in \tau\right\}$ is a topology on X .
(b) $\tau_{2}^{*}=\left\{A_{2}: \exists A_{1} \subseteq X\right.$ with $\left.A=\left(A_{1}, A_{2}\right) \in \tau\right\}$ is the family of closed sets of the topology $\tau_{2}=\left\{A_{2}^{c}: \exists A_{1} \subseteq X\right.$ with $\left.A=\left(A_{1}, A_{2}\right) \in \tau\right\}$ on X .
(c) Using (a) and (b) we may conclude that $\left(X, \tau_{1}, \tau_{2}\right)$ is a bitopological space.
3.2. Proposition. Let (X, u, v) be a bitopological space. Then the family

$$
\left\{\left(U, V^{c}\right): U \in u, V \in v, U \subseteq V\right\}
$$

Is a double topology on X .
Proof. The condition $U \subseteq V$ ensures that $U \cap V^{c}=\phi$, while the given family contains $\underset{\sim}{\phi}$ because $\phi \in u, v$, and it contains $\underset{\sim}{X}$ because $X \in u, v$. Finally this family is closed under finite intersections and arbitrary unions by Definition 2.3 (d, e) and the corresponding properties of the topologies u and v.
3.3. Definition. Let (X, u, v) be a bitopological space. Then we set

$$
\tau_{u v}=\left\{\left(U, V^{c}\right): U \in u, V \in v, U \subseteq V\right\}
$$

and call this the double topology on X associated with (X, u, v).
3.4. Proposition. If (X, u, v) is a bitopological space and $\tau_{u v}$ the corresponding DT on X , then

$$
\left(\tau_{u v}\right)_{1}=u \text { and }\left(\tau_{u v}\right)_{2}=v .
$$

Proof. $U \in u$ implies $(U, \phi) \in \tau_{v v}$ since $U \subseteq X \in v$, so $u \subseteq\left(\tau_{u v}\right)_{1}$. Conversely, take
$U \in\left(\tau_{u v}\right)_{1}$. Then $(U, B) \in \tau_{u v}$ for some $B \subseteq X$, and now $U \in u$. Hence $\left(\tau_{u v}\right)_{1} \subseteq u$, and the first equality is proved.

The proof of the second equality may be obtained in a similar way, and we omit the details.

4- Pairwise Regular and Pairwise Completely regular Double-

 Topological Spaces:In this section we shall investigated the concept of pairwise regular and pairwise completely regular in double topological spaces.
4.1. Definition. In a bitopological space $(X, u, v), \mathrm{u}$ is said to be regular with respect to v if for each x in X there is a u-neighborhood base of v -closed sets or equivalently if for x in X and each u-closed set F with $x \notin F$ there are u-open set G and v-open set H such that $x \in G$ and $F \subset H$ and that $G \cap H=\phi .(X, u, v)$ is said to be pairwise regular if u is regular w.r.t v and v is regular w.r.t u .
4. 2. Proposition. If (X, τ) is pairwise regular DTS then for every point $a \in X$ and every neighborhood N_{0} of a, there exists a neighborhood M of a such that $\left.\mathrm{cl} M \subseteq\right)(L$ for $M, L \in \tau$.

- Proof:

Let (X, τ) pairwise regular, let N be any neighborhood of $\underset{\sim}{a}$,
$\exists D O S G$ such that $\underset{\sim}{a} \in G \subset N$, since \bar{G} is $D C S \underset{\sim}{a} \notin \bar{G}$, by regularity
$\exists M, L \in \tau, \underset{\sim}{a} \in M, \underset{\sim}{a} \notin L, \bar{G} \subseteq L, M \subseteq() \bar{L}$.
To prove $\mathrm{cl} M \subseteq)(L$,
Let $M=(B, C), L=(F, D)$
$\because M \subseteq() \bar{L} \rightarrow M \cap \overline{(() \bar{L})}=\phi$
$\therefore c l(B, C) \subset(\phi, F)$ and socl $M \subset)(L$.
4.3. Definition. In a bitopological space $(X, u, v), u$ is say to be completely regular w.r.t. v if for each point x and each u - open neighborhood U of x , there is a u-lower semi-continuous (l.s.c) and v -upper semi-continuous (u.s.c) function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\mathrm{x})=1$ and f $(\mathrm{X} \backslash \mathrm{U})=0 .(X, u, v)$ is say to be pairwise completely regular if u is completely regular, if u is completely regular w.r.t v and v is completely regular w.r.t u .
4.4. Proposition. If (X, u, v) is pairwise completely regular then $\left(X, \tau_{u v}\right)$ is pairwise completely regular.

Proof:

Let u be completely regular w.r.t v then for each x in X and each u-open neighborhood U of x $\exists \mathrm{u}$-(1.s.c) and v -(u.s.c) function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\mathrm{x})=1$ and $\mathrm{f}(\mathrm{X} \backslash \mathrm{U})=0$.
Take $G=(U, \phi) \in \tau_{u v}$ then $x \in U$ is means that $\underset{\sim}{x} \in G$ then G is open neighborhood $\underset{\sim}{x}$ then there exist l.s.c and u.s.c function such that $\mathrm{f}(\underset{\sim}{x})=1$ and $\mathrm{f}(\mathrm{X} \backslash \mathrm{G})=0$.
Now let v be completely regular w.r.t u then for each $y \in X$ and each v-open neighborhood V of $\mathrm{y} \exists \mathrm{v}$-(l.s.c) and u-(u.s.c) function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\mathrm{y})=1$ and $\mathrm{f}(\mathrm{X} \mid \mathrm{V})=0$.
Take $H=\left(\phi, V^{c}\right) \in \tau_{u v}$ hence $y \notin V^{c} \rightarrow \underset{\sim}{y} \in H$ then H is open neighborhood of $\underset{\sim}{y}$ then there exist 1.s.c and u.s.c function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\underset{\sim}{y})=1$ and $\quad \mathrm{f}(\mathrm{X} \backslash \mathrm{H})=0$.
4.5. Proposition. If (X, τ) is pairwise completely regular then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise completely regular.

Proof:

Let (X, τ) be pairwise completely regular, to prove τ_{1} is completely regular w.r.t τ_{2}.
For each x in X and $G=(A, B) \in \tau$ with $\underset{\sim}{x} \in G$ then $x \in A \in \tau_{1}$, there exist τ_{1}-(l.s.c) and τ_{2} (u.s.c) function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\mathrm{x})=1$ and $\mathrm{f}(\mathrm{X} \backslash \mathrm{A})=0$. (now to prove τ_{2} is completely regular w.r.t τ_{1}), take y in x and let $H=(C, D) \in \tau$ an open neighborhood of $\underset{\sim}{y}$, this means that $y \notin D, y \in D^{c} \in \tau_{2}$, there is τ_{2}-(1.s.c) and τ_{1}-(u.s.c) function $f: X \rightarrow[0,1]$ such that $\mathrm{f}(\mathrm{y})=1$ and $\mathrm{f}\left(\mathrm{X} \backslash D^{c}\right)=0$ then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise completely regular.
4.6. Corollary. If (X, u, v) is pairwise completely regular iff $\left(X, \tau_{u v}\right)$ is pairwise completely regular.
Proof: Necessity follow from proposition 4.4 and Sufficiency from proposition 4.5 and proposition 3.6.
4.7. Theorem. Product of pairwise completely regular bitopological spaces is pairwise completely regular.
4.8. Proposition. Product of pairwise completely regular ($X, \tau_{u v}$) space is pairwise completely regular.

Proof:

Let $\left(X_{\alpha}, \tau_{u_{\alpha} v_{\alpha}}\right)_{\alpha \in \Delta}$ be a family spaces. Let $X=X\left\{X_{\alpha}: \alpha \in \Delta\right\}$ and $\tau_{u v}=X\left\{\tau_{u_{\alpha} v_{\alpha}}: \alpha \in \Delta\right\}$. For $x \in X$ and $G=(U, \phi) \in \tau_{u v}$, with $x \in U$ then $\underset{\sim}{x} \in G$, let us call a $\tau_{u v}-$ l.s.c , $\tau_{u v}-$ u.s.c function $f: X \rightarrow[0,1]$ meant for $(\underset{\sim}{x}, \mathrm{G})$ whenever $\mathrm{f}(\underset{\sim}{x})=1$ and $\mathrm{f}(\mathrm{X} \backslash \mathrm{G})=0$. If $f_{1}, f_{2}, \ldots, f_{n}$ are functions meant for $\left(\underset{\sim}{x}, \mathrm{G}_{1}\right),\left(\underset{\sim}{x}, \mathrm{G}_{2}\right), \ldots,\left(\underset{\sim}{x}, \mathrm{G}_{\mathrm{n}}\right)$ and $\operatorname{if} \mathrm{g}(\underset{\sim}{x})=\sup \left\{\mathrm{f}_{\mathrm{i}}(\underset{\sim}{x}): \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ then g
is a function meant for $\left.\underset{\sim}{x}, \bigcap\left\{G_{i}: i=1, \ldots, n\right\}\right)$. Consequently in $\left(X, \tau_{u v}\right) \cdot \tau_{u}$, is completely regular if for each $x \in X$ and $\tau_{u v}$-open neighborhood G of $\underset{\sim}{x}$ belonging to some sub-base for the topology $\tau_{u v}$, there is a function f meant for $(\underset{\sim}{x}, \mathrm{G})$. Let $\underset{\sim}{x} \in G$ and $G_{\alpha} \in \tau_{u_{\alpha} v_{\alpha}}$ be neighborhood of x_{α} in X_{α}, and let f be the function meant for $\left.\underset{\sim}{x}, G_{\alpha}\right)$, then $f_{0} P_{\alpha}$ where P_{α} is the projection mapping onto X_{α} becomes a function meant for $\left(\underset{\sim}{x}, P_{\alpha}^{-1}\left(G_{\alpha}\right)\right)$. Since $\left\{P_{\alpha}^{-1}\left(G_{\alpha}\right)\right\}$ from sub-base for $\tau_{u v}$. Now for y in X and $H=\left(\phi, V^{c}\right) \in \tau_{u v}$ with $y \notin V^{c} \rightarrow \underset{\sim}{y} \in H$, similarly as above we show that P_{α} is the projection mapping onto X_{α} becomes a function meant $\left.\underset{\approx}{\operatorname{for}} \underset{\alpha}{y,} P_{\alpha}^{-1}\left(H_{\alpha}\right)\right)$. Since $\left\{P_{\alpha}^{-1}\left(H_{\alpha}\right)\right\}$ form a sub-base for τ_{w}.
4. 8. Proposition. Product of pairwise completely regular double topological space (X, τ) is pairwise completely regular.
4. 9. Proposition. Product of pairwise completely regular $\left(X, \tau_{1}, \tau_{2}\right)$ space is pairwise completely regular.

Proof:

Let $\left(X_{\alpha}, \tau_{1 \alpha}, \tau_{2 \alpha}\right)_{\alpha \in \Delta}$ be a family space. Let $X=X\left\{X_{\alpha}: \alpha \in \Delta\right\}$ and $\tau_{1}=X\left\{\tau_{1 \alpha}: \alpha \in \Delta\right\}$ and $\tau_{2}=X\left\{\tau_{2 \alpha}: \alpha \in \Delta\right\}$. For $x \in X$ and
$G=(A, B) \in \tau$, with $\underset{\sim}{x} \in G, A \in \tau_{1}$ with $x \in A$, let us call a τ_{1}-(l.s.c) and τ_{2}-(u.s.c) function $f: X \rightarrow[0,1]$ meant for (x, A) whenever $\mathrm{f}(\mathrm{x})=1$ and $\mathrm{f}(\mathrm{X} \backslash \mathrm{A})=0$. If $f_{1}, f_{2}, \ldots, f_{n}$ are functions meant for $\left(x, \mathrm{~A}_{1}\right),\left(x, \mathrm{~A}_{2}\right), \ldots,\left(x, \mathrm{~A}_{\mathrm{n}}\right)$ and if $\quad \mathrm{g}(x)=\sup \left\{\mathrm{f}_{\mathrm{i}}(x): \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ then g is a function meant for $\left(x, \cap\left\{A_{i}: i=1, \ldots, n\right\}\right)$. Consequently in (X, τ_{1}, τ_{2}), τ_{1} is completely regular w.r.t τ_{2}, if for each $x \in X$ and each τ_{1}-open neighborhood A of x belonging to some sub-base for the topology τ_{1}, there is a function f meant for (x, A). Let $x \in A$ and $A_{\alpha} \in \tau_{1 \alpha}$ be a neighborhood of x_{α} in X_{α} and let f be the function meant for $\left(x_{\alpha}, A_{\alpha}\right)$, then $f_{0} P_{\alpha}$ where P_{α} is the projection mapping onto X_{α} becomes a function meant for $\left(x, P_{\alpha}^{-1}\left(A_{\alpha}\right)\right)$. Since $\left\{P_{\alpha}^{-1}\left(A_{\alpha}\right)\right\}$ from a sub-base for τ_{1}, we have shown that τ_{1} is completely regular w.r.t τ_{2}, now to prove that τ_{2} is completely regular w.r.t τ_{1}. For $y \in X$ and let $H=(C, D) \in \tau$ $y \in H$, this means that $y \notin D, y \in D^{c} \in \tau_{2}$, let us call a τ_{2}-(l.s.c) and τ_{1}-(u.s.c) function $f: X \rightarrow[0,1]$ meant for $\left(y, D^{c}\right) \mathrm{f}(\mathrm{y})=1$ and $\mathrm{f}\left(\mathrm{X} \backslash D^{c}\right)=0$ and we complete as above.

References

[1] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1), (1986) 84-96.
[2] Chang, C. L. Fuzzy Topological Spaces, J. Math. Appl. 24, (1968) 182-190.
[3] Coker, D. A note on Intuitionistic Sets and Intuitionistic Points, Turkish J. Math. 20(3), (1996) 343-351.
[4] Coker, D. and Demirci , M. on Intuitionistic Fuzzy Points, Notes IFS 1(2), (1995) 79-84. [5] Coker, D. and Es, A. H. on Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Mathematics 3(4), (1995) 899-909.
[6] Fletcher, P. H. B. Holye and C. W. Patty, The Comparison of Topologies, Duke Math. J.36, (1965) 325-331.
[7] Garia, J.G. and Rodabaugh, S.E. Order-Theoretic, Topological, Categorical Redundancies of Interval-Valued Sets, Grey Sets, Vague Sets, Interval-Valued (Intuitionistic) Sets, (Intuitionistic) Fuzzy Sets and Topologies, Fuzzy Sets and Systems 156(3), (2005) 445-484.
[8] Kelly, J. G. Bitopological Space , Proc. London Math. Soc.13, (1963) 71-89.
[9] Ozcag, S. and Coker, D. on Connectedness in Intuitionistic Fuzzy Special Topological Spaces, Int. J. Math. Math. Sci. 21(1),33-40, 1998.
[10] Zadeh, L. A. Fuzzy Sets, Inform. and Control 8, (1965) 338-353.

