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Hypothyroidism induced bymethimazole (MMI), has a negative impact on the postnatal development. Neonatal
GranulocyteMacrophage-Colony Stimulating Factor [GM-CSF; 50 μg/kg, intramuscular injection at postnatal day
(PND) 17] had been tested to ameliorate the effects ofMMI [0.05%, (weight per volume;w/v), intraperitoneal in-
jection at PND15]-induced hypothyroidism inWistar rats. The hypothyroid conditions due to the administration
of MMI produced inhibitory effects on neonatal serum thyroxine (T4), 3,5,3′-triiodothyronine (T3), neutrophil
count in bone marrow and blood, cerebellar glutathione (GSH) and acetylcholinesterase (AchE), although it
induced stimulatory actions on serum thyrotropin (TSH), growth hormone (GH), insulin growth factor-II (IGF-
II), tumor necrosis factor alpha (TNF-α), and cerebellar malondialdehyde (MDA) at PND 19. The treatment
with GM-CSF could reverse the depressing and stimulating effects ofMMI on these markers except for cerebellar
AchE where its enhancement was non-significant (P N 0.05) at tested PND. Thus, neonatal GM-CSF may be re-
sponsible for suppressing autoimmune responses and preventing hypothyroidism.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Thyroid hormones (THs) could regulate the development and criti-
cal biochemical functions in developing brain [1–3]. MMI (anti-thyroid
drug) could inhibit THs synthesis because it could interfere with the
conversion of iodide (Iˉ) to iodine (I°) and consequently, the iodination
of tyrosyl groups [4]. Neonatal rats which received MMI in their
mother's milk rendered hypothyroid [5]. This deficiency could delay
the growth and result in an irreversible impairment, maldevelopment,
physical retardation and neural dysfunctions [6]. Hypothyroidism asso-
ciated also with disturbed cytokines [7], AchE activity [8], and the
balance between the generation of reactive oxygen species (ROS) and
antioxidants in most developing brain regions [9]. Oxidative stress as a
result of hypothyroidism could lead to cellular ionic imbalance, signal
transduction, and enzyme activity modifications in mammalian central
nervous system (CNS) [10]. This variation may predispose structures to
oxidative stress-related neurodegenerative disorders.
acetylcholine receptors; ATCI,
B, 5,5′-dithiobis-2-nitrobenzoic
age-Colony Stimulating Factor;
is; Iˉ, iodide; I°, iodine; IGF-II, in-
dialdehyde;MMI,methimazole;
-triiodothyronine; T4, thyroxine;
umor necrosis factor alpha; TPO,
ptors; TSH, Thyrotropin.

ed).
THs dysfunctions caused by MMI exposure have been shown to sup-
press the hematopoiesis and immune system [7,11]. GM-CSF is produced
by normal human thyrocytes and regulates the cell development and
function [12,13]. It has a specific activity onprogenitor cells of neutrophils
and its administration in experimental animals could increase the neu-
trophils in bone marrow and blood [14,15]. In addition, it has been ap-
plied for treatment of different disorders like thyroid dysfunctions [16,
17], embryo teratogenesis in diabetic pregnantmice [18], healing process
and extra-hepatic systemicmetastases [19,20]. SinceMMI severely affect
the neonatal development, the aim of this studywas to examine the abil-
ity of GM-CSF in treating the MMI-induced hypothyroidism in neonatal
rats through measurement of serum THs, TSH, GH, IGH-II and TNF-α.
Moreover, the current study purposed to detect the changes in the activ-
ity of AchE and prooxidant (lipid peroxidation; LPO)/antioxidant (GSH;
main brain antioxidant) markers in neonatal cerebellum. In this regard,
cerebellum was used as a model system because this region is highly
sensitive to any stress (TH disturbance) and its development occurs in
postnatal rats [21]. This developmental stage reflects the time period
between the 3rd trimester of gestation to the 2nd postnatal year in
the human [22].

2. Materials and methods

2.1. Chemicals

MMIwas purchased from Sigma-Aldrich, St. Louis, MO, USAwhile
GM-CSF was obtained from Novartis Pharma, Switzerland. T4, T3,
TSH, GH, IGF-II and TNF-α kits were purchased from Calbiotech INC
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Fig. 1. Effect of recombinant GM-CSF onMMI-induced hypothyroidism: Neutrophil count
in bonemarrow (storage) and blood (circulating) at PND 19. The values aremeans± SEM
(n = 6). MMI is methimazole [0.05% (w/v), intraperitoneal injection at PND 15] and
GM-CSF is Granulocyte Macrophage-Colony Stimulating Factor (50 μg/kg, intramuscular
injection at PND 17). * denotes to significant difference at P b 0.05.
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(CBI), USA. All other reagents were of the purest grades commercially
available.

2.2. Animals and treatments

The experimental animals used in this studyweremale white albino
rats (Rattus norvegicus (Wistar strain); 40 pups aged 15 PND). The rats
were obtained from the National Institute of Ophthalmology, Giza,
Egypt. They were fed a standard rodent pellet diet manufactured by
an Egyptian company producing oil and soap aswell as some vegetables
as a source of vitamins. Tap water was provided and the rats were
allowed to drink ad libitum. The rats were exposed to constant daily
12h light: 12h darkness each (lights on at 06:00 h) and50±5% relative
humidity. All the procedures used for the experimental animals were
in accordance with the guidelines and the recommendations of the
Canadian Council on Animal Care (CCAC) [23]. All efforts were made
to minimize the number of animals used and their suffering.

The experimental animals were divided into four groups of 10 rats
each. Single injection of 0.05% (weight per volume; w/v) MMI [24]
was intraperitoneal at PND 15 while recombinant human GM-CSF
(50 μg/kg; Leucomax flacon, 150 mg) was intramuscular at PND 17.
Groups 1 and 2 received 0.5 ml of sterile saline but Groups 3 and 4 re-
ceived 0.5ml of MMI at PND 15. After 48 h (PND 17), Groups 2 and 4 re-
ceived recombinant GM-CSF [25]. Two days later (PND 19), animals
were euthanized, blood samples were collected and centrifuged at
10,000 rpm. Neonatal cerebellum was homogenized in 0.25 M cold su-
crose by using a Teflon homogenizer (Glas-Col, Terre Haute, USA) and
kept at −70 °C.

2.3. Quantification of circulating and storage neutrophils

Total blood leukocytes were counted using the Digicell 500 cell
counter (Contraves AG, Switzerland). Blood smears were prepared
and stained with Wright stain, and a 100–200 cell differential count
was performed. Absolute neutrophil counts were determined by the
multiplication of the nucleated cell count by the percentage of neutro-
phils in the differentials. Neutrophil bone marrow pools were deter-
mined [26]. Briefly, postnatal femurs were aseptically removed and
the contents were flushed into a known quantity of hank's buffer salt
solution (HBSS; Gibco Laboratories, Grand Island, NY). Total cell counts
were performed, and a 500-cell differential count was obtained on
Wright-stained cytospin preparations.

2.4. RIA examination

The concentrations of serum T4 [27], T3 [28], TSH [29], GH [30],
IGF-II [31] and TNF-α [32] were estimated quantitatively by RIA in
Diabetic Endocrine Metabolic Pediatric Unit, Center for Social and
Preventive Medicine, New Children Hospital, Faculty of Medicine, Cairo
University, Egypt.

2.5. Developmental and biochemical markers in neonatal cerebellum

2.5.1. Determination of acetylcholinesterases activity
The AchE activity was assessed by standard spectrophotometric

Ellman'smethod. Acetylthiocholine iodide (ATCI)was used as an appro-
priate substrate and 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) was
used as a chromogen [33]. The activity was expressed as μmole of
ATCI hydrolyzed/min/mg of protein. All measurements were done in
duplicate. The datawere normalized to the amount of proteinmeasured
by the Lowry method, using the Bio-Rad DC protein assay and bovine
serum albumin as the standard.

2.5.2. Glutathione (GSH) concentration
The method was based on the development of a yellow color when

DTNB was added to compounds containing sulfhydryl groups [34].
Supernatants in phosphate buffer (500 μL) were added to 3 mL of
4% sulfosalicylic acid. The mixture were centrifuged at 1600 ×g for
15 min. Supernatants (500 μL) were taken and added to Ellman's
reagent. The absorbance was measured at 412 nm after 10 min. The
GSH concentration was expressed as nmol/100 mg tissue.

2.5.3. Malondialdehyde (MDA) level
The MDA concentrations, index of LPO, were determined spectro-

photometrically [35]. Briefly, supernatant was mixed with 1 mL of 5%
trichloroacetic acid (TCA) and centrifuged at 2500 ×g for 10 min. An
amount of 1 mL of thiobarbituric acid (TBA) reagent (0.67%) was
added to 500 μL of the supernatant and heated at 90 °C for 15 min.
The mixture was then cooled and measured for absorbance at 532 nm.
The MDA values were calculated by using 1,1′,3,3′-tetraethoxypropane
as standard and expressed as nmoles MDA/100 mg/h.

2.6. Statistical analysis

SPSS (version 20) statistical program (SPSS Inc., Chicago, IL) was
used to carry out a one-way analysis of variance (ANOVA) on our data.
When significant differences by ANOVA were detected, analysis of
differences between the means of the treated and control groups were
performed by using Dunnett's t test.

3. Results

3.1. Effect of GM-CSF on MMI-induced decrease in circulating and
storage neutrophils

The treatment with GM-CSF could prevent neutropenia caused by
MMI at PND 19 (Fig. 1). Compared to the control group, MMI did de-
crease circulating (68.1%) and storage (55.1%) neutrophils significantly
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(P b 0.05), while GM-CSF alone increased them (41.7 and 43.5%, respec-
tively; P b 0.05). Treatment with GM-CSF could restore the levels of
decreased circulating and storage neutrophils (62.8% and 30.5%, respec-
tively; P b 0.05) after MMI treatment.

3.2. Effect of GM-CSF on MMI-induced alterations in neonatal serum
markers at PND 19

MMI induced a depression in T3 and T4 levels (66.6 and 50.4%, re-
spectively; P b 0.001; Fig. 2). GM-CSF did not show any effect on the
levels of THs but could reverse the depressive effect of MMI (57.1 and
40.1%, respectively; P b 0.001). Compared to the control, hypothyroid
group showed an increase in TSH, GH, IGF-II and TNF-α levels (56.5,
47, 82.3, 38.6%, respectively; P b 0.001), while their levels were in-
creased (34.5, 38.8, 63.7 and 26.6%, respectively; P b 0.001) in hypothy-
roid treated group. Similarly to the THs, GM-CSF alone did not show any
effects on the levels of these markers (Figs. 3 and 4).

3.3. Effect of GM-CSF onMMI-induced disruption to the developmental and
biochemical markers in neonatal cerebellum at PND 19

The hypothyroid group showed an increase in the oxidative stress
through decreased GSH (44.9%, P b 0.001) and increased MDA levels
(58.2%, P b 0.001) which are a marker for lipid peroxidation (Fig. 5).
Treatment with GM-CSF could in both cases inhibit (45.7 and 25.4%, re-
spectively; P b 0.001) the effect of MMI. Similarly to the decreased THs
and GSH levels, the activity of AchE was decreased (30.4%; P b 0.05) in
Fig. 2. Effect of neonatal recombinant GM-CSF on MMI-induced hypothyroidism: Serum
T3 and T4 levels at PND 19. The values are means ± SEM (n = 6). MMI is methimazole
[0.05% (w/v), intraperitoneal injection at PND 15] and GM-CSF is Granulocyte
Macrophage-Colony Stimulating Factor (50 μg/kg, intramuscular injection at PND 17).
*** denotes to significant difference at P b 0.001.

Fig. 3. Effect of recombinant GM-CSF on MMI-induced hypothyroidism: Serum TSH, GH
and IGF-II levels at PND 19. The values are means ± SEM (n = 6). MMI is methimazole
[0.05% (w/v), intraperitoneal injection at PND 15] and GM-CSF is Granulocyte
Macrophage-Colony Stimulating Factor (50 μg/kg, intramuscular injection at PND 17).
*** denotes to significant difference at P b 0.001.
hypothyroid group compared to control groups. However, the activity
of AchE in MMI group was not significantly (P N 0.05) enhanced by
GM-CSF treatment.
Fig. 4. Effect of recombinant GM-CSF on MMI-induced hypothyroidism: Serum TNF-α
level at PND 19. The values are means ± SEM (n = 6). MMI is methimazole [0.05%
(w/v), intraperitoneal injection at PND 15] and GM-CSF is Granulocyte Macrophage-
Colony Stimulating Factor (50 μg/kg, intramuscular injection at PND 17). *** denotes to
significant difference at P b 0.001.



Fig. 5. Effect of recombinant GM-CSF on MMI-induced hypothyroidism: Cerebellar MDA,
GSH andAchE levels at PND19. The values aremeans±SEM (n=6).MMI ismethimazole
[0.05% (w/v), intraperitoneal injection at PND 15] and GM-CSF is Granulocyte Macro-
phage-Colony Stimulating Factor (50 μg/kg, intramuscular injection at PND 17). * denotes
to significant difference at P b 0.05 while *** denotes to P b 0.001. NS denotes to non-
significant.
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4. Discussion

Previous studies reported the immaturity of immune responses in
perinatal and neonatal development periods and recommended using
different recombinant cytokines includingGM-CSF for immune stimula-
tion [36,37]. Furthermore, hypothyroidism correlated with immune
dysfunction and decreased count of immune cells in spleen and bone
marrow [38]. MMI, as one of the anti-thyroid drugs, could reduce the
myeloid colony growth leading to agranulocytosis [39,40]. GM-CSF
had been able to increase the hematopoiesis of neutrophils and increase
their number in blood [14,15]. Therefore, it was interesting to study the
effect of GM-CSF on experimentally induced hypothyroidism in rat
neonates through assessment of THs, TSH,GH, IGF, TNF-α and cerebellar
oxidative stress & AchE activity. THs, TSH and IGF, GH, TNFα and AchE
activity were found to be vital in the development [41–44].

MMI has been applied in this study to develop hypothyroidism in
neonatal rats. It was found to decrease the serumTHs levels and neutro-
phil count in both bone marrow and blood, while the levels of serum
TSH, GH, IGF-II and TNF-α were elevated at examined PND compared
to control group. MMI could induce its action either by reducing
the binding of T3 to nuclear thyroid receptors (TRs) [45], inhibiting
thyroperoxidase (TPO) activity (which normally oxidizes anion Iˉ to I°
during T4 synthesis in the thyroid gland), blocking the organification
of thyroglobulin or delaying THs synthesis [46]. Similar to previous find-
ings, the fall in THs associated with elevated TSH, GH and IGF-II [47,48].
The elevated TNF-ɑ level indicated an increase in proinflammatory
cytokine release in hypothyroidism [49].

TreatmentwithGM-CSFwith a single dose (50 μg/kg)was applied in
this study to avoid the neonatal oxidative stress [50]. This treatment in-
dicated an antagonistic effect on MMI-induced hypothyroidism which
was related to reduced neutrophil counts and THs but increased TSH,
GH, IGF-II and TNF-α levels. Similarly, this cytokine was able to modu-
late teratogen-induced effects by activation of immune cells and their
migration into the utero and placental compartments [51]. GM-CSF
was able to suppress experimental autoimmune thyroiditis/thyroid
dysfunction [17] by blocking the TPO antibodies [52], activating the reg-
ulatory T cells [17] or activating neutrophils, macrophages, monocytes
and eosinophils [53]. This indicates that the decreased level of TNF-α
after GM-CSF treatment was essential mechanism of action against
hypothyroidism. In addition, TNF-α was found to increase apoptotic
mechanisms in embryo [54]. The immunoprotective action of GM-CSF
could ensure immune system homeostasis and decrease the vulnerabil-
ity to stress-induced disease (7). Generally, the neonatal treatmentwith
GM-CSF could improve the defensemechanisms via regulating hemato-
poiesis, THs, growth factors and TNF-α.

The increased neonatal cerebellarMDA level in the current hypothy-
roid state was associated with elevated TNF-α level and reduced
cerebellar GSH & AchE levels at PND 19 in comparison with their corre-
sponding control. Thus, the augmented oxidative stress was related to
increase of TNF-α level and decreased AchE activity [55]. These results
supported the hypothesis that decreased THmaybe a relevant predictor
for long-lasting developmental neurotoxicity [56]. This could be a result
of impaired synapse formation and dysregulation of neurotransmitters
[57]. Indeed, hypothyroidism was found associated with several brain
disorders and neuro-degeneration in postnatal life [58]. The inverse
link between TNF-α and THs or AchE which could be responsible for
hypothalamic–pituitary–thyroid axis (HPTA) dysfunction had been
proved. This could lead, in turn, to the malfunction of developing cere-
bellum and has deleterious effect on the health of the newborns and
adulthood [43]. Thus, the dysfunction in neonatal thyroid–brain axis
of theMMI-hypothyroid groupmight be amain cause of developmental
disorders.

Our current findings strongly support the working hypothesis that
maintaining the balance between antioxidants (as cerebellar GSH) and
ROS (cerebellar MDA) during postnatal period may modulate the
neonatal healthy life [43].This protection might be mediated by THs
which regulate the growth and brain development [59]. AchE activity
was maintained in the brain during the postnatal period, and THs
could regulate its activity through their action on nerve growth factor
or through their genomic and non-genomic actions [60]. Furthermore,
GH and IGF (neurotrophic and neuroprotective factors) axis could
regulate its activity during pre- and post-weaning periods [61].

GM-CSF appeared to have a protective effect against MMI-induced
oxidative stress and neuro-damage in developing cerebellum. This can
be attributed to the suppressing effect of GM-CSF on serum TNF-α and
cerebellar MDA related inflammatory response. Also, this treatment
could increase the cerebellar GSH andAchE but the latterwas not signif-
icant at tested day. This can be explained as GM-CSF couldmodulate the
development of the immune system, reduce production of antibodies
against the acetylcholine receptors (AchRs) and promote defense
against hypothyroidism [62]. Furthermore, GM-CSFwas found as essen-
tial in dendritic cell survival and differentiation (in vitro and in vivo) and
in the development of neonatal CNS [63,64]. Indeed, the maternal
immune stimulation was found to decrease the mRNA expression of
TNFα in embryo and protect against the teratogenic insult [65]. Thus,
optimal neonatal immune health may be important for protection
against events leading to certain neonatal defects. These results support
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the view that immune/thyroid–brain interactions might be important
in the defense and support the developing cerebellum.

In conclusion, neonatal hypothyroidism might cause patho-
physiological and patho-development states which impair HPTA, GH/
IGF axis and the development of cerebellum. Also, the deficiency of THs
might be directly related to the impairment of the cellular immune sys-
tem (neutropenia) and enhancement of cerebellar oxidative stress.
Therefore, it is necessary to develop new anti-thyroid drugs without
causing oxidative stress and cellular damage. Moreover, GM-CSF as a
hematopoietic cytokine was an effective treatment against the neonatal
hypothyroidism. These protective effectsmight be either directly or indi-
rectly related to TH action, and depend on the intensity and nature of the
dose, experimental duration, developmental period, and type of biologi-
cal fraction studied. Further research is needed to investigate the molec-
ular mechanisms that regulate GM-CSF production. Also, further studies
are required to elucidate the potential associations with human health.
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