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Abstract. In this paper, we introduce a new concept of sets and a new
class of functions called E-univex sets and E-univex functions, respec-
tively. For an E-differentiable function, the concept of E-univexity is in-
troduced by generalizing several concepts of generalized convexity ear-
lier defined into optimization theory. In addition, some properties of
E-differentiable E-univex functions are investigated. Further, also con-
cepts of E-differentiable generalized E-univexity are introduced. Then,
the sufficiency of the so-called E-Karush–Kuhn–Tucker necessary opti-
mality conditions are proved for an E-differentiable nonlinear optimiza-
tion problem in which the involved functions are E-univex and/or gener-
alized E-univex.
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1. Introduction

Convexity and its various generalizations have played an essential role in the
development of various fields of applied and pure sciences. In the recent past,
convexity and its generalizations have piqued interest and used in establishing
optimality conditions of optimization problems (see, for example, [1,2,5,6,9,
10,12,15–20,25–29,32], and others).

One of the generalizations of convexity is the concept of univexity in-
troduced by Bector et al. [11] which unifies various concepts of generalized
convexity established in literature. In [33], Youness introduced the concept of
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E-convexity. This kind of generalized convexity is based on the effect of an op-
erator E : Rn → Rn on the sets and the domain of functions. In recent years,
this concept has attracted great interest from various researchers, and some
properties of this concept were developed (see, for example, [3,4,6–8,13,14,21–
24,30,31,34], and others). Later, Megahed et al. [23] introduced the definition
of an E-differentiable function.

In this paper, the class of pre-E-univexity functions and classes of general-
ized pre-E-univexity functions are defined for not necessarily E-differentiable
functions. Also, a new class of E-differentiable E-univex functions and new
concept of E-univex sets are introduced. The concept of E-univexity is in-
troduced by generalizing the concepts of convexity, univexity, B-vexity, in-
vexity, E-B-invexity, E-convexity and E-invexity. Further, some properties
of E-univex functions are studied and they are illustrated by some exam-
ples of such generalized convex functions. In addition, E-univex functions are
extended to pseudo-E-univex, strictly pseudo-E-univex and quasi-E-univex
functions. In order to show their applications, the sufficiency of the so-called
E-Karush–Kuhn–Tucker necessary optimality conditions are proved for an E-
differentiable nonlinear optimization problem in which the involved functions
are E-univex and/or generalized E-univex. The aforesaid results are illustrated
by a suitable example of a nonconvex optimization problem with (generalized)
E-univex functions.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative or-

thant.

Definition 1. A function ϕ : M → R is said to be increasing on a nonempty
set M ⊂ Rn if and only if for all x, y ∈ M,

x ≤ y =⇒ ϕ(x) ≤ ϕ(y).

Definition 2. A function ϕ : M → R is said to be strictly increasing on a
nonempty set M ⊂ Rn if and only if for all x, y ∈ M,

x < y =⇒ ϕ(x) < ϕ(y).

Definition 3 [5]. Let E : Rn → Rn. A set M ⊆ Rn is said to be an E-invex set
with respect to η : M × M → Rn if and only if the relation

E (u) + λη (E (x) , E (u)) ∈ M

holds for all x, u ∈ M and λ ∈ [0, 1].

We recall the definition of a pre-univex function introduced by Bector et
al. [11].
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Definition 4 [11]. Let M be a nonempty invex subset of Rn. A real-valued
function f : M → R is said to be pre-univex on M with respect to η :
M × M → Rn, b : M × M × [0, 1] → R+ and Φ : R → R if and only if
the following inequality

f (u + λη (x, u)) ≤ f (u) + λb(x, u, λ)Φ[f (x) − f (u)] (1)

holds for all x, u ∈ M and any λ ∈ [0, 1].

Now, we introduce the concept of an E-pre-univex function. Let M ⊆ Rn

be a nonempty E-invex set.

Definition 5. Let E : Rn → Rn. A real-valued function f : M → R is said to be
E-pre-univex on M with respect to η : M ×M → Rn, b : M ×M × [0, 1] → R+

and Φ : R → R if and only if the following inequality

f (E (u) + λη (E (x) , E (u))) − f (E (u)) ≤ λb(E(x), E(u), λ)Φ[f (E (x)) − f (E (u))]

(2)

holds for all x, u ∈ M and any λ ∈ [0, 1].

It is clear that every pre-univex function is E-pre-univex (if E is the
identity map).

Definition 6. Let E : Rn → Rn. A real-valued function f : M → R is said
to be strictly E-pre-univex on M with respect to η : M × M → Rn, b :
M × M × [0, 1] → R+ and Φ : R → R if and only if the following inequality

f (E (u) + λη (E (x) , E (u))) − f (E (u)) < λb(E(x), E(u), λ)Φ[f (E (x)) − f (E (u))]

(3)

holds for all x, u ∈ M , E(x) �= E(u), and any λ ∈ (0, 1).

Now, we present an example of such an E-pre-univex function which is
not pre-univex.

Example 1. Let E : R → R, f : R → R and Φ : R → R be defined by
f(x) = cos(x), Φ(x) = 2x, E(x) = π

2 − x, where

η(E(x), E(u)) =

{
sin(x)−sin(u)

cos(u) if x ≥ u ∧ x, u ∈ (0, π
2 )

0 otherewise
, b(E(x), E(u), λ) ={

1 if x ≥ u ∧ x, u ∈ (0, π
2 )

0 otherewise
. Then, by Definition 5, f is an E-pre-univex func-

tion on R, while f is not pre-univex, because for x = π
3 , u = π

6 , and λ = 1
2 ,

we have

f (u + λη (x, u)) ≈ 0.98 > f (u) + λb(x, u, λ)Φ[f (x) − f (u)] = 0.5.

Hence, f is not pre-univex with respect to η, b, and Φ defined above. In other
words, the class of E-pre-univex functions is larger than the class of pre-univex
functions.
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Definition 7. Let E : Rn → Rn. A real-valued function f : M → R is said to
be E-pre-pseudounivex on M with respect to η : M × M → Rn, b : M × M ×
[0, 1] → R+ and Φ : R → R if and only if the following relation

Φ[f (E (x)) − f (E (u))] < 0

=⇒ b(E(x), E(u), λ)f (E (u) + λη (E (x) , E (u))) ≤ b(E(x), E(u), λ)f (E (u))

(4)

holds for all x, u ∈ M and any λ ∈ [0, 1].

Definition 8. Let E : Rn → Rn. A real-valued function f : M → R is said to be
E-pre-quasiunivex on M with respect to η : M ×M → Rn, b : M ×M ×[0, 1] →
R+ and Φ : R → R if and only if the following relation

Φ[f (E (x)) − f (E (u))] ≤ 0

=⇒ b(E(x), E(u), λ)f (E (u) + λη (E (x) , E (u))) ≤ b(E(x), E(u), λ)f (E (u))

(5)

holds for all x, u ∈ M and any λ ∈ [0, 1].

We now give the definition of an E-differentiable function introduced by
Megahed et al. [23].

Definition 9. [23] Let E : Rn → Rn and f : M → R be a (not necessarily)
differentiable function at a given point u ∈ M . It is said that f is an E-
differentiable function at u if and only if f ◦ E is a differentiable function at u
(in the usual sense), that is,

(f ◦ E) (x) = (f ◦ E) (u) + ∇ (f ◦ E) (u) (x − u) + θ (u, x − u) ‖x − u‖ , (6)

where θ (u, x − u) → 0 as x → u.

Now, we introduce new concepts of generalized convexity for
E-differentiable functions. Let M ⊆ Rn be a nonempty E-invex set with re-
spect to η.

Definition 10. Let E : Rn → Rn and f : M → R be an E-differentiable
function at u on M . It is said that f is E-univex at u ∈ M on M with respect
to η, b and Φ if, there exist η : M ×M → Rn, b : M ×M → R+ and Φ : R → R
such that, for all x ∈ M , the inequality

b(E(x), E(u))Φ [f(E(x)) − f(E(u))] ≥ ∇f(E(u))η(E(x), E(u)) (7)

holds. If inequality (7) holds for any u ∈ M , then f is E-univex with respect
to η, b and Φ on M .

Remark 1. Note that the Definition 10 generalizes and extends several gener-
alized convexity notions, previously introduced in the literature. Indeed, there
are the following special cases:

a) If b(x, u) = 1 and Φ(x) = x, then the definition of an E-univex function
reduces to the definition of an E-invex function introduced by Abdu-
laleem [5].
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b) If f is differentiable and E(x) ≡ x (E is an identity map), then the
definition of an E-univex function reduces to the definition of an univex
function introduced by Bector et al. [11].

c) If f is differentiable, E(x) ≡ x (E is an identity map), b(x, u) = 1 and
Φ(x) = x, then the definition of an E-univex function reduces to the
definition of an invex function introduced by Hanson [15].

d) If f is differentiable, E(x) ≡ x (E is an identity map) and Φ(x) = x,
then the definition of an E-univex function reduces to the definition of a
B-invex function introduced by Bector et al. [9] and Suneja et al. [32].

e) If Φ(x) = x, then the definition of an E-univex function reduces to the
definition of an E-B-invex function introduced by Abdulaleem [8].

f) If η(x, u) = x − u, b(x, u) = 1 and Φ(x) = x, then we obtain the defi-
nition of an E-differentiable E-convex vector-valued function introduced
by Megahed et al. [23].

g) If f is differentiable, E(x) = x and η(x, u) = x − u, b(x, u) = 1 and
Φ(x) = x, then the definition of an E-univex function reduces to the
definition of a differentiable convex vector-valued function.

h) If f is differentiable and η(x, u) = x − u, b(x, u) = 1 and Φ(x) = x, then
we obtain the definition of a differentiable E-convex function introduced
by Youness [33].

Definition 11. Let E : Rn → Rn and f : M → R be an E-differentiable
function at u on M . It is said that f is strictly E-univex at u ∈ M on M with
respect to η, b and Φ if, there exist η : M × M → Rn, b : M × M → R+ and
Φ : R → R such that, for all x ∈ M (E(x) �= E(u)), the inequality

b(E(x), E(u))Φ [f(E(x)) − f(E(u))] > ∇f(E(u))η(E(x), E(u)) (8)

holds. If inequality (8) holds for any u ∈ M (E(x) �= E(u)), then f is strictly
E-univex with respect to η, b and Φ on M .

Now, we present an example of such an E-univex function (with respect
to η, b and Φ) which is not univex (with respect to the same given η, b and
Φ), B-invex (with respect to the same given η and b), invex (with respect to
the same given η) or convex.

Example 2. Let E : R → R and f, Φ : R → R be defined by f(x) = −x2,

Φ(x) = 2x, E(x) =

{√−x if x ≤ 0
0 otherwise,

η(x, u) =

{
2u2 − 2x2 if x ≤ 0, u ≤ 0
x − u otherwise ,

b(x, u) =

{
1 if x ≤ 0, u ≤ 0
0 otherwise

. Then f is an E-univex function on R with re-

spect to η, b and Φ defined above, but it is not univex with respect to η, b and
Φ defined above as can be seen by taking x = 2, u = 4, since the inequality

b(x, u)Φ [f(x) − f(u)] < ∇f(u)η(x, u)
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holds. Moreover, by the definition of an univex function [11], it follows that f
is not univex with respect to η, b and Φ given above. Also, f is not B-invex
with respect to η, b defined above as can be seen by taking x = 1, u = 2, since
the inequality

b(x, u) [f(x) − f(u)] < ∇f(u)η(x, u)

holds. Note that, by the definition of a B-invex function (see, [9,32]), it follows
that f is not B-invex with respect to η, b given above. Further, f is not invex
with respect to η defined above as can be seen by taking x = 1, u = 0, since
the inequality

f(x) − f(u) < ∇f(u)η(x, u)

holds. Further, by the definition of an invex function [15], it follows that f is
not invex on R with respect to η given above. It is not difficult to see that f
is not a convex function.

Now, we present an example of such an E-differentiable E-univex function
(with respect to η, b and Φ) which is not E-invex (with respect to the same
given η), E-B-invex (with respect to the same given η and b), or E-convex.

Example 3. Let E : R → R and f, Φ : R → R be defined by f(x) =
3
√

x, Φ(x) = 3x, E(x) = x9, where

η(E(x), E(u))=

{
x2+xu+u2 if x > u

x2 − u2 otherwise,
b(E(x), E(u))=

{
u2

x−u if x > u

0 otherwise
.

Note that f is nondifferentiable at x = 0, but f ◦ E is a differentiable function
at x = 0. Then, by Definition 10, f is an E-univex function on R with respect
to η, b and Φ given above. Moreover, as it follows from the definition of an
E-B-invex function [8], f is not an E-B-invex function on R with respect to η
and b given above as can be seen by taking x = 2, u = 1, since the inequality

b(E(x), E(u)) [f(E(x)) − f(E(u))] < ∇f(E(u))η(E(x), E(u))

holds. Also, f is not E-invex on R with respect to η defined above as can be
seen by taking x = 0, u = −2, since the inequality

f(E(x)) − f(E(u)) < ∇f(E(u))η(E(x), E(u))

holds. Note that, by the definition of an E-invex function [5], it follows that f
is not E-invex on R with respect to η given above. Further, it is not difficult
to see that, by the definition of an E-convex function [33], f is not E-convex
at x = 4, u = 1, since the inequality

f(E(x)) − f(E(u)) < ∇f(E(u))(E(x) − E(u))

holds.

Definition 12. Let E : Rn → Rn and f : M → R be an E-differentiable
function at u on M . It is said that f is pseudo-E-univex at u ∈ M on M with
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respect to η, b and Φ if, there exist η : M × M → Rn, b : M × M → R+ and
Φ : R → R such that, for all x ∈ M , the following relation

∇f(E(u))η(E(x), E(u)) ≥ 0 =⇒ b(E(x), E(u))Φ [f(E(x)) − f(E(u))] ≥ 0
(9)

holds for all x ∈ M . If relation (9) holds for any u ∈ M , then f is pseudo
E-univex with respect to η, b and Φ on M .

Definition 13. Let E : Rn → Rn and f : M → R be an E-differentiable
function at u on M . It is said that f is strictly pseudo-E-univex at u ∈ M on
M with respect to η, b and Φ if, there exist η : M ×M → Rn, b : M ×M → R+

and Φ : R → R such that, for all x ∈ M (E(x) �= E(u)), the following relation

∇f(E(u))η(E(x), E(u)) ≥ 0 =⇒ b(E(x), E(u))Φ [f(E(x)) − f(E(u))] > 0
(10)

holds for all x ∈ M . If relation (10) holds for any u ∈ M (E(x) �= E(u)), then
f is strictly pseudo-E-univex with respect to η, b and Φ on M .

Example 4. The function defined in Example 1 is E-univex on R but not
strictly pseudo-E-univex, as can be seen by taking x = π

4 , u = π
3 , since

∇f(E(u))η(E(x), E(u)) = 0, but b(E(x), E(u))Φ [f(E(x)) − f(E(u))] = 0.
Hence, by the definition of a strictly pseudo-E-univex function, it follows that
f is not strictly pseudo-E-univex on R.

Definition 14. Let E : Rn → Rn and f : M → R be an E-differentiable
function at u on M . It is said that f is quasi-E-univex at u ∈ M on M with
respect to η, b and Φ if, there exist η : M × M → Rn, b : M × M → R+ and
Φ : R → R such that, for all x ∈ M , the following relation

b(E(x), E(u))Φ [f(E(x)) − f(E(u))] ≤ 0 =⇒ ∇f(E(u))η(E(x), E(u)) ≤ 0
(11)

holds for all x ∈ M . If relation (11) holds for any u ∈ M , then f is quasi
E-univex with respect to η, b and Φ on M .

Remark 2. Every E-univex function is quasi-E-univex. However, the converse
is not true.

Now, we present an example of such a quasi-E-univex function which is
not E-univex.

Example 5. Let E : R → R and f, Φ : R → R be defined by f(x) =

− 3
√

x2, Φ(x) = 2x, E(x) = x3, η(E(x), E(u)) =

{
x2u + u if x ≥ u,

x + u if x < u.

b(E(x), E(u)) =

{
1 if x ≥ u,

0 if x < u.
. Then, f is a quasi-E-univex function on R
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but not E-univex with respect to η, b and Φ defined above. In fact, if we take,
for example, x = 1, u = 2, then Definition 10 is not satisfied because

b(E(x), E(u))Φ [f(E(x)) − f(E(u))] < ∇f(E(u))η(E(x), E(u))

holds. Hence, by the definition of an E-univex function, it follows that f is not
E-univex on R with respect to η, b and Φ given above.

Now, we introduce the concept of an E-univex set.

Definition 15. Let E : Rn → Rn. A set S ⊆ Rn × R is said to be an E-univex
set with resect to η : M × M → Rn, b : M × M × [0, 1] → R+ and Φ : R → R,
if for any (E(x), β) ∈ S, (E(u), γ) ∈ S the relation

(E (u) + λη (E (x) , E (u)) , γ + λb(E(x), E(u), λ)Φ(β − γ)) ∈ S

holds for any λ ∈ [0, 1].

Remark 3. If E(x) = x, then the definition of an E-univex set with respect to
η, b, and Φ reduces to the definition of an univex set with respect to η, b, and
Φ (see Bector et al. [11]).

Now, we present an example of such an E-univex set with respect to η,
b, and Φ which is not an univex set with respect to η, b, and Φ.

Example 6. Let S = ([1, 16] ∪ [−16,−1]) × [1, 4] and E,Φ : R → R, be defined

by Φ(x)=2x, E(x)=

{
x2 if − 4 ≤ x ≤ 4
−1 otherwise

, η(x, u) =

{
x − u if x ≤ u

−16 − u otherwise
,

b(x, u, λ) =

{
1 if x ≤ u

0 otherwise
. Then, by Definition 15, S is an E-univex set with

respect to η, b, and Φ given above. However, as it follows from the definition
of an univex set [11], S is not an univex set with respect to η, b, and Φ given
above as can be seen by taking x = −1, u = 1, γ = 1, β = 1 and λ = 1

2 , we
obtain

(u + λη (x, u) , γ + λb(x, u, λ)Φ(β − γ)) = (0, 1) �∈ S.

Theorem 1. Let E : Rn → Rn. If (Si)i∈I , i ∈ I = {1, ..., k} is a family of E-
univex sets in Rn×R with respect to η : M ×M → Rn, b : M ×M ×[0, 1] → R+

and Φ : R → R, then their intersection
⋂

i∈I Si is an E-univex set.

Proof. Let E : Rn → Rn and (E(x), β) ∈ ⋂
i∈I Si, (E(u), γ) ∈ ⋂

i∈I Si, λ ∈
[0, 1]. Since each Si is an E-univex set therefore, for each i ∈ I, (E(x), β) ∈
Si, (E(u), γ) ∈ Si, and, moreover,

(E (u) + λη (E (x) , E (u)) , γ + λb(E(x), E(u), λ)Φ(β − γ)) ∈ Si.

Thus,

(E (u) + λη (E (x) , E (u)) , γ + λb(E(x), E(u), λ)Φ(β − γ)) ∈
⋂
i∈I

Si for λ ∈ [0, 1]

which completes the proof of this theorem. �



E-Univex Sets, E-Univex Functions and E-Differentiable E-Univex Page 9 of 22     3 

Now, we give the definition of E-epigraph and we discuss a characteriza-
tion of an E-univex function in terms of its E-epigraph.

Definition 16. Let E : M → M. We define the E-epigraph of f : M → R as
follows

epiE(f) = {(E(x), β) ∈ M × R : f(E(x)) ≤ β}.

Now, we give an example that sets of the E-epigraph of f and the epigraph
of f are not equal.

Example 7. Let S = [0, 4] × R, E : R → R and f, Φ : R → R be defined by

f(x) = |x|, E(x) = x2, Φ(x) = 2x, η(E(x), E(u)) =

{
2x2−2u2

2u if xu �= 0
0 otherwise

,

b(E(x), E(u), λ) =

{
1 if xu �= 0
0 otherwise

. Then, by Definition 10, f is an E-univex

function on R with respect to η, b and Φ given above. Further, the E-epigraph
of f

epiE(f) = {(E(x), β) ∈ [0, 4] × R : x2 ≤ β} (12)

is E-univex on [0, 4]×R. This means that, for any (E(x), β) ∈ S, (E(u), γ) ∈ S
the following inequality

f(E (u) + λη (E (x) , E (u)) ≤ γ + λb(E(x), E(u), λ)Φ(β − γ) (13)

holds for any λ ∈ [0, 1].

Note that function f in Example 7 show that sets epiE(f) and epi (f)
given in [11] are not equal. Thus,

epiE(f) = {(E(x), β) ∈ [0, 4] × R : x2 ≤ β}, (14)
epi(f) = {(x, β) ∈ [0, 4] × R : |x| ≤ β} (15)

hence, epiE(f) �= epi (f).
Now, we give a sufficient condition for the function f to be an E-univex

function.

Theorem 2. Let E : M → M and f : M → R be a function defined on an
E-invex set with respect to η. If the E-epigraph epiE (f) of f is an E-univex
set in M × R with respect to η, b and Φ, then f is an E-univex function on
M .

Proof. Assume that epiE(f) is an E-univex set. Let x, u ∈ M , then (E(x),
f(E(x))) ∈ epiE(f), (E(u), f(E(u))) ∈ epiE(f). By E-univexity of the set
epiE(f) in M × R with respect to η, b and Φ, we have

(E (u) + λη (E (x) , E (u)) , f(E (u)) + λb(E(x), E(u), λ)Φ[f (E (x))
−f (E (u))]) ∈ epiE(f)



    3 Page 10 of 22 N. Abdulaleem Results Math

for λb(E(x), E(u), λ) ∈ [0, 1], from which it follows that

f [E (u) + λη (E (x) , E (u))] ≤ f (E (u)) + λb(E(x), E(u), λ)Φ[f (E (x)) − f (E (u))]

for λb(E(x), E(u), λ) ∈ [0, 1]. Hence f is an E-univex function. �

Definition 17. Let E : Rn → Rn. It said that x ∈ Rn is a global E-minimizer
of f : M → R if the inequality

f (E (x)) ≤ f (E (x))

holds for all x ∈ M .

Proposition 1. Let E : Rn → Rn and f : M → R be an E-differentiable
function on M. If x ∈ M is a global E-minimizer of f , then ∇f (E(x)) = 0.

Proof. We assume that x ∈ M is a global E-minimizer of f and let d =
−∇f (E(x)). Now, we prove that there does not exist d = −∇f (E(x)) ∈ Rn,
d �= 0, satisfying the inequality

∇f (E(x)) d = − ‖ ∇f (E(x)) ‖2< 0, d ∈ Rn. (16)

By assumption, f is E-differentiable at x. Thus, by Definition 9, we have

(f ◦ E) (x) = (f ◦ E) (x) + ∇ (f ◦ E) (x) (x − x) + θf (x, x − x) ‖x − x‖(17)

where θf (x, x − x) → 0 and x−x
‖x−x‖ → d as x → x together with (16), we get

that the following inequality

(f ◦ E) (x) < (f ◦ E) (x)

holds, which is a contradiction to the assumption that x ∈ M is a global E-
minimizer of f. This means that (16) is not satisfied. Thus, ∇f (E(x)) d = 0,
for all d ∈ Rn. This implies that ∇f (E(x)) = 0. �

Proposition 2. Let E : Rn → Rn be an operator, Φ : R → R be strictly increas-
ing with Φ(0) = 0, b(E(x), E(x)) > 0 and f : Rn → R be an E-differentiable
E-univex function on M with respect to η, Φ and b. If ∇f (E(x)) = 0, then x
is an E-minimizer of f .

Proof. Let E : Rn → Rn be an operator. Further, assume that f : M → R is
an E-differentiable E-univex function on M with respect to η, Φ and b. Hence,
by Definition 10, the inequality

b(E(x), E(x))Φ [f(E(x)) − f(E(x))] ≥ ∇f(E(x))η(E(x), E(x)) (18)

holds for all x ∈ M. Since Φ : R → R is strictly increasing with Φ(0) =
0, b(E(x), E(x)) > 0, ∇f (E(x)) = 0 and (18), therefore, we have that the
relation

Φ [f(E(x)) − f(E(x))] ≥ Φ(0) = 0 (19)

implies that the inequality

f (E (x)) ≤ f (E (x))
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holds for all x ∈ M . This means, by Definition 17, that x is an E-minimizer
of f . �

Proposition 3. Let E : Rn → Rn be an operator, Φ : R → R be strictly
increasing with Φ(0) = 0, b(E(x), E(x)) > 0 and f : Rn → R be an E-
differentiable pseudo-E-univex function on M with respect to η, Φ and b. If
∇f (E(x)) = 0, then x is an E-minimizer of f .

Proof. The proof of this proposition follows from Definitions 12 and 17 . �

3. Optimality Conditions for E-Differentiable Optimization
Problem

In the paper, we consider the following constrained optimization problem:

f(x) → min
subject to gi(x) ≤ 0, i ∈ I = {1, ..., k} (P)

where f : Rn → R and gi : Rn → R, i ∈ I, are E-differentiable functions on
Rn. We will write g := (g1, ..., gk) : Rn → Rk for convenience. Let

D := {x ∈ Rn : gi(x) ≤ 0, i ∈ I}
be the set of all feasible solutions of (P). Further, I (x) is the set of all active
inequality constraints at point x ∈ D, that is, I (x) = {i ∈ I : gi (x) = 0} .

Definition 18. A point x is said to be an optimal solution of (P) if and only if
there exists no other feasible point x such that

f(x) < f(x).

Now, for the considered E-differentiable optimization problem (P), we
define its associated differentiable E-optimization problem (PE) as follows:

f(E(x)) → min
subject to gi(E(x)) ≤ 0, i ∈ I = {1, ..., k} (PE)

We call the problem (PE) an E-optimization problem. Let

DE := {x ∈ Rn : gi(E(x)) ≤ 0, i ∈ I}
be the set of all feasible solutions of (PE).

Definition 19. A point E(x) is said to be an E-optimal solution of (P) if and
only if there exists no other feasible point E(x) such that

f(E(x)) < f(E(x)).

Lemma 1 [3]. Let E : Rn → Rn be a one-to-one and onto operator. Then
E (DE) = D.

Lemma 2. Let y ∈ D be an E-optimal solution of (P). Then, there exists
x ∈ DE such that y = E(x) and x is an optimal solution of (PE).
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Proof. Let y ∈ D be an E-optimal solution of (P). By Lemma 1, it follows
that there exists x ∈ DE such that y = E (x). Now, we prove that x is an
optimal solution of (PE). By means of contradiction, suppose that x is not an
optimal solution of (PE). Then, by Definition 19, there exists x̂ ∈ DE such
that f(E(x̂)) < f(E(x)). By Lemma 1, we have that there exists ŷ ∈ D such
that ŷ = E (x̂). Hence, the inequality above implies that f(ŷ) < f(y), which
is a contradiction to the optimal solution of y for (P). The proof in the case
when y ∈ D is an E-optimal solution of (P) is similar. �

Theorem 3 [5,23] . (E-Karush–Kuhn–Tucker necessary optimality conditions).
Let the objective function f, the constraint functions gi, i ∈ I, be E -differe-
ntiable at x ∈ DE. Further, let x be an optimal solution of (PE) (and, thus,
E (x) be an E-optimal solution of (P)) and the E-Guignard constraint qualifi-
cation [5] be satisfied at x. Then, there exist Lagrange multiplier λ ∈ Rk such
that

∇f(E (x)) +
k∑

i=1

λi∇gi(E (x)) = 0, (20)

λigi(E (x)) = 0, i ∈ I, (21)

λ ≥ 0. (22)

Definition 20. It is said that
(
E (x) , λ

) ∈ D × Rk is an E-Karush–Kuhn–
Tucker point (E-KKT-point, in short) for the considered optimization problem
(P) if the E-Karush–Kuhn–Tucker necessary optimality conditions (20)–(22)
are satisfied at E(x) with Lagrange multiplier λ.

Now, we prove the sufficiency of the E-KKT necessary optimality con-
ditions for the considered E-differentiable optimization problem (P) under
E-univexity hypotheses.

Theorem 4. Let
(
x, λ

) ∈ DE × Rk be a KKT-point of the E-optimization
problem (PE). Further, assume the following hypotheses are fulfilled:

a) the objective function f , is E-univex at x on DE with respect to η, Φf

and bf ,
b) each inequality constraint gi, i ∈ IE (x), is E-univex at x on DE with

respect to η, Φgi
and bgi

,
c) Φf is strictly increasing and Φgi

, i ∈ I is increasing with Φf (0) = 0 and
Φgi

(0) = 0,
d) bf (E (x) , E (x)) > 0 and bgi

(E (x) , E (x)) ≥ 0, i ∈ IE (x) for all x ∈
DE .

Then x is an optimal solution of the problem (PE) and, thus, E (x) is an
E-optimal solution of the problem (P).

Proof. By assumption,
(
x, λ

) ∈ DE × Rk is a KKT-point of the problem
(PE). Then, by Definition 20, the E-KKT necessary optimality conditions
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(20)–(22) are satisfied at x with Lagrange multiplier λ ∈ Rk. We proceed by
contradiction. Suppose, contrary to the result, that x is not an optimal solution
of (PE). Hence, by Definition 19, there exists another x ∈ DE such that

f(E (x)) < f (E (x)) (23)

that is

f(E (x)) − f (E (x)) < 0. (24)

Since Φf is strictly increasing with Φf (0) = 0 and bf (E (x) , E (x)) > 0, there-
fore, we have

bf (E (x) , E (x)) Φ [f(E (x)) − f (E (x))] < 0. (25)

From hypothesis a), by Definition 10, the following inequality

bf (E (x) , E (x)) Φf [f (E (x)) − f (E (x))] ≥ ∇f (E (x)) η (E (x) , E (x))(26)

holds. Combining (25) and (26), we get

∇f (E (x)) η (E (x) , E (x)) < 0. (27)

From hypothesis b), by Definition 10, the following inequalities

bgi
(E (x) , E (x)) Φgi

[gi(E (x)) − gi(E (x))] ≥ ∇gi (E (x)) η (E (x) , E (x)) ,

i ∈ I (E (x)) (28)

hold. Multiplying inequalities (28) by the corresponding Lagrange multipliers,
we obtain

bgi (E (x) , E (x)) λiΦgi [gi(E (x)) − gi(E (x))] ≥λi∇gi (E (x)) η (E (x) , E (x)) ,

i ∈ I (E (x))

(29)

and, moreover, by g(E (x)) = 0,

bgi (E (x) , E (x)) λiΦgi [gi(E (x))] ≥λi∇gi (E (x)) η (E (x) , E (x)) , i ∈ I (E (x))

(30)

Since Φgi
, i ∈ I, is increasing and satisfies Φgi

(0) = 0, then, using (30) together
with x ∈ DE and x ∈ DE , we obtain

λi∇gi (E (x)) η (E (x) , E (x)) ≤ 0, i ∈ I (E (x)) . (31)

Thus,
k∑

i=1

λi∇gi(E (x))η (E (x) , E (x)) ≤ 0. (32)

Combining (27) and (32), we obtain that the following inequality[
∇ (f ◦ E) (x) +

k∑
i=1

λi∇gi (E (x))

]
η (E (x) , E (x)) < 0
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holds, which is a contradiction to the E-KKT necessary optimality condition
(20). Since x is an optimal solution of the problem (PE), by Lemma 2, E (x)
is an E-optimal solution of the problem (P). Thus, the proof of this theorem
is completed. �

Theorem 5. Let
(
x, λ

) ∈ DE × Rk be a KKT-point of the E-optimization
problem (PE). Further, assume the following hypotheses are fulfilled:

a) the function f , is strictly E-univex at x on DE with respect to η, Φf and
bf ,

b) each constraint function gi, i ∈ IE (x), is E-univex at x on DE with
respect to η, Φgi

and bgi
,

c) Φf is strictly increasing and Φgi
, i ∈ I is increasing with Φf (0) = 0 and

Φgi
(0) = 0,

d) bf (E (x) , E (x)) > 0 and bgi
(E (x) , E (x)) ≥ 0, i ∈ IE (x) for all x ∈

DE .

Then x is an optimal solution of the problem (PE) and, thus, E (x) is an
E-optimal solution of the problem (P).

In order to illustrate the sufficient optimality conditions established in
Theorem 4, we now present an example of an E-differentiable optimization
problem in which the involved functions are E-univex.

Example 8. Consider the following nondifferentiable optimization problem

f(x) = sin( 3
√

x1) + sin( 3
√

x2) → min
subject to g1(x) = (sin 3

√
x1 − 1)2 + sin 3

√
x2 − 1 ≤ 0,

g2(x) = 2 3
√

x1 + 3 3
√

x2 − 9
2 ≤ 0,

g3(x) = 3
√

x2
1 + 3

√
x2

2 − 3 ≤ 0,

g4(x) = − sin 3
√

x1 ≤ 0,

g5(x) = − sin 3
√

x2 ≤ 0.

(P1)

Note that the set of all feasible solutions of (P1) is D = {(x1, x2) ∈ R2 :
(sin 3

√
x1 − 1)2 + sin 3

√
x2 − 1 ≤ 0, 2 3

√
x1 + 3 3

√
x2 − 9

2 ≤ 0, 3
√

x2
1 + 3

√
x2

2 − 3 ≤
0, − sin 3

√
x1 ≤ 0, − sin 3

√
x2 ≤ 0}. Let

η(x, u) =

⎧⎪⎨
⎪⎩

(
sin( 3√x1)−sin( 3√u1)

sin( 3√u1)+1 ,
sin( 3√x2)−sin( 3√u2)

sin( 3√u2)+1

)
if x > u,

0 otherwise.

bf (x, u) = bgi
(x, u) =

⎧⎨
⎩

1
4 if x > u,

0 otherwise,

and Φf (x) = Φgi
(x) = 2x. The functions constituting problem (P1) are non-

differentiable at (0, 0). Let E : R2 → R2 be defined as follows E (x1, x2) =
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(
x3

1, x
3
2

)
. Now, for the considered E-differentiable problem (P1), we define its

associated differentiable problem (P1E) as follows

f(E(x)) = sin(x1) + sin(x2) → min
subject to g1(E(x)) = (sin x1 − 1)2 + sin x2 − 1 ≤ 0,

g2(E(x)) = 2x1 + 3x2 − 9
2 ≤ 0,

g3(E(x)) = x2
1 + x2

2 − 3 ≤ 0,

g4(E(x)) = − sin x1 ≤ 0,

g5(E(x)) = − sin x2 ≤ 0.

(P1E)

Note that the set of all feasible solutions of the problem (P1E) is DE =
{(x1, x2) ∈ R2 : (sin x1 −1)2 +sin x2 −1 ≤ 0, 2x1 +3x2 − 9

2 ≤ 0, x2
1 +x2

2 −3 ≤
0, − sin x1 ≤ 0, − sin x2 ≤ 0}. Note that all functions constituting the
problem (P1E) are differentiable at (0, 0). Then, it can also be shown that the
E-Karush–Kuhn–Tucker necessary optimality conditions (20)–(22) are fulfilled
at (0, 0) with Lagrange multipliers λ = (1

4 , 0, 0, 1
2 , 5

4 ). Further, all hypotheses
of Theorem 4 are fulfilled, it can be proved that f, is E-univex at x on DE with
respect to η, bf and Φf given above, each function gi, i = 1, 2, ..., 5, is E-univex
at x on DE with respect to η, bgi

and Φgi
given above. Hence, x = (0, 0) is an

optimal solution of the problem (P1E) and, thus, E (x) = (0, 0) is an E-optimal
solution of the problem (P). Further, that the sufficient optimality conditions
under univexity are not applicable since not all functions constituting problem
(P1) are differentiable univex with respect to η, b given above (see, Bector et
al. [11]). Moreover, that the sufficient optimality conditions under E-invexity
are not applicable since not all functions constituting problem (P1) are E-invex
with respect to η given above.

Now, under generalized E-univexity notions, we prove the sufficient op-
timality conditions for the problem (PE).

Theorem 6. Let
(
x, λ

) ∈ DE × Rk be a KKT-point of the E-optimization
problem (PE). Further, assume the following hypotheses are fulfilled:

a) the function f , is pseudo-E-univex at x on DE with respect to η, Φf and
bf ,

b) each constraint function gi, i ∈ IE (x), is quasi-E-univex at x on DE

with respect to η, Φgi
and bgi

,
c) Φf is strictly increasing and Φgi

, i ∈ I is increasing with Φf (0) = 0 and
Φgi

(0) = 0,
d) bf (E (x) , E (x)) > 0 and bgi

(E (x) , E (x)) ≥ 0, i ∈ IE (x) for all x ∈
DE .

Then x is an optimal solution of the problem (PE) and, thus, E (x) is an
E-optimal solution of the problem (P).
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Proof. By assumption,
(
x, λ

) ∈ DE×Rk be a KKT-point of the E-optimization
problem (PE). Then, by Definition 20, the KKT necessary optimality condi-
tions (20)–(22) are satisfied at x with Lagrange multiplier λ ∈ Rk. We proceed
by contradiction. Suppose, contrary to the result, that x is not an optimal
solution of (PE). Hence, by Definition 19, there exists another x ∈ DE such
that

f(E (x)) < f (E (x)) . (33)

Thus,

f(E(x)) − f (E (x)) < 0. (34)

Since Φf is strictly increasing, Φf (0) = 0 and bf (E (x) , E (x)) > 0, we obtain

bf (E (x) , E (x)) Φf [f(E(x)) − f (E (x))] < 0. (35)

By assumption, f is pseudo-E-univex at x on DE with respect to η, Φf and
bf . Then, by Definition 12, we get

∇ (f ◦ E) (x) η (E (x) , E (x)) < 0. (36)

From x ∈ DE , x ∈ DE , the E-KKT necessary optimality conditions (21) and
(22) imply

gi(E (x)) − gi(E (x)) ≤ 0, i ∈ I (E (x)) .

Since the function Φgi
is increasing and Φgi

(0) = 0 and bgi
(E (x) , E (x)) ≥ 0,

by Definition 14, we have

bgi
(E (x) , E (x)) Φgi

[gi(E (x)) − gi(E (x))] ≤ 0, i ∈ I (E (x)) .

By assumption, gi is quasi-E-univex at x on DE with respect to η, Φgi
and

bgi
. Then, by Definition 14, we get

∇gi (E (x)) η (E (x) , E (x)) ≤ 0, i ∈ I (E (x)) . (37)

Thus, by λi ≥ 0, i ∈ I (E (x)) , we obtain∑
i∈I(E(x))

λi∇gi (E (x)) η (E (x) , E (x)) ≤ 0.

Hence, taking into account λi = 0, i /∈ I (E (x)), we have
k∑

i=1

λi∇gi (E (x)) η (E (x) , E (x)) ≤ 0. (38)

Combining (36) and (38), we get that the following inequality[
∇ (f ◦ E) (x) +

k∑
i=1

λi∇gi (E (x))
]
η (E (x) , E (x)) < 0

which is a contradiction to the E-KKT necessary optimality condition (21).
Since x is an optimal solution of the problem (PE), by Lemma 2, E (x) is
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an E-optimal solution of the problem (P). Thus, the proof of this theorem is
completed. �
Theorem 7. Let

(
x, λ

) ∈ DE × Rk be a KKT-point of the E-optimization
problem (PE). Further, assume the following hypotheses are fulfilled:

a) the function f , is strictly pseudo-E-univex at x on DE with respect to η,
Φf and bf ,

b) each constraint function gi, i ∈ IE (x), is quasi-E-univex at x on DE

with respect to η, Φgi
and bgi

,
c) Φf is strictly increasing and Φgi

, i ∈ I is increasing with Φf (0) = 0 and
Φgi

(0) = 0,
d) bf (E (x) , E (x)) > 0 and bgi

(E (x) , E (x)) ≥ 0, i ∈ IE (x) for all x ∈
DE .

Then x is an optimal solution of the problem (PE) and, thus, E (x) is an
E-optimal solution of the problem (P).

Example 9. Consider the following nonconvex nondifferentiable optimization
problem

f(x) → min
subject to g1(x) ≤ 0,

g2(x) ≤ 0,
(P2)

where,

f(x) =

⎧⎨
⎩

x if x < 0,

3
√

x if x ≥ 0.

g1(x) =

⎧⎨
⎩

− 3
√

x if x < 0,

1 − e
3√x if x ≥ 0.

g2(x) =

⎧⎨
⎩

3
√

x2 if x < 0,

− 3
√

x if x ≥ 0.

Let η(x, u) = ( 3
√

x − u)5, Φf (x) = Φgi
(x) = 3x, bf (x, u) = 1

3x
4
3 + u + 1,

bg1(x, u) = bg2(x, u) =

⎧⎨
⎩

1 if x < u,

0 if x ≥ u.
. The functions constituting problem (P2)

are nondifferentiable at 0. Let E : R → R be defined as follows E (x) = x3.
Now, for the considered E-differentiable problem (P2), we define its associated
differentiable problem (P2E) as follows

f(E(x)) → min
subject to g1(E(x)) ≤ 0,

g2(E(x)) ≤ 0,
(P2E)

where,

f(E(x)) =

⎧⎨
⎩

x3 if x < 0,

x if x ≥ 0.
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Figure 1. x = 0 is an optimal solution of the problem (P2E)

g1(E(x)) =

⎧⎨
⎩

−x if x < 0,

1 − ex if x ≥ 0.
g2(E(x)) =

⎧⎨
⎩

x2 if x < 0,

−x if x ≥ 0.
. Note that

the set of all feasible solutions of the problem (P2E) is DE = {x ∈ R : x ≥
0}. It can be shown that the E-Karush–Kuhn–Tucker necessary optimality
conditions (20)–(22) are fulfilled at x = 0 with Lagrange multipliers λ1 =
λ2 = 1

2 . Further, all hypotheses of Theorem 6 are fulfilled, it can be show that
f, is pseudo-E-univex at x on DE with respect to η, Φf and bf given above,
functions g1 and g2 are quasi-E-univex at x on DE with respect to η, Φgi

and
bgi

given above. Hence, x = 0 is an optimal solution of the problem (P2E)
and, thus, E(x) = 0 is an E-optimal solution of the problem (P2) (Fig. 1).

Example 10. Consider the following nonconvex nondifferentiable optimization
problem

minimize f (x) = x + cos( 3
√

x2)
subject to g1 (x) = 1 − e

3√x ≤ 0,
g2 (x) = − arctan 3

√
x ≤ 0.

(P3)

Note that D =
{

x ∈ R : 1 − e
3√x ≤ 0,− arctan 3

√
x ≤ 0

}
is the feasible solu-

tion set of the considered optimization problem (P3). Let
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η(x, u) =

⎧⎨
⎩

3
√

x2 + 3
√

u2 + xu if x > u,

3
√

x − 3
√

u if x ≤ u.

bf (x, u) = bg1(x, u) =

{ 3√
u2

3√x− 3√u
if x > u

0 if x ≤ u
, bg2(x, u =

{
u + 1 if x > u

0 if x ≤ u
,

and Φ(x) = 3x. Let E : R → R be a mapping defined by E (x) = x3. Then, we
define the following differentiable E-optimization problem (P3E) as follows

minimize (f ◦ E) (x) = x3 + cos(x2)
subject to (g1 ◦ E) (x) = 1 − ex ≤ 0,

(g2 ◦ E) (x) = − arctan x ≤ 0.
(P3E)

Note that DE = {x ∈ R : x ≥ 0} is the feasible solution set of the problem
(P3E) and x = 0 is a feasible solution of the nonlinear optimization problem
(P3E). Then, all hypotheses of Theorem 7 are fulfilled, it can be show that
f, is strictly pseudo-E-univex at x on DE with respect to η, Φf and bf given
above, functions g1 and g2 are quasi-E-univex at x on DE with respect to η,
Φgi

and bgi
given above. Hence, x = 0 is an optimal solution of the problem

(P3E) and, thus, E(x) = 0 is an E-optimal solution of the problem (P3).

4. Concluding Remarks

In the paper, new concepts of nondifferentiable generalized convexity notions
have been introduced. The so-called E-differentiable E-univexity unify the con-
cepts of convexity, univexity defined by Bector et al. [11], B-invexity defined
by Bector et al. [9], Suneja et al. [32], invexity defined by Hanson [15], E-B-
invexity defined by Abdulaleem [8], E-convexity defined by Youness [33] and
E-invexity defined by Abdulaleem [5]. Further, some properties of E-univex
functions have been studied. Also E-univex functions have been extended to
pseudo-E-univex, strictly pseudo-E-univex and quasi-E-univex functions. In
order to show their applications, the sufficiency of the so-called E-Karush–
Kuhn–Tucker necessary optimality conditions have been proved for a nonlin-
ear E-differentiable optimization problem in which the involved functions are
E-univex and/or generalized E-univex. The aforesaid results have been illus-
trated by an example of nonconvex E-differentiable optimization problem with
E-univex functions. Hence, the optimality results have been generalized and
extended in the paper to new classes of E-differentiable optimization problems
in comparison to those ones actually existing in the optimization literature.

However, some interesting topics for further research remain. It would
be of interest to investigate whether it is possible to prove similar results for
other classes of E-differentiable optimization problems. We shall investigate
these questions in subsequent papers.
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