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In this note, multi-dimensional nonlinear integral equations (multi-dimensional NIEs) in Rn is con-
sidered. Implementing modified Newton method (Modified NM) reduces multi-dimensional NIEs into
multi-dimensional linear integral equations (multi-dimensional LIEs), which can be solved by dis-
critization method. Quadrature method together with collocation are used to find values of unknown
functions. Existence and uniqueness solution of the problems are shown. The rate of convergence
of the proposed method is proved using the principle of majorant function. Finally, numerical exam-
ples are provided and it reveals that proposed method is both accurate and effective as well as
comparisons with other methods are also presented.

Keywords: The Modified Newton Method, Nonlinear Multi-Dimensional Integral Equations,
Quadrature Formula, The Majorant Function.

1. INTRODUCTION
It is known that much work has been done on devel-
oping and analyzing numerical methods for solving one-
dimensional integral equations of the second kind. The
Adomain decomposition method employed to solve the
system of nonlinear Volterra-Fredholm integral equations
and Volterra integro-differential equations as revealed
in Refs. [1 and 2]. The Newton-Kantorovich method
is used in Refs. [3 and 4] respectively, to solve the
systems of 2 × 2 and n × n nonlinear Volterra inte-
gral equations. In Ref. [5], Volterra integral equations
with separable kerenels are solved utilizing the differ-
ential transform method. Volterra integral and integro-
differential equations are solved by Iterated collocation
method and Implicitly linear collocation method as shown
in Refs. [6 and 7]. Indeed, many methods are utilized
to solve one dimension integral equations, including but
not limited to projection methods, Nystrom method, itera-
tion method, quadrature methods and expansion methods,
(see Refs. [8–11]). In two dimensional integral equations,
there are several literature which attempted to intro-
duce the analytical and numerical solutions. For instance,
in Ref. [12] the numerical method based on interpola-
tion by Gaussian radial basis function has been found
to solve two-dimensional Fredholm integral equations.

∗Author to whom correspondence should be addressed.

The two dimensional differential transform (TDDT) for
double integrals is developed in Ref. [13], for solving
a class of two-dimensional linear and nonlinear Volterra
integral equations. The authors in Ref. [14] endeavored
to solve two dimensional integral equations depending on
the principle of wavelet based methods. Two dimensional
rationalized Haar (RH) functions, as shown in Ref. [15]
are applied to the numerical solution of nonlinear sec-
ond kind two dimensional integral equations. The lin-
ear Fredholm integral equation is solved approximately in
Ref. [16] via two-dimensional modification of hat func-
tions, and operational matrix of integration. In Ref. [17],
the piece-wise constant two-dimensional block-pulse func-
tions and their operational matrices are applied for solv-
ing nonlinear Volterra-Fredholm integral equations of the
first kind. Two dimensional orthogonal triangular func-
tions are employed to find the numerical solution of non-
linear mixed type Volterra-Fredholm integral equations as
shown in Ref. [18]. The collocation points in Ref. [19],
together with operational matrices of integration are dis-
cussed for finding an approximate solution of a class of
two-dimensional nonlinear Volterra integral equations. The
integral mean value theorem in Ref. [20], is exploited for
solving two-dimensional linear Fredholm integral equa-
tions of the second kind. In contrast, a small amount of
work has been done in multi-dimensional cases, especially
in Rn such as, author in Ref. [21], applied functions with
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a shifted argument to reduce the multidimensional inte-
gral equation to a finite system of linear algebraic equa-
tions. In Ref. [22] Taylor series expansion is developed for
solving multidimensional integral equations. The recursive
method based on approximate separation of variables, is
employed in Ref. [23] to investigate the solutions of mul-
tidimensional integral equations. A computational method
in Ref. [24], is proposed based on Haar wavelets try-
ing to solve multidimensional stochastic Itô-Volterr inte-
gral equations. In Ref. [26], the convergence properties
of Jacobi spectral collocation method has been introduced
and used to approximate the solution of multidimensional
nonlinear Volterra integral equation. The interpolation by
radial basis functions (RBFs), in Ref. [27] is developed to
describe a numerical scheme for solving multi-dimensional
linear Fredholm integral equations of the second kind on
the hypercube domains. Many application of the Nonlinear
multi-dimensional integral equations of the second kind,
have been applied in different fields, including nonhomo-
geneous elasticity and electrostatics,28 contact problems
for bodies with complex properties,29 radio wave propaga-
tion,30 along with many physical, mechanical and biologi-
cal phenomena.

This study attempts to solve more general multi-
dimensional NIEs of the second kind in the region � =
�1×�2 ⊂ Rn where �1 = C∏n

i=1�ai�bi�
, and �2 = C∏n

i=1�ci�di�

of the form

u�t�−
∫ b1�t�

a1

∫ b2�t�

a2

���
∫ bn�t�

an

K�t�x�G�u�x��dxndxn−1 ���dx1

= f �t�� t = �t1� t2� � � � � tn��x = �x1� x2� � � � � xn� (1)

where, u�t� ∈�1 is unknown function, f �t� ∈�1 is given
function, and the kernel K�t�x� is a given smooth func-
tion in �, the nonlinear function G�u�t�� is continuous
function defined in �−���� and bi�t�, i = 1�2� � � � � n
are real valued continuous functions. Equation (1) refers
to the multi-dimension Fredholm integral equation if
bi�t� = bi, i = 1�2� � � � � n which are constants, otherwise
bi�t�= ti, i= 1�2� � � � � n. Equation (1) is called the multi-
dimensional Volterra integral equations.

The structure of this paper is organized as follows.
In Section 2 we discuss the use of modified NM for
linearization of multi-dimensional NIEs. In Section 3,
the approximate solution of the multi-dimensional LIEs
is considered using Quadrature formula. in Section 4,
the existence and uniqueness solution of the problem is
proved. In Section 5, examples are provided to show the
accuracy and efficiency of the method. Finally, Section 6
concludes the key ideas of the proposed approximation
method.

2. LINEARIZING THE MULTI-DIMENSIONAL
NONLINEAR INTEGRAL EQUATION

Let us rewrite Eq. (1) in the operator form

Q�u�t�� = 0� t = �t1� t2� � � � � tn� (2)

where

Q�u�t�� = u�t�− f �t�−
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

K�t�x�

×G�u�x��dxn dxn−1 � � �dx1 (3)

Now we use initial iteration of the modified NM in the
form

Q′�u0�t���u�t�−u0�t��+Q�u0�t�� = 0 (4)

where u0�t� is the initial guess, which is needed to be
properly chosen. The Frechet derivative of Q�u�t� x�� at
the initial guess u0�t� x� is appointed as

Q′�u0�u = lim
	→0

1
	
�Q�u0+	u�−Q�u0��

= lim
	→0

1
	

[
dQ�u0�

du
	u+ 1

2
d2Q
du2

�u0+
	�	2u2

]

= dQ�u0�

du
u� 
 ∈ �0�1� (5)

From Eqs. (4) and (5) we obtain

dQ
du

∣∣∣∣
u0

��u�t�� =−Q�u0�t�� (6)

where �u�t� x� = u1�t� x�− u0�t� x�, and u0�t� x� is the
initial given function, then by establishing the solution of
Eq. (6) for �u�t� x� the derivative is computed as

dQ
du

�u0 = lim
	→0

1
	
�Q�u0+	u�−Q�u0��

= lim
	→0

1

s

[
	u�t� x�−

∫ b1�t�

a1

� � �
∫ bn�t�

an

K�t�x�

× �G�u0�x�+	u�x��−G�u0�x��� dxn � � �dx1

]

= u�t�−
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�K�t�x�G′�u0�x��

×u�x�dxn dxn−1 � � �dx1� (7)

whereG′�u0�t�� is the derivative of G�u�t�� for u�t�. Then
Eqs. (6) and (7) yield

�u�t�−
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�K�t�x�G′�u0�x���u�x��

×dxndxn−1 � � � dx1

= f �t�+
∫ bt

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�K�t�x�G�u0�x���

×dxndxn−1 � � � dx1−u0�t� (8)

or

�u�t�−
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�0�t�x
 u0��u�x�

×dxndxn−1 � � �dx1 =�0�t� (9)

J. Comput. Theor. Nanosci. 14, 5298–5303, 2017 5299
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where

�0�t�x
 u0�= �K�t�x�G′�u0�x��� (10)

�0�t�= f �t�+
∫ b1�t�

a1

� � �
∫ bn�t�

an

�K�t�x�G�u0�x���

×dxn � � �dx1−u0�t� (11)

We observe that Eq. (9) is linear with respect to �u�t�,
and by solving it, we find u1�t�=�u�t�+u0�t�. Then con-
tinuing this procedure, we get a sequence of approximate
solution ur�t�, �r = 2�3� � � �� from the equation;

Q′�u0�t���ur�t�+Q�ur−1�t�� = 0 (12)

which is same as the equation

�ur�t�−
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

��0�t�x
 u0��ur�x��

×dxn dxn−1 � � �dx1 =�r−1�t� (13)

where

�ur�t� = ur�t�−ur−1�t�� r = 2�3� � � � (14)

and

�r−1�t� = f �t�+
∫ b1�t�

a1

� � �
∫ bn�t�

an

�K�t�x�G�ur−1�x���

×dxn � � �dx1−um−1�x�� t = �t1� t2� � � � � tn��

x = �x1� x2� � � � � xn� (15)

Solving Eq. (13) with respect to �ur�t� we obtain a
sequence of approximate solution ur�t�.

3. APPROXIMATE SOLUTION BY
QUADRATURE METHOD

Introducing a grid

W =
{
tj � �t1j � t2j � � � � tnj� � tij = ai+ jhi� hi =

bi−ai

mi

i = 1�2� � � � � n� j = 1�2� � � � �mi

}

where mi refers to the number of partitions in �ai� bi�,
Eq. (13) becomes

�ur�tj �−
∫ b1�tj �

a1

∫ b2�tj �

a2

� � �
∫ bn�tj�

an

��0�tj �x
 u0��ur�x��

×dxn dxn−1 � � �dx1 =�r−1�tj � (16)

where

�r−1�tj �

= f �tj �+
∫ b1�tj �

a1

∫ b2�tj �

a2

� � �
∫ bn�tj �

an

�K�tj�x�G�ur−1�x��

×dxn dxn−1 � � �dx1−ur−1�tj ��

j = 1�2� � � � �mi� i = 1�2� � � � � n (17)

The powerful technique used to approximate the integra-
tions of (16) is a quadrature formula. It is known that Leg-
endre polynomials Pn�t� are orthogonal on �−1�1� with
weight w = 1. Consider the Gauss-Legendre quadrature
formula (QF) for multi integral8

∫ 1

−1
� � �

∫ 1

−1
f �x1� x2� � � � � xn�dxn � � �dx1

≈
m1∑
j=1

� � �
mn∑
j=1

�m1j
�m2j

� � ��mnj
f �s1j � s2j � � � � � snj�

where

�mij
= 2

�1− s2ij��P
′
mi
�sij ��

2
�

mi∑
j=1

�nij
= 2�

Pmi
�sij �≡ 0� i = 1�2� � � � � n� j = 1�2� � � � �mi

(18)

are the corresponding weights or Christoffel numbers. sij ,
i = 1�2� � � � � n and j = 1�2� � � � �mi are roots of Legendre
polynomials Pmi

�t� over interval �−1�1�.
The Gauss-Legendre (QF) formula for arbitrary region∏n
i=1 �ai� bi� has the form

∫ b1

a1

∫ b2

a2

� � �
∫ bn

an

f �x1� x2� � � � � xn�dxn dxn−1 � � �dx1

≈∏(
bi−ai

2

) m1∑
j=1

m2∑
j=1

� � �
mn∑
j=1

�m1j
�m2j

� � ��mnj

× f �x1j � x2j� � � � � xnj� (19)

where the knots xij = ��bi −ai�/2�sij + ��bi +ai�/2�, i =
1�2� � � � � n and j = 1�2� � � � �mi.
We propose a new idea that introduces a subgrids (Wmi

),
of �i Legendre knot points at each subinterval �ai� b�ti��,
i = 1�2� � � � � n, which are included in the intervals �ai� bi�
that appear in the Eq. (16); such that

�
ki
miji

= bi�tji �−ai

2
siki +

bi�tji �+ai

2
�

i = 1�2� � � � � n� ji = 1�2� � � � �mi� ki = 1�2� � � � � �i

where �
ki
miji

�= ti. Extending Gauss-Legendre (QF) (19) to
the integral in all subintervals �ai� bi�tj �� in Eq. (16),
we get

�ur��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

�−
n∏

i=1

(
bi−ai

2

)

×
j1∑

k1=1

j2∑
k2=1

� � �
jn∑

kn=1

��0��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

�

�
k1
m1j1

� �
k2
m2j2

� � � � � �
kn
mnjn


 u0�

×�ur��
k1
m1j1

� �
k2
m2j2

� � � � � �
kn
mnjn

��m1k1
�m2k1

� � ��mnkn
�

=�r−1��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

��

i = 1� � � � � n� ji = 1� � � � �mi� ri = 1� � � � � �i
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where

�r−1��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

�

= f ��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

�+
n∏

i=1

(
bi�tj�−ai

2

)

×
j1∑

k1=1

j2∑
k2=1

� � �
jn∑

kn=1

�K��
r1
m1j1

� �
r2
m2j2

� � � � �

�
rn
mnjn

� �
k1
m1j1

� �
k2
m2j2

� � � � � �
kn
mnjn

�

×G�ur−1��
k1
m1j1

��
k2
m2j2

������
kn
mnjn

���m1k1
�m2k1

����mn
kn�

−ur−1��
r1
m1j1

� �
r2
m2j2

� � � � � �
rn
mnjn

� (20)

Equation (20) is a linear algebraic system of �
∑n

i=1mi�×
�
∑n

i=1 �i� equations and �
∑n

i=1mi�× �
∑n

i=1 �i� unknowns.
If the non singularity of this system is achieved, then it
has unique solution in terms of �ur�t�x�, �r = 2�3� � � � � �.
From Eq. (14) it follows that

ur�t�x�= �r�t�x�+ur−1�t�x�� r = 2�3� � � � (21)

4. CONVERGENCE ANALYSIS
Using the general theorems of Modified NM method and
their application to functional equations, we state the fol-
lowing theorem for successive approximations, which are
characterized by Eq. (13).

First, since f �t�x�, u0�t�x�, K�t�x�, G��� and G′���
and G′′��� are continuous in their domains of definitions,
then they are bounded (Ref. [32], p. 33), such that

�f �t�� ≤ R1� �u0�t�� ≤ R2� �K�t�x�� ≤ R3�

�G�u0�t��� ≤ R4� �G′�u0�t��� ≤ R5�

�G′′�u0�t��� ≤ R6

Next, we use the majorant function3

Z�t�= ��t− t0�
2− �1+����t− t0�+� (22)

where � and � are nonnegative real number. Let �1 =
R3R6

∏n
i=1�bi −ai�.

Theorem 1. Let the operatorQ�u�= 0 in (3) is defined in

�1 = �u ∈ C∏n
i=1�ai�bi�

� 
u−u0
 ≤ R�

and has a continuous second derivative in

�0 = �u ∈ C∏n
i=1�ai�bi �

� 
u−u0
 ≤ r ≤ R�

If
1. The linear integral equation in Eq. (13) has a resolvent
kernel ��t�x� where 
�
 ≤ R3R5e

R3R5
∏n

i=1�bi−ai�,
2. ��t� ≤ �/�1+���,
3. �Q′′�t�� ≤ �1.

Then Eq. (1) has a unique solution u∗�t� in the closed
ball �0 and the sequence ur�t�, r ≥ 0 of successive
approximation

�ur�tj �−
∫ b1�tj �

ai

∫ b2�tj �

a2

� � �
∫ bn�tj

an

�0�tj �x
 u0�

×�ur�x�dxn dxn−1 � � �dx1 =�r−1�tj��

j = 1�2� � � � �mi (23)

where �ur�t� = ur�t�−ur−1�t� converges to the solution
u∗�t�. The rate of convergence is given by


u∗ −ur
 ≤
(

2
1+��

)r ( 1
�

)
� r = 1�2� � � � (24)

Proof. It is shown that Eq. (3) is reduced to Eq. (9).
Therefore, we prove that Eq. (9) has unique solution
�u∗�t� in term of resolvent kernel ��t�x�; provided that
its kernel �0�t�x
 u0� is continuous function. Assume
the integral operator � from C∏n

i=1�ai�bi �
→ C∏n

i=1�ai�bi �
is

given by

�= ���u��

��t� =
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

��0�t�x
 u0��u�x��

×dxn dxn−1 � � �dx1

(25)

where �0�t�x
 u0� is defined in Eq. (10). According to
Eq. (9), Eq. (25) can be written as

�u−���u�= �0�t� (26)

The solution �u∗ of Eq. (26) is written in terms of �0 by
the formula

�u∗ = �0+���0� (27)

where � is an integral operator, which can be expanded as
a series in power of � (Ref. [31], Theorem 1, p. 378)

���0�= I+���0�+�2��0�+· · ·+�n��0�+· · · (28)

and it is found that the powers of � are also integral oper-
ators. In fact

�n = �n�

�n�t�=
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�� n
0 �t�x
 u0��u�x��

×dxn dxn−1 � � � dx1� �n= 1�2� � � ��

(29)

where �n
0 is the iterated kernel. Substituting Eq. (29) into

Eq. (27) we obtain the solution of Eq. (26) which is of the
form

�u∗�t� = �0�t�+
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

a2

��0�t�x
 u0��0�x��

×dxn dxn−1 � � �dx1 (30)
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where

�0�t�x
 u0�=
�∑
j=0

�
j+1
0 �t�x
 u0� (31)

is the resolvent kernel. Next, we state that the series in
Eq. (30) is convergent uniformly for all t = �t1� t2� � � � � tn�
and x = �x1� x2� � � � � xn�, such that ti� xi ∈ �ai� bi�, i =
1�2� � � � � n. Since

��0�t�x
 u0�� = �K�t�x���G′�u0�t��� ≤ R3R5 (32)

Let R= R3R5, then by mathematical induction we obtain

�� 2
0 �t�x� u0��

≤
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

��0�t�x
 u0��0�t�x
 u0��

×dxn dxn−1 � � �dx1 ≤
R2∏n

i=1�bi−ai�

�1�! �

�� 3
0 �t�x� u0��

≤
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

��0�t�x
 u0��
2
0 �t�x
 u0��

×dxn dxn−1 � � �dx1 ≤
R3∏n

i=1�bi−ai�
2

�2�! �

���
���

��n
0 �t�x� u0��

≤
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

��0�t�x
 u0��
n−1
0 �t�x
 u0��

×dxn−1 dxn−1 � � � dx1 ≤
Rn

∏n
i=1�bi−ai�

n−1

�n−1�!
then


�0
 = 
���0�
 ≤
�∑
j=0

��j+1
0 �t�x
 u0��

≤
�∑
j=0

Rj+1

∏n
i=1�bi−ai�

j

j! �

= R
�∑
j=0

Rj

∏n
i=1�bi −ai�

j

j! = ReR
∏n

i=1�bi−ai�

Therefore, the infinite series in Eq. (31) for �0�t�x
 u0�
converges uniformly for all ti� xi ∈ �ai� bi�, i= 1�2� � � � � n.
Now, we prove 
Q′′�u�
 ≤�1 for all u�t�∈�1. It is shown
that the second derivative Q′′�u0��u� of nonlinear operator
Q�u� at the point u0 refers to the bilinear operator i.e.,
Q′′�u0��u�= B�u� u0� (Ref. [31], p. 506). By definition of
the second derivative, P ′′�u0��u� has the form

Q′′�u0�u = lim
s→0

1
s
�Q′�u0+ su�−Q′�u0���

= lim
s→0

1
s

(
d2Q
du2

�u0�su+
1
2
d3Q
du3

�u0+�su�s2u2

)
�

= d2Q
du2

∣∣∣∣
u0

u

then the norm of 
dQ2/du2
 has the estimate
∥∥∥∥dQ

2

du2

∥∥∥∥ = max

u
≤1

∣∣∣∣
∫ b1�t�

a1

∫ b2�t�

a2

� � �
∫ bn�t�

an

�K�t�x�G′′�u0�x��

×u�x�u�x�� dxn dxn−1 � � �dx1

∣∣∣∣
≤ R3R6

n∏
i=1

�bi−ai�� i = 1�2� � � � � n

Therefore, the second derivative exist and is bounded. This
implies that u∗�t� is the unique solution of operator Eq. (3)
(Ref. [31], Theorem 6, p. 532).
The rate of convergence is given by3


u∗ −ur
 ≤
(

2
1+��

)r( 1
�

)
� r = 1�2� � � � (33)

5. NUMERICAL RESULTS
In this section, our aim is to show the ability of the Modi-
fied NM to solve the nonlinear integral equations by giving
examples. For computing the results in each table, we use
MATLAB V.Ra 2008.
Example 1. Consider the two dimensional nonlinear

Volterra integral equation

u�t1� t1�−
∫ t1

0

∫ t2

0
�x2

1 + e−2x2�u2�x1� x2�dx2 dx1

= t22e
t1 + 1

14
t72 −

1
14

t72e
2t1 − 1

5
t52t1�

�t1� t2� ∈ �0�1�× �0�1� (34)

The exact solution is

u∗�t1� t2�= t22e
t1

Consider the initial condition is u0�t1� t2� = t1t
2
2 , m1 =

m2 = 5, �1 = �2 = 5 and h1 = h2 = 0�2. The absolute error
evaluated by Modified NM are compared with the error
given by two-dimensional differential transform method
(TDDT);13 as shown in Table I which shows that the
results obtained by Modified NM are more accurate than
the TDDT method.

Table I. Error analysis of Example 1.

�t1� t2� TDDT method Modified NM

�0�1�0�7� 0�525896E−11 0�361076E−16
�0�2�0�3� 0�182059E−14 0�183065E−18
�0�3�0�9� 0�764536E−09 0�481935E−12
�0�4�1�0� 0�437002E−08 0�932765E−10
�0�5�0�8� 0�576196E−09 0�628106E−12
�0�6�1�0� 0�983256E−08 0�269412E−09
�0�7�0�6� 0�468694E−10 0�478234E−11
�0�8�1�0� 0�174801E−07 0�521569E−09
�0�9�0�5� 0�103376E−10 0�341786E−10
�1�0�1�0� 0�273127E−07 0�651865E−08
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Table II. Error analysis of Example 2.

�t1� t2�= �1/2s �1/2s � The method in Ref. [15] Modified NM

s = 1 7�6E−03 0�761092E−15
s = 2 1�8E−02 0�982176E−19
s = 3 3�1E−02 0�100653E−19
s = 4 4�2E−02 0�087254E−20
s = 5 5�0E−02 0�009127E−20
s = 6 4�3E−04 0�269412E−22

Example 2. Consider the two dimensional nonlinear
Fredholm integral equation

u�t1� t1�−
∫ 1

0

∫ 1

0

t1
1+ t2

�1+x1+x2�u
2�x1� x2�dx2 dx1

= 1
�1+ t1+ t2�

2
− t1

6�1+ t2�
2
�

�t1� t2� ∈ �0�1�× �0�1� (35)

The exact solution is

u∗�t1� t2�=
1

�1+ t1+ t2�
2

Consider the initial condition is u0�t1� t2� = t1t2, m1 =
m2 = 5, �1 = �2 = 5 and h1 = h2 = 0�2. The absolute error
established by Modified NM are compared with the error
given by rationalized Haar functions;15 as illustrated in
Table II which reveals that the results obtained by Modi-
fied NM are more accurate than the method in Ref. [15].

6. CONCLUSION
In this article, the Modified NM is presented to solve
the nonlinear multi dimensional integral equation. We pro-
posed an idea by introducing a subgrid of collocation
points �

ki
miji

, i = 1�2� � � � � n, ji = 1�2� � � � �mi and ki =
1�2� � � � � �i which are included in �a� bi�t��. The theorem
of existence and uniqueness of approximate solution is
established based on the general theorems of Modified
NM. Numerical examples are given to show the efficiency
of the method.
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