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Abstract  Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and 
identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this 
visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain 
sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices 
contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is 
mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans 
using three planes, including axial plane, coronal plane, and sagittal plane. Three different thresholds, which are based on 
texture features: mean, energy and entropy, are obtained automatically. This allowed to accurately separating the MRI slice 
into normal and abnormal one. However, the abnormality detection contained some normal blocks assigned wrongly as 
abnormal and vice versa. This problem is surmounted by applying the fine-tuning mechanism. Finally, the MRI slice 
abnormality detection is achieved by selecting the abnormal slices along its tumour region (Region of Interest - ROI). 
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1. Introduction 
Categorically, cancer is the most frightening affliction 

and brain cancer is the most intricate type to treat. 
Consequently, good diagnosis and selection of the most 
appropriate treatment is of great importance. Effective 
treatments of brain cancers and tumours require the high 
quality MR images to diagnose the severity of the disease.  

Lately, MRI has emerged as a useful diagnostic tool for 
brain and other medical images and it's the most common 
test for diagnosing and confirming the presence of brain 
tumour [1-3]. It identifies the tumour location for 
recommended specialist treatment options [4]. The brain 
being the most important part of the Central Nervous 
System (CNS) its structure and function must be thoroughly 
studied non-invasively by doctors and researchers using 
MRI imaging techniques [5]. Practically, MR images 
include both normal and abnormal (defective) slices. Firstly, 
it must detect the defective or abnormal slices and separate 
them from the normal slices. To get the true location of the  
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tumour, it is necessary to achieve a precise method for 
abnormal slices identification by excluding the normal 
slices. It is customary to discuss the methods for cerebral 
tissues extraction associated with abnormal slices 
classification. 

The experiments were repeated on a set of digitized 
medical MR images collected from three different 
standard/challenge dataset is used to fulfill the proposed 
method, the experiments were repeated with three types of 
dataset. These three types of dataset comprehensively 
evaluate the performance of the proposed methods via 
qualitative and quantitative measures. The first two datasets 
are obtained via the Internet Brain Segmentation Repository 
(IBSR) created by the Center for Morphometric Analysis, 
Massachusetts General Hospital (USA), named IBSR 
(10Normals_T1) devoid of brain tumour, and IBSR 
(536_T1) contains brain tumour. These are widely used for 
brain tumour detection [6-22]. The third dataset named 
challenge MICCAI (BRATS2012-BRATS-1) is a 
multimodal Brain Tumour Segmentation (BRATS) 
challenge that is held in conjunction with the 1st 
international conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI 2012) on 
October 15th, 2012 in Nice, France. This dataset provides a 
large number of brain tumour MRI scans in which the 
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tumour regions are manually delineated [23-41]. Moreover, 
all datasets are free of noise, slice images of each type are 8 
bits/pixel greyscale in Digital Imaging and Communications 
in Medicine (DICOM) file format. They consist of 
T1-weight sequence in all the three planes (i.e. Axial, 
sagittal and coronal plane) and contain 4567 MRI slices 
from 35 patients. For the IBSR (536_T1) and challenge 
MICCAI (BRATS2012-BRATS-1) datasets the detection of 
abnormal MRI slices portion ground truth by human experts 
is available. 

2. Related Work 
Radiologists analyse the MR images by visual inspection 

to detect and identify the presence of tumour or abnormal 
tissue. The huge number of such images makes this visual 
interpretation process labour intensive, expensive, and often 
erroneous. Furthermore, the sensitivity of the human eye 
and brain to elucidate such images reduces with the increase 
of number of cases, especially when only a small number of 
slices contain information of the affected area. Therefore, 
an automated system for the analysis and classification MR 
images is essential. 

Practically, MR images include both normal and 
defective slices. The likelihood of detecting a premature 
dementia without using rigid registration of MRI is 
established [42]. Based on the dissimilarity matrix, a 
k-Nearest Neighbors (k-NN) classifier is developed. The 
efficiency and performance of the classifier is tested in a 
leave-one-out experiment on 58 images. This method 
achieves an efficiency of 81%. Hybrid techniques 
consisting of three steps including feature extraction via 
Discrete Wavelet Transform (DWT), reduce the dimensions 
size by Principal Component Analysis (PCA) and 
classification of the outputs using two classifiers are 
proposed [43]. The Artificial Neural Network (ANN) and 
k-NN based classifiers are used on dataset comprised of 
T2-weighted having axial dimension of (256×256) pixels 
and image size of 70 (with10 normal and 60 abnormal). 
Remarkably, the number of extracted features is reduced 
from 1024 to seven using PCA. Accuracy as much as 97% 
and 98% are achieved from DWT + PCA + ANN and DWT 
+ PCA + k-NN, respectively. 

In the past, MR brain images are classified using ANN 
and Support Vector Machines (SVM) method [44]. The 
pre-processing phase involving DWT is used as input for 
Neural Network (NN) and SVM. The dataset consisting of 
T2-weighted, axial, (256×256) pixels MRI, images size 52 
with 46 for abnormal (marked by Alzheimer’s disease) and 
6 for normal are applied, where 4761 features are extracted. 
The achieved accuracy of the classifier DWT + 
Self-Organizing Map (SOM) is 94%, DWT + SVM with 
linear kernel is 96.15%, DWT + SVM with polynomial 
kernel is 98.00% and DWT + SVM with radial basis 
function based kernel is 98.00%. An automatic 
classification of MR images for normal or abnormal tissues 

is proposed [45]. This classifier follows two steps such as 
feature extraction by PCA and classification by the neuro 
fuzzy. Using an input dataset of size 35 (with 20 as training 
set and 15 as testing set) the accuracy of 93.33% is achieved. 
Yet, an accurate differentiation between the abnormal and 
normal MRI slices requires dedicated research efforts. Thus, 
it becomes the first objective of the present study. 

Despite some researcher, achieved high accuracy rate 
(overall 98%) but the experiments are performed with 
limited data sets. This paper used standard and challenge 
dataset to establish a strong basis and constitute a high level 
of reliability of the proposed net methods. 

3. Methodology 
This section demonstrates the new approach to separating 

the normal slices from the abnormal one in the brain MR 
images. The proposed method is comprised of four 
following steps: (1) Division of these tissues into 
non-overlapping blocks of 8×8 pixels to get a set of features 
for each block, (2) Determination of the optimal threshold 
value for splitting the blocks into normal and abnormal 
types, (3) Detection of abnormal block using the thresholds 
obtained from the step 2, and (4) Output - detected 
abnormal slices with its tumour region (ROI). 

 

Figure 1.  Flowchart of the proposed method for the detection of 
abnormal MRI slices 

The differentiation of the abnormal MRI slices from the 
normal one requires the threshold value. The optimal 
threshold value is obtained from a statistical calculation 
involving three texture feature parameters such as the mean, 
energy, and entropy. The abnormal MRI slices can only be 
obtained once abnormal blocks within the slice are 
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successfully identified. Thus, it is prerequisite to identify 
the abnormal blocks and refine them in order to obtain an 
accurate abnormal slice. Figure 1 illustrates the flowchart of 
the proposed method for the detection of abnormal MRI 
slices. 

This section contains two subsections. Subsection 3.1 
describes the method for determining the optimal threshold 
value, followed by Subsection 3.2, which explains the 
detection process of tumour block abnormality in the MRI 
slice is emphasized. 

3.1. Determination of Thresholds 

The optimal threshold values are determined using 
statistical calculations based on the three parameters: mean, 
energy and entropy before the abnormality detection began. 
To get the optimal threshold values, finding the relationship 
between these features and their distribution in the MRI 
slice is essential. It is worth noting that all MRI slices have 
a similar technical specification because all of them for 
each patient case are obtained from the same MRI device. 
Furthermore, the optimal threshold value that separates 
healthy region from the cancerous region is calculated and 
determined. As mentioned earlier, each MR image 
consisted of a set of slices. Thus, it is necessary to choose 
only those slices that contain more information about 
cerebral tissues (Gray Matter (GM), White Matter (WM), 
Cerebrospinal fluid (CSF) and tumour (if any)) in the same 
MR image. To meet such challenges the probability 
calculation is carried out to select the informative slice in 
each MRI image, which contained all information about the 
cerebral tissues. Normally, the GM, WM and CSF exist in 
all brain slices, but the presence of the tumour is not 
necessary in all the slices. However, some of them reveal 
the presence of the tumour in the MR image, where the 
selection the slice having a high probability of tumour 
occurrence is prerequisite.  

The probability distribution (frequency of occurrence) of 
the tumour in the slice “i” is obtained via the “P” function 
given by [46], [47],  

Pi =  ni
N

                     (1) 

where "ni" is the number of occurrences the tumour in the 
slice “i”, and "N" is the total number of MR images in the 
dataset.  

Figures 2 and 3 illustrates the probability of occurrence 
of the tumour in MR image slices in both IBSR (536_T1) 
and challenge MICCAI (BRATS2012-BRATS-1) datasets, 
respectively. 

A visual inspection of the Figures 2 and 3 exhibits that 
the middle slice of each MR image achieved the highest 
probability equal to one (informative MRI slice). This 
indicates that the middle slice in each MR image contains 
all cerebral tissues information (GM, WM, CSF and tumour 
(if any)). This deductive reasoning is in line with the earlier 
findings [48], [49]. For that reason, this study selects only 
the middle MRI slices for each patient in the all datasets to 
determine the threshold values. This process involved three 

essential steps, namely feature extraction, feature 
distribution, feature correlation and optimal threshold value 
detection. 

 

Figure 2.  The probability of the tumour occurrence in MR image slices 
of IBSR (536_T1) datase 

 

Figure 3.  The probability of the tumour occurrence in MR image slices 
of challenge MICCAI (BRATS2012-BRATS-1) dataset 

3.1.1. Features Extraction  

Firstly, each of the chosen slices is partitioned into 
non-overlapping blocks of (8×8) pixels. This size of block 
is considered optimal since is empirically chosen by a set of 
experiments using various block sizes ranging from (4×4) to 
(16×16) pixels. Then, for each block, three statistical 
features mean, energy and entropy, are extracted to 
determine three threshold values, namely Mean-threshold 
(T1), Energy-threshold (T2), and Entropy-threshold (T3). 
Figures 4 and 5 depict two different examples of 
non-overlapping block division for MRI brain slice using 
(8×8) block. 
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(a)                    (b) 

Figure 4.  Non-overlapping block partition of patient Normal_19 of IBSR 
(10Normals_T1) dataset, (a) Original slice 23, and (b) Non-overlapping 
block division using (8×8) block size 

  

(a)                   (b) 

Figure 5.  Non-overlapping block partition of patient BRATS_HG0009 
of challenge MICCAI (BRATS2012-BRATS-1) dataset, (a) Original slice 
103, and (b) Non-overlapping block division using (8×8) block size 

Mean: The general brightness of an image “I” is 
measured using this average given by,  

 Mean (μ) =
∑ ∑ I(x,y)w

y =1
w
x =1

w×w
           (2) 

Energy: It returns the sum of squared elements of 
greyscale values of all pixels in the image, which takes the 
value 1 for constant image and expressed as, 

 Energy (e) = 1
W × W

∑ ∑ I2(x, y)N
y=1

w
x=1        (3) 

Entropy: It is the measure of non-uniformity in the 
image based on the probability of the greyscale values of all 
pixels and defined as, 

 Entropy = 1
w ×w

∑ ∑ Iw
y=1 (x, y)(−InI(x, y))w

x=1    (4) 

where (w=8) is the block size. 

3.1.2. Mean, Energy and Entropy Distribution  

As mentioned earlier, three features such as mean, energy, 
and entropy are extracted from each block. A correlation 
between these features and their distribution in the MRI 
slice is determined to obtain the optimal threshold values. 
As previously explained (Section 3.1), the experiment is 
executed by taking the middle slice from each MR image, 
where 35 MRI slices from three data sets are selected and 
manually divided into non-overlapping (8×8) sub-image 

blocks. Each block was labelled manually either as Normal 
(N) or Abnormal (A), as illustrated in Figure 6. The next 
step is to calculate the mean, energy, and entropy for each 
block using the Equations (1), (2), and (3) respectively. 

 

Figure 6.  Manual identification of slice 88 for patient BRATS_HG0015 
of challenge MICCAI (BRATS2012-BRATS-1) dataset into Normal (N) 
and Abnormal (A) regions 

The distribution of these three features is analysed in 
three dimensions, where the Z axis represents the feature 
values, while the X and Y axes characterizes the slice image 
in 2D. The distribution of mean values as displayed in 
Figure 7 appears to be more concentrated in the abnormal 
region than in the normal one. This heterogeneity is 
attributed to the higher dispersion of white pixel distribution 
in the tumour region. Furthermore, the fluctuation of the 
mean value in the normal region is found to be widely 
spread within 60-120 greyscale values. Conversely, mean 
values in the abnormal region are stabilized between 120 
and 180. 

Figure 8 depicts the entropy distribution of brain slice 
image. They are dispersed over the entire image with 
relatively higher occurrence in the tumour region than the 
non-tumour one. The entropy value of the tumour region is 
discerned to be more than 500. 

Figure 9 displays the energy distribution in the tumour 
region, which is found to be comparatively higher than the 
non-tumour space. Energy values of the tumour region are 
observed to be 14,000 times lower than the non-tumour one. 

Based on the above Analysis of individual feature, we 
cannot ascertain the appropriate threshold value to separate 
tumour from non-tumour region. For that reason in-depth 
Analysis are required. One option is to combine the features 
in order to find the best combination. Various combinations 
are therefore performed to find the optimal threshold value. 
Such combinations are: (mean, energy and entropy), (mean 
and energy), (mean and entropy) and (entropy and energy) 
are used as explained in the next section. 
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Figure 7.  Distribution of mean of slice 88 for patient BRATS_HG0015 of challenge MICCAI (BRTAS2012-BRATS-1) dataset 

 

Figure 8.  Distribution of entropy of slice 88 for patient BRATS_HG0015 of challenge MICCAI (BRTAS2012-BRATS-1) dataset 

3.1.3. Mean, Energy and Entropy Correlation  

Figure 10 shows the first combination (mean, energy and 
entropy). The brown stars signify the tumour region and 
blue one symbolizes the non-tumour zone. The figure 
clearly shows that when the entropy increases the tumour 
parts are clearly visible and well separated from non-tumour 
zones. This indicates that this combination of the three 
features performs superbly in separating the tumour from 

non-tumour region – an excellent feature combination for 
finding the tumour. 

Meanwhile, Figures 11 – 13 show the performance of the 
second, third and fourth combinations, respectively. Their 
performances resemble the first combination – almost 
identical. 

Based on the above findings, we can deduce that: (1) The 
three features are significant and relevant; (2) The 
combinations provided identical performances in terms of 
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separating the tumour from non-tumour region. However, 
we cannot make a decision yet because the findings were 
only based on a single slice – is not sufficient to make a 
conclusion. Therefore, this study repeats the experiment for 
another 34 slices from all datasets to determine optimal 

thresholds, T1, T2 and T3. Outcomes of the experiment are 
given in Table 1 below. The table reveals that T1, T2 and 
T3 are device-dependent because each MRI device has its 
own proprietary in terms of both scanner and image 
specifications. 

 

 

Figure 9.  Distribution of energy of slice 88 for patient BRATS_HG0015 of challenge MICCAI (BRTAS2012-BRATS-1) dataset 

 

Figure 10.  Relation among mean, energy, and entropy of slice 88 for patient BRATS_HG0015 of challenge MICCAI (BRTAS2012-BRATS-1) dataset 
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Figure 11.  The relationship between mean and energy of slice 88 for patient BRATS_HG0015 in challenge MICCAI (BRTAS2012-BRATS-1) dataset 

 

Figure 12.  The relationship between entropy and energy of slice 88 for patient BRATS_HG0015 in challenge MICCAI (BRTAS2012-BRATS-1) dataset 

Table 1.  The threshold values of mean, energy and entropy for the different datasets 

Dataset Name 
Threshold Value 

Mean (T1) Energy (T2) Entropy (T3) 

IBSR (10Normals_T1) 120 2×104 600 

IBSR (536_T1) 120 2×104 600 

MICCAI (BRATS2012-BRATS-1) 135 2.2×104 680 

Note: IBSR (10Normals_T1) and IBSR (536_T1) datasets are acquired from the same MR scanner while 
MICCAI is from a different MR device.  
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Figure 13.  The relationship between entropy and mean of slice 88 for patient BRATS_HG0015 in challenge MICCAI (BRTAS2012-BRATS-1) dataset 

3.2. Detection of Abnormal Blocks 

Once the threshold values have been identified, the 
following process is to determine abnormal blocks within 
each MRI slice. It is obvious that if abnormal blocks are 
found in a particular slice, then the slice is considered as an 
abnormal slice. Thus, this section utilises the above 
thresholds, T1, T2 and T3, to detect the abnormal blocks. A 
block is labelled as abnormal if and only if all the rules are 
satisfied. The rule is given in Figure 14. 

 

Figure 14.  Abnormal block detection rules 

3.2.1. Fine-tuning Mechanism of Abnormal Blocks  

Undoubtedly, the above abnormality rule is simple yet 
efficient enough to deliver initial results. However, we 
cannot confirm the achieved results are 100% correct - 
some blocks of tumour slice images may be captured as a 
part of the non-tumour region, and vice versa. It is evident 
that the inaccuracy in the tumour block affects the results of 
abnormality detection of the slice. Thus, this study 
introduces a new technique called fine-tuning mechanism to 

check, validate and improve the initial abnormal block. The 
fine-tuning mechanism is based on three types of (3×3) 
block masks, namely Preceding, Current, and Succeeding 
Block Mask as displayed in Figure 15. 

In this procedure, the MRI slice is scanned 
block-by-block from the top-left to the right-bottom corners 
using the Current Block Mask. The mask starts from the 
top-left corner and moves one column at a time until it 
reaches the last column. Then, it moves down one row and 
starts again from the first column until it reaches the last 
column and so on so forth until it reaches the right-bottom 
corner. 

In this study, there are fourteen scenarios, Case 1, Case 
2, . . . , Case 14, may happen and need a fine-tuning. Each 
case is treated differently using the fine-tuning mechanism. 
The following paragraphs provide detailed discussions 
diagrammatically along with pseudo-code given in 
Algorithm 1 on how the mechanism works to fine-tune the 
problematic blocks. For ease of discussions and consistency 
several symbols are used, for instances, green block 
indicates ignored block, yellow indicates non-tumour or 
normal block, and red represents tumour block. 

In Case 1, if a block scan reveals that all neighbouring 
blocks surrounding the centre block Ci are non-tumour 
blocks and Ci is a tumour block, then Ci become a 
non-tumour block to match its neighbours (see Figure 16 
(a1 – a2)). Conversely, in Case 2, the mechanism changes 
the centre block to tumour to match its tumour neighbours 
(see Figure 16 (b1- b2)). 

if Mean > T1 then  

if Energy > T2 then  

if Entropy > T3 then  

Block is Tumour  

 else  Block is Non-Tumour  

 



14 Mohammed Sabbih Hamoud Al-Tamimi et al.:  A New Abnormality Detection Approach for  
T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes 

 

Figure 15.  Three types of block masks with size (3×3) called preceding mask centred at Pi, current mask centred at Ci, and succeeding mask centred at 
Si. Green colour indicates ignored block 

 

 
Figure 16.  Fine-tuning of Case 1: (a1-a2), and Case 2: (b1-b2), where the mechanism changes the block Ci based on its neighbours 

Additionally, three rules are applied to decide whether a target block Ci is the part of a tumour, or non-tumour image. 
Each rule is summarized as follows: 
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Rule 1: If centre block Ci of Current Block Mask with three of its tumour neighbours lies on one side, like Case 3: (C1, 
C8, C7), Case 4: (C1, C2, C3), Case 4: (C3, C4, C5) or Case 6: (C5, C6, C7) then Ci is changed to a non-tumour block 
(refer to Figure 17). 

 

 

Figure 17.  Fine-tuning of (Case 3 - Case 6), where Ci is changed from tumour to a non-tumour block using the Rule 1 
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Rule 2: If five neighbours on one side of Current Block Mask with the Preceding Block Mask and Succeeding Block 
Mask including Case 7: (C1, C2, C8, C7, C6, Pi, Si); Case 8: (C1, C2, C3, C4, C8, Pi, Si); Case 9: (C2, C3, C4, C5, C6, Pi, 
Si); or Case 10: (C4, C5, C6, C7, C8, Pi, Si) are tumour blocks and Ci is a non-tumour block, then the target block Ci 
becomes a tumour block as depicted in Figure 18. 
 

 

Figure 18.  Fine-tuning of (Case 7 - Case 10), where Ci is changed from non-tumour to a tumour block using the Rule 2 
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Rule 3: If block Ci has two neighbours on opposite sides with the Preceding Block Mask and Succeeding Block Mask 
such as Case 11: (C1, C5, Pi, Si); Case 12: (C8, C4, Pi, Si); Case 13: (C2, C6, Pi, Si); or Case 14: (C3, C7, Pi, Si); that are 
tumour blocks and Ci is a non-tumour block, then the target block Ci becomes a tumour block, as shown in Figure 19. 
 

 

Figure 19.  Fine-tuning of (Case 11 - Case 14), where Ci became a non-tumour block using the Rule 3 
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Once the fine-tuning of the tumour blocks completed, now it is ready to determine tumour slice based on the information 
gathered from the Algorithm 1. Now, once again the proposed method scans the MRI image slice by slice and calls the 
Fine-tuning algorithm to determine the status of the slice. The scanned slice is labelled as tumour slice if it contains at least 
one tumour block, otherwise the slice is considered a normal slice. The present method not only determines or detects the 
tumour slice, it also provides location and size (in terms of block) of tumour regions called ROI. 

 

 

Algorithm 1.  The fine-tuning mechanism 
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4. Result and Discussion 
Abnormality detection of MRI slices is performed by 

conducting a sequence of experiments to evaluate the 
performance of the proposed abnormal MRI slice detection. 
The assessment includes: (1) Abnormal block detection 
(before and after the fine-tuning mechanism), and (2) The 
abnormal slice detection. The three above-mentioned 
standard datasets together with the ground truth are used for 
the evaluation. The performance of the proposed method is 
measured in both qualitative and quantitatively, and the 
experimental results are presented hereunder. 

4.1. Results of the Abnormal Block Detection before the 
Fine-tuning 

Three features such as mean, energy and entropy are 
extracted from each block. The relationship between these 
features and their distribution in the MRI slice are analysed 
using Three-Dimensional (3D) graphs. Three different 
thresholds are established to represent these extracted 
features. The rules established for the extraction of the ROI 
tumour region from MRI slice are based on these three 
thresholds (Section 3.1). 

The performance of the current method is evaluated with 
the same visual inspection procedure where MRI slices with 
different contrast are examined. Figures 20, 21 and 22 
shows the experimental results of the block classification 
using the three data sets, where the left column represents 
the original MRI slices image, the centre is the (8×8) block 
division using the proposed method and the right column is 
block detection result where the blue colour signifies the 
normal region (non-tumour area) and the other blocks 
implies the abnormal area (tumour area). 

   

Figure 20.  Abnormal block detection results of IBSR (10Normals_T1) 
dataset 

   

Figure 21.  Abnormal block detection results of IBSR (536_T1) dataset 
with tumour marked by a red circle 

   
Figure 22.  Abnormal block detection results challenge MICCAI 
(BRATs2012-BRATS-1) dataset with tumour marked by a red circle 

A visual inspection of these slices clearly revealed that 
the proposed abnormal block detection method, in terms of 
the brain tumour region (a collection of tumour blocks, or in 
short ROI), provided reasonably excellent result. However, 
a few wrongly classified results, which are also termed 
misclassified, are obtained using the proposed method. 
Figures 23, 24, and 25 shows the experimental results for 
the three datasets, where the proposed method misclassified 
the block. The term misclassified is defined as "a 
questioned block is supposed to be tumour but the method 
labelled it as non-tumour, or vice versa". In this case, some 
blocks of tumour region are detected as non-tumour (yellow 
circle) and various normal blocks are appeared to be the 
part of the tumour region (red circle). Some 
misclassifications emerged with one block like the slice 13 
of patient Normal_7 (Figure 23). These three cases 
authenticate that the current abnormal block detection 
process incorrectly captured the normal areas and 
considered them to be a part of the tumour region (red 
circles). 

   

Figure 23.  Misclassified blocks of IBSR (10Normals_T1) dataset without 
any tumour 

   

Figure 24.  Misclassified blocks of IBSR (536_T1) dataset with tumour 
marked via green circle 

   

Figure 25.  Misclassified blocks of challenge MICCAI 
(BRATS2012-BRATS-1) dataset with tumour marked via green circle 

Obviously, the inaccurate identification of the tumour 
region greatly affects the results of slice abnormality 
detection. This problem is resolved by applying sets of rules 
based on the neighbouring blocks. First, block-by-block 
scanning of the MR slice image from top to bottom and from 
left to right direction is performed using three types of (3×3) 
blocks mask named “Preceding, Current, and Succeeding 
Blocks Mask”. Next, all the neighbouring blocks 
surrounding a centre block in the "Current Block Mask" as 
well as the centred block of “Preceding, and Succeeding 
Blocks Mask” are selected in the final decision of the block 

  
 

  

  

Block Wrongly 
classified 

Wrongly classified 

Wrongly classified 

 



20 Mohammed Sabbih Hamoud Al-Tamimi et al.:  A New Abnormality Detection Approach for  
T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes 

classification method. By applying all previously mentioned 
rules (Section 3.2) perfect result is achieved, where the 
occurrence of inexact classification blocks is corrected using 
the proposed method. This process is essential because the 
reliability of abnormality detection is primarily decided by 
the accuracy of this process.  

Now the rules 1 and 2 based on the neighbouring blocks 
are applied to correct the wrong classifications. Figure 26 
illustrates the corrected slices after removing the inaccuracy 
from patient Normal_7 (Figure 23). The first, second and 
third column displays the preceding slice, the current slice, 
and the succeeding slice, respectively. 

 

 

 

 

 

Figure 26.  A fine-tuning A fine-tuning result of tumour block slice 13 of patient Normal_7 of IBSR (10Normal_T1) dataset: (a) The original 
non-tumour slice 13 (in grid), (b) Fine-tuning of misclassified block of the current slice, and (d) Final result of the questioned block 

 

 

 

 

Figure 27.  A fine-tuning result of six tumour blocks (two separate locations) of slice 21 of MRI scan 536_47 from IBSR (536_T1) dataset: (a) The 
original tumour slice 21 (in grid), (b) Fine-tuning of misclassified blocks of the current slice, and (d) Final result of the questioned blocks 
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Figure 28.  A fine fine-tuning result of two tumour block of slice 95 of patient BRATS_HG0015 from challenge MICCAI (BRATS2012-BRATS-1) 
dataset: (a) The original tumour slice 95 (in grid), (b) Fine-tuning of misclassified blocks of the current slice, and (d) Final result of the questioned block 

Figure 26 clearly demonstrated that the proposed method 
erred in the classification of one block in each. This error is 
corrected based on the proposed method by using three MRI 
slices: the preceding slice and the succeeding slice to the 
current slice as shown in Figure 26(a). In the second step, it 
used (8×8) block division for all three slices (preceding, 
current and succeeding slices) as displayed in Figure 26(b). 
In the third step, the proposed method applied a (3×3) mask 
called "Current Block Mask" in the current MRI slice, where 
the centre of this mask is considered as the wrongly 
classified block. First, the test is started with all the eight 
surrounding blocks to determine whether these blocks are 
tumour blocks or not. Second, the proposed method applied 
another (3×3) mask called "Preceding Block Mask" on the 
slice (before considered as the current slice) with its centre as 
exactly the opposite block to block that is wrongly classified 
as tumour or non-tumour block. Third, a (3×3) mask named 
"Succeeding Block Mask" is applied on the slice that are 
after the current slice with its centre located exactly on the 
opposite block that is wrongly classified as tumour or 
non-tumour block as shown in Figure 26(b). Finally, it is 
ensured that not all the eight surrounding blocks, preceding 
block, and succeeding block are tumour blocks. The 
proposed method changed the wrongly classified block from 
the tumour to non-tumour one as illustrated in Figure 26(c). 

It is evident that from the above findings, the    
proposed fine-tuning mechanism successfully solved the 
misclassification problems and improved the accuracy of the 
tumour block detection. A careful observation reveals that 
even complicated issues, which involved multiple blocks in 
two separate locations (refer to Figures 27 and 28), were 
solved successfully. Generally, the abnormal region contains 
all the important features of a tumour and any incorrectness 

in the detection of this region has severe implication in terms 
of anomaly detection and treatment. Using the proposed 
abnormal block detection method coupled with the 
fine-tuning mechanism the tumour region is perfectly 
selected (i.e. ROI). Overall, in terms of the qualitative 
assessment, the performance of all components of the current 
methods, including cerebral tissue extraction, abnormality 
block classification and fine-tuning mechanism are 
satisfactory. 

4.2. The Quantitative Assessment of the Tumour Block 
Detection 

Continuing the above section, discussions are now shifted 
to quantitative assessment to reaffirm the above findings. For 
that reason, the same datasets are utilised. Two types of 
measures, the Jaccard (J) coefficient [50], and the Dice (D) 
coefficient [51] are used to validate the proposed method.  

The coefficient of "J" and "D" is used to evaluate the 
performance of the proposed abnormal MRI slice detection 
method. The expression for "J" and "D" are given by: 

( ) A B
J A, B

A B
=





               (6) 

( ) 2 A B
D A, B

A B
=

+



             (7) 

Both indices are similar. The value of "J" and "D" ranges 
from [0 to 1]. The performance of a method is considered 
perfect if both indices equalled 1 or vice versa. Both indices 
used two symbols, A and B. The former represents an 
observation result (obtained by the proposed method) while 
the latter symbolises a ground truth (Human expert), unless if 
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it stated otherwise as shown in Table 2. 

Table 2.  Block abnormality detection results of the IBSR (10Normals_T1)  

Patient No. 
No. of Block Coefficient 

    

J D 

Normal_1 54272 54272 54272 54272 1 1 

Normal_4 54272 54272 54272 54272 1 1 

Normal_7 54266 54272 54266 54272 0.99 0.99 

Normal_8 57344 57344 57344 57344 1 1 

Normal_11 54272 54272 54272 54272 1 1 

Normal_15 54272 54272 54272 54272 1 1 

Normal_16 57344 57344 57344 57344 1 1 

Normal_17 57340 57344 57340 57344 0.99 0.99 

Normal_19 57344 57344 57344 57344 1 1 

Normal_20 57344 57344 57344 57344 1 1 

Average 0.99 0.99 

Where A: Normal block detection using the proposed 
method, and B: Ground truth. 

In Table 2, the results have revealed that both J and D 
coefficients equalled 1 for over a majority of the cases. It 

means that the proposed method has successfully detected 
non-tumour blocks in the majority of patients of this 
non-tumour dataset. It means that there is no tumour block 
found in the cases - not even a single block. However, there 
are exceptions for two patients named Normal_7 and 
Normal_17, where the proposed method misclassified six 
non-tumour blocks as tumour for the patient Normal_7, and 
four non-tumour blocks for the patient Normal_17. This is 
due to higher portions of whiteness ratio, which resembles a 
tumour block's characteristic.  

Meanwhile, for the IBSR (536_T1) dataset, Figure 29 
show that the achieved average coefficient for the J ≈ 0.95 
and for D ≈ 0.97, which clearly demonstrates the superiority 
of the proposed method in detecting the abnormal blocks. 

However, there are two wrongly classified scans, MRI 
scan 536_45 and MRI scan 536_47 as shown in Figures 30 
and 31, respectively. In both scans, there are two 
misclassified blocks. However, careful observations of both 
figures have revealed that the cases are different: In the first 
case, two non-tumour blocks were classified as tumour 
(indicated by the red circle in Figure 30), while in the 
second case, two tumour blocks were misclassified as 
non-tumour (red circle in Figure 31). 

 

 

Figure 29.  Block abnormality detection results of the IBSR (536_T1) dataset 

 

                 

(a)                 (b)                  (c) 
Figure 30.  The misclassified MRI scan 536_45 of IBSR (536_T1) dataset, (a) Original MRI slice 22 with tumour inside the marked blue Square, (b) 
Zoomed in marked area, and (c) Misclassified blocks, where the red circle indicates wrongly classified blocks and yellow circle represents the tumour area 
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                                           (a)                 (b)                (c) 

Figure 31.  The misclassified MRI scan 536_47 of IBSR (536_T1) dataset, (a) Original MRI slice 31 with tumour inside marked blue Square, (b) 
Zoomed in marked area, and (c) Misclassified blocks, where the red circle indicates wrongly classified blocks and yellow circle represents the tumour area 

 

Figure 32.  The Jaccard and Dice coefficients similarity indices for each MRI patient in challenge MICCAI (BRATS2012-BRATS-1) dataset  

Similar excellent performance was repeated for the 
challenge MICCAI (BRATS2012-BRATS-1) dataset   
(see Figure 32), especially in terms of Dice index  
(average coefficient achieved is 0.97). Again, there     
were some misclassified blocks, particularly in patient 
BRATS_HG0026 where its Dice coefficient < 0.95, which 
affected the Dice index average. 

4.3. Quantitative Evaluations of Slice Abnormality 
Detection 

Upon completion of the assessment of the abnormal 
block detection, further evaluation is required to assess the 
performance of the proposed abnormal slice detection 
method. Therefore, a different set of measurements is used, 
namely sensitivity, specificity and accuracy to evaluate the 
performance of brain tumour abnormal MRI slice detection 
method. The formulae are as follows [52], [53] 

TP
Sensitivity

TP FN
=

+
            (8) 

TP
Specificity

TP FP
=

+
            (9) 

TN TP
Accuracy

TN TP FN FP

+
=

+ + +
      (10) 

Where: TP (True Positive): Number of slices that are 
correctly classified as abnormally slices, TN (True 
Negative): Number of slices that are correctly classified as 
normal slices, FN (False Negative): Number of normal 
slices those are wrongly classified as abnormally slices, and 
FP (False Positive): Number of abnormally slices those are 
wrongly classified as normal slices. 

Following that, the experimental results of the proposed 
abnormality slice detection method, which has been 
implemented on the aforementioned three datasets, are 
given below. Again, for ease of discussion and maintaining 
the flow, the results and discussions are given in the same 
sequence as above – starting with IBSR (10Normals_T1), 
followed by IBSR (536_T1), and ended with challenge 
MICCAI (BRATS2012-BRATS-1) dataset. Also, the 
discussion of the results is only given in terms of sensitivity 
and specificity. This is in line with the medical practices 
[54-56]. 

Figure 33 has revealed perfect results for the IBSR 
(10Normals_T1) dataset in terms of both specificity and 
accuracy for almost all except two patients named: 
Normal_7 and Normal_17. As aforementioned, this 
exception is due to the misclassification of three slices for 
the patient Normal_7 and six slices for the patient 
Normal_17. These two patients contained a high whiteness 
ratio that resembles the tumour. The results also revealed 
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that the sensitivity is 0%, which indicates that there is no 
tumour found in all slices. This is absolutely true and 100% 
matched with the ground truth of the dataset. 

 

Figure 33.  Experimental results of slice abnormality detection of IBSR 
(10Normals_T1) dataset 

In the second dataset, Figure 34 has shown that almost 
similar performance was achieved. However, in this case, 
the sensitivity is 93%, which indicates that almost all slices 
are correctly classified as tumour slices. The remaining 7% 
of the slices were wrongly classified. This is due to the high 
intensity of healthy tissue or low intensity of cancerous 
tissue, where a precise demarcation could not be drawn to 
segregate them. Even human eyes cannot differentiate them, 
let alone the machine. Clinically, these such cases required 
further examination using another MRI sequence such as 
Fluid-Attenuated (FLAIR) Inversion-Recovery and 
intermediate-weighted sequences at MR imaging [57]. 

 

Figure 34.  Experimental results of abnormality detection by slice obtained 
from the IBSR (536_T1) dataset 

In third dataset, challenge MICCAI 
(BRATS2012-BRATS-1), results in Figure 35 have 
revealed that the sensitivity and specificity are also found to 
be very high. It is worth mentioning that the sensitivity is 
highly dependent on FN, while the specifity is dependent on 
FP. The misclassification in terms of FN ranged from   
1.25% to 3.40%, which is considered very minimum and 
can be ignored - this reflects an excellent achievement. 
Likewise the FP (2.08% - 4.54%). 

 

Figure 35.  The sensitivity, specificity and accuracy of each MRI patient 
obtained from challenge MICCAI (BRATS2012-BRATS-1) dataset 

Careful observation of the slices of the dataset revealed 
that some slices have very small tumour, which resembles 
low grade tumour, which is almost impossible to detect 
even by naked eyes. 

 

Figure 36.  The measured Jaccard coefficient and Dice coefficient for the 
three distinct datasets: IBSR (10Normals_T1), IBSR (536_T1), and 
challenge MICCAI (BRATS2012-BRATS-1) 
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5. Conclusions 
This study summarizes the above findings of the 

abnormal block detection, as displayed in Figure 36, to 
evaluate the overall performances of the proposed method. 
The figure reveals that the proposed method performed 
extremely well in all circumstances regardless of datasets. 

Based on the above findings, it can be summarized that 
the proposed abnormal MRI slice detection method, which 
include abnormal block detection, has performed superbly 
regardless of datasets (see Figure 37).  

 

Figure 37.  The Results for the sensitivity, specificity and accuracy among 
the three used datasets 
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