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Abstract:
The aim of this paper is to introduce the concept of a quasi-Banach

space for the sequence space ¢, 0< p<1. This concept is based on the

p )
Important extension of a quasi-normed space concept as defined in [3]. We

consider the space of sequence ¢, 0< p<1and we prove this space is a

o
quasi-normed space but it is not normed space. Thus, we explore many
interesting results connected with convergent sequence in a quasi-normed
space. We show that, the quasi-normed space under which condition is a
complete quasi-normed space or a quasi Banach space. We also show that

every Banach space is a quasi Banach space and the converse is not true.
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1. Introduction

Functional analysis is a scientific discipline of fairly recent origin. It
provides a power full tool to discover solution to problems occurring in
pure, applied social sciences, for instance physics, engineering, medicine,
agro-industries, ecology, economics and bio-mathematics [2, 7].

One of the important notions in functional analysis is the concept of
Banach space. This concept was introduced by Polish mathematician
Stefan Banach in 1922 and has received much attention in the literatures
([4, 6] and references therein).

The purpose of this paper is to introduce the notion of a quasi-Banach

space for sequence space ¢, where 0< p<1. This paper is organised as
follows. Section 2 devotes an introduction of the sequence space ¢,
0 < p <1.We give the definition of sequence space ¢, where 0< p<1, and

we show that it is not normed space. In section 3 we prove that, this space
Is a quasi-normed space and we give some interesting results concerning
this notion. In the last section, we study the convergence and completeness

sequence in a quasi-normed space ¢, 0< p <1 in order to show thatitis a

quasi-Banach space.

2. Sequence space /,, 0<p<1
In this section, we mention the definition of sequence space ¢, 0< p <1,

as well as, some concepts and results related to this space.

Definition 2.1 [1]: The sequence space ¢, 0< p<1,is the space of all

sequences x ={x.} in R or C such that i|xi [P <o .

i=1
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Remark 2.2: The sequence space ¢, 0< p <1, with the function

- 1p
[ Xllp{ZIXi ° j
i=1

IS not a normed space, because the condition (3) of the norm definition [4]
Is not satisfied. To explain this remark, we consider the following
example:

Example 2.3: Let p=1/2, and suppose xand y are two sequences, where
x ={x,{=9{01,00,0,...{and y={y, }={0,0.2,0,0,...1.

Then we have:

o0

2
| X+Ylly, = (Z | X +Y; |l/2j = 0.5828424, and

i=1
0 2 o 2
”X”uﬁ”y“m:(ZIXi I”ZJ +(Zlyi I“Zj =03
i=1

i=1
It is clear that:
X+ Y o> XNz Y 2
Thus, the space ¢, 0<p<1,is not a normed space.

Lemma 2.4 [5]: Let {x,{ be any (real or complex) sequence and 0<p<1.

Then,

0

2%

i=1

p o
<%
i=1

3. Quasi-normed space for the space ¢, , 0<p<1

p H
In this section, we introduce the concept of a quasi-normed space for ¢,
0< p<1, i.e., we extend the concept of a quasi-normed space as in [3] to
the case of sequence space ¢,, 0< p<1. In this paper, we usually consider

the space X = ¢,, 0<p<L.
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Definition 3.1: Let X = ¢, 0< p<1. is a vector space over a field F. A

quasi-normon - isafunction _||.||:X — R.o such that:
(1) (I x|I=0 vxeX, I x| =0 ifand only if x =0,
(2) QXN =[2llIxI VxeX,VieF
(3) There exists a constant y >1such that,

dxeyl<y (IxI+ Jyl) VX, y e X

The pair (X, ol 1) is called a quasi-normed space. We say simply that o X

IS a quasi-normed space.

Proposition 3.2: The sequence space ¢, 0< p <1, with:

- 1/p
oI X1l =(Z | X; |p] IS a quasi-normed space.
i=1
Proof: We must satisfy the three conditions of definition 3.1
- 1/p
(1) Since | x, |20 Vi= | x||p=[2|xi |pj >0  Vxel,
i=1

and
X, =0<x=0 Vi < x=0

(2) Now, we have:

0 Up )
qII/”tXIIpZ(ZMXinJ Z(lelplxilpJ
i=1 i=1

—|AlIxll, ,vxet,, AeF

1/p

(3) Let x,yer,, where x= {x {and y= }y,{. Thenby using

2.4, we have:
A x+yls ZZ | % +y; ] SZ A% 1°+yi I?)
i=1 i=1

= gl XI5+ Yl

lemma
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This implies that:

dxeyly < (Qxn’ + Jiyie)” (3.1)
Now,

(X2 + oy 12)™ < @max g x I, iy )™

<2 (I xll, +dl v il,)

Thus,

(all X + Qv I)7” < 2 (Gl + v l,) (3.2)
From the inequality (3.1) and (3.2), we obtain:

Xyl < 2% (i, + Gyl
Hence the space ¢,, 0< p <1 is a quasi-normed space.
Remark 3.3: From the proposition 3.2, we note that a constant » in the
definition 3.1 with ¢ , 0< p <1, can be taken to be 2'* .

Remark 3.4: According to the definition 3.1 and the definition of the norm

as in [4], a normed space ¢,,1< p <o, With the norm

OO 1/p
||X||p=(Z|Xi I"j
i=1
Is a quasi-normed space. Conversely, in general, is not true and is true only
if =1, as it is shown in the following example:
Example 3.5: Consider the sequence space ¢,, 0<p<1, then we can

deduce that, from the remark 2.2 and the proposition 3.2, this space is not

normed space, but it may be a quasi-normed space.

4. Quasi-Banach space for the space ¢, 0<p<1
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In this section, we introduce the notion of a quasi-Banach space for the

space ¢ , 0<p<1. Then, we study the convergent sequence in the

p )

quasi-normed space.

4.1 Convergent sequence inthe space ¢_, 0<p<1

p!
This sub-section is to link the relation between the notion of a

quasi-convergent sequence and a quasi-Cauchy sequence.

Definition 4.1: Let ;X =¢_, 0< p<1 be a quasi-normed space.
(1) A sequence {x,{ in X is called a quasi-convergent to a point
Xe X if and

only if

ol X, = X[ -0 as n—oo
(2) A sequence {x,1 in X is a quasi-Cauchy sequence if and only

ol Xo = X [[=0 as n,m—o0.

Lemma 4.2: Let ,X be a quasi-normed space. Then every a

quasi-convergent sequence is a quasi-Cauchy sequence, but not conversely

in general.

Proof: Suppose {x, { is a quasi-convergent to a point x in X, then

ol X, —x || >0 as n—o. By condition (3) of the quasi-norm, we have:
q” Xy — X ”: q” Xp =X+ X=X, ”

< 7 (1% =]+ | X, —x[)>0 as n,m —oo.
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Hence, {x, { is a quasi-Cauchy sequence. For the converse, we take the

following example:

Example 4.3: Let X = C[-1,1] which is a vector space of all continuous

functions defined on [-1,1] with the following a quasi-norm:
1 1/2
J 1[I 100F o] (f eCl-L1)

Consider the sequence { f, { in C [-1,1],defined as follows:

0 , —1<x<0
f, (X) =4nx , 0<x<1/n
1 , 1/n<x<1

Then { f, (x)} is a quasi-Cauchy sequence in space C [-1,1], butitis nota

quasi-convergent to an element of this space [6].

Definition 4.4: A sequence {x, { in a quasi-normed space X is called a

quasi-bounded sequence if and only if there exists a positive real number

M such that || x, |[< M forall neN.

Theorem 4.5: Let . X be a quasi-normed space, then

(1) Every a quasi-Cauchy sequence is a quasi-bounded.
(2) A quasi-convergent sequence has a unique limit.
(3) A quasi-Cauchy sequence is a quasi-convergent if and only if it

has a quasi-convergent sub-sequence.

Proof: The proof of this theorem is very technical and can be found in [6]
with minor different.
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Definition 4.6: Let { x, {be a sequence in a quasi-normed space X .
(1) A series i x. is called a quasi-convergent to se X if and only if
n=1

S, =sl—=0  (n—>w),

where s is the limit of {S, {. Otherwise, it is a quasi-divergent.

(3) Aseries i x, IS called absolutely quasi-convergent if and only if

n=1

o0

2 all X ll<o

n=1

4.2 Completeness in the space ¢, 0<p<1

In this subsection, we prove that, a quasi-Cauchy sequence is a
quasi-convergent sequence.

Definition 4.8: A quasi-normed space, in which every a quasi-Cauchy
sequence is a quasi-convergent, is called a quasi-Banach space.

Remark 4.9: Now we can deduce that, the Banach space ¢ ,,1<p<w isa
guasi-Banach space. But the converse may not be true, as it is shown in the
following example:

Example 4.10: The sequence space ¢, 0<p<1 is a quasi-Banach space,

which will be proved in the theorem 4.12. But, it is not a Banach space by
remark 2.2.

Theorem 4.11: A quasi-normed space ,X is a complete if and only if

every absolutely a quasi-convergent series in X is also a

quasl-convergent In X
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Proof: Let . X be a complete and i ol X, l<eo. Then for n > m we have
n=1

q” Sn _Sm ”: q” Xm+1+"'+xn ” < e (q” Xm+l ||_|_...+ q” Xn ”) ! Where e 21
This implies that _||s,-S, >0 (m—x). Hence, {S, { is a Cauchy

sequence in , X and so a quasi-convergent, since X is a quasi-complete.

Thus ) x, isaquasi-convergent.

n=1
Conversely, let every absolutely a quasi-convergent series be a

quasi-convergent, and let {x, { be any a quasi-Cauchy sequence in X .

Then we may determine natural numbers n,, n,, ... with n, n,, ... such

that:

ol X =X, < 27 forall k e N, hence > | x

k=1

_Xnk ||<OO

N1

Our assumption implies that i (x, . —X,) converges to an element of
k=1

. X, Where the partial sums of this series isequal to x, —x, . Thuswe see

that {x, } is a quasi-convergent in X . Therefore, the quasi-Cauchy

sequence { x, { has a quasi-convergent sub-sequence {x, }. So by theorem
4.5 (3), we have {x,{ is a quasi-convergent in X . Hence, the space

sequence X is a complete.
Theorem 4.12: The sequence space ¢,, 0< p <1, is a quasi-Banach space.

Proof: From the proposition 3.4, the space ¢, , O<p<1, is a

quasi-normed space.
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It remains to prove that ¢ , 0<p<1, is a complete. Let {x, { be a

p ]
quasi-Cauchy sequence in ¢, 0< p<1, with x, =(x™,x{,..). For each

fixed k, 1x"1{ is a quasi-Cauchy sequence, because
K y
1/p
n m n m) P
| (M —x(™ | s[Z|x§)—x§ ] J =%, =x, I, forall nm> M
i=1l

Let x, =lim x{" . We first prove that the sequence {x} is an element of the

space ¢,. From the theorem 4.5 (1), we have | x, |, <M where M > 0.

Now, for any k,

K 1/p
@xf"wp] < %0, <M.

Now if n— oo, we obtain:

K 1p
(Z| X, |pj <M.
i=1
Since k is arbitrary, this shows that} x { € ¢,, 0<p<1, and that its

quasi-norm does not exceed M . Let x=x,. It remains to prove that
JIx,—xll,—0. Since {x, {is a quasi-Cauchy sequence, for every ¢>0

there exists a positive integer N such that || x,—x, Il,<¢ for all nm>N.

Therefore, for any Kk,
K 1/p
(Z|x§">-x§m>|pj < %, =%, <e forall nym=>N
i=1
Keeping k and n fixed, let m—o0. This gives:

K 1/p
(Z|x§”)—xi|pj <e forall n >N
i=1
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Since this is true for all k, we can let R, . and we obtain the result that

ll X =1, <& forall n>N
Thus the space ¢,, 0< p<1, is complete, and hence it is a quasi-Banach

space.
5. Conclusion
In this paper, we have explored the notion of a quasi-Banach space for the

space ¢,, 0< p<1. Then, we prove that the sequence space ¢,, 0< p<1, is

not normed space, but may be a quasi-normed space. We present and
examine many results concerning this notion. We have studied a
quasi-convergent and a quasi-Cauchy sequence. Finally, we have shown
that, there exists a space which is not Banach space, but may be a
guasi-Banach.
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