
                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           12 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

Abstract—  The Set Partitioning in Hierarchical Trees (SPIHT) 

image compression algorithm is very efficient, has low 

computational complexity, and generates an embedded 

compressed bit-stream that can be efficiently decoded at several 
data rates (qualities). Unfortunately it needs a huge amount of 

computer memory due to using three linked lists to store the 

coordinates of the image pixels. In addition the SPIHT has 

complex memory management due to the random access to these 

lists.   

This paper proposes a new algorithm termed Single List-

SPIHT (SLS). The proposed SLS algorithm has very low memory 
requirements as it needs about six times less memory than the 

original SPIHT. This is achieved by using a single list and two 

state mark bitmaps instead of the three lists that are used by the 

original SPIHT. In addition, the proposed SLS has simpler 

memory management because once a pixel is added to the list, it 
will never be removed. This will permit to implement the list as a 

simple ordered array that is accessed sequentially. Moreover, the 

size of the list can be predefined which avoids the dynamic 

memory allocation problem. This memory reduction and 

management simplification make the SLS algorithm very 
suitable for hardware implementation. Furthermore, SLS has 

better compression performance as compared to the original 

SPIHT. The price paid for these features is very slight increment 

in the algorithm's complexity as compared to the original SPIHT. 

 

Index Term—   Embedded coding, Low Memory Set 

Partitioning image Compression, SPIHT, Wavelet image 
compression, Zero-tree coding. 

 

I. INTRODUCTION 

The Discrete wavelet Transform (DWT) has gained a wide 

popularity in signal processing in general and in image 

compression in particular due to its interesting features such as 

good energy compaction capability, localization across time 

(or space) and frequency, and the ability to represent the 

image at several resolutions  [1]. Briefly speaking, the DWT 

makes use of frequency selective two channel filter bank (low-

pass and high-pass) to decompose the input signal into low 

and high frequency bands referred to as subbands. For image 

applications, the separable 2-Dimentional (2-D) DWT is 

usually performed by which each row of the image is first 

transformed using the filter-bank. The same filter-bank is then 

applied vertically to each column of the transformed image. 

The result is four subbands, termed LL1 (horizontally and 

vertically low-pass), HL1 (horizontally high-pass and 

vertically low-pass), LH1 (horizontally low-pass and vertically 

high-pass), and HH1 (horizontally and vertically high-pass). 

To increase the efficiency of the DWT, multiple 

decomposition stages is recursively performed on the LL1 

subband because it is smoothed version of the original image 

and thus still highly correlated (i.e., LL1 is decomposed to 

LL2, HL2, LH2, and HH2 and so on). On the other hand, there 

is generally little gain by further decomposing the other 

subbands. The subbands are organized into K+1 resolution 

levels, R0, R1…RK, where K is the number of DWT 

decomposition levels. The lowest resolution level consists of 

the single LLK subband. Each successive resolution level 

contains the three subbands which are required to reconstruct 

the image with twice the horizontal and vertical resolution. 

For example, for K = 3, R0 = {LL3}, R1 = {LH3, HL3, HH3}, 

R2 = {LH2, HL2, HH2}, and R3 = {LH1, HL1, HH1}, as shown 

in Figure (1). This wavelet decomposition is referred to as 

dyadic or Mallat decomposition [2], [3]. 

 

LL3 HL3 
HL2 

HL1 

LH3 HH3 

LH2 HH2 

LH1 HH1 

Fig. 1. an image with 3 (2-D) DWT decomposition levels 

 

Wavelet-based set partitioning image compression 

techniques such as the SPIHT [4] and the Set Partitioning 

Embedded bloCK (SPECK) [5] algorithms are the benchmark 

for the state-of-the-art wavelet-based image compression 

techniques [6]. These schemes employ some kind of 

significance testing for sets of pixels, in which the set is tested 

to determine whether the maximum magnitude in it is above a 

certain threshold. If the set is significant (SIG), it is 

partitioned; and if the set is insignificant (ISIG), it is 

represented by one symbol. The same process is repeated for 

the SIG sets until all pixels are encoded. The main advantages 

of these schemes are they have relatively low computational 

complexity, their performance is comparable to the best-

known image coding algorithms , and they generate an 

embedded compressed bit-stream which can be truncated at 

Low Memory Set-Partitioning in Hierarchical 

Trees Image Compression Algorithm 

Ali Kadhim Al-Janabi 
 Faculty of Engineering, University of Kufa-Iraq alikj65@yahoo.com 

mailto:alikj65@yahoo.com


                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           13 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

any point while maintaining the best possible quality for the 

selected bit rate [5], [7]. The embedding property is very 

interesting feature in heterogeneous networks such as the 

Internet as users may have different resource capabilities in 

terms of processing speed, available memory and power. 

Accordingly, each user can request an image quality that fits 

his need [8]. The price to be paid for these advantages is the 

high memory requirements as these algorithms use linked list 

structures to keep track of which sets/pixels need to be tested. 

At high rates, the lists sizes may be larger than the image size. 

In addition, the linked list memory management is complex 

due to the continual process of adding and removing elements 

to and from these lists. Finally, the size of the lists cannot be 

pre-allocated because the number of list entries can’t be 

determined in advance as it depends on the compression bit -

rate and on the amount of image details. This problem can be 

solved by using either dynamic memory allocation or pre-

allocating the lists to the maximum size. The former solution 

slows the algorithm and the latter one increases its memory 

requirements [9].  

Several works that reduced the memory requirements of the 

set partitioning algorithms are presented in the literature. A 

reduced memory version of SPIHT algorithm termed No List 

SPIHT (NLS) is presented in [10]. NLS uses one list and a 

state table that requires four bits per coefficient. However, 

NLS still requires about 56% of additional memory with 

respect to size of the image. In addition, the size of the list and 

the state table are fixed. This means that NLS needs the same 

memory regardless of the compression bit-rate. This is a 

problem for applications that need low bit-rate (quality) 

compressed images. A low memory SPECK algorithm is 

presented in [11]. It adopted the method of NLS to reduce the 

memory of SPECK. Therefore it has exactly the same 

limitations of NLS. Another low memory algorithm termed 

Modified SPIHT (MSPIHT) is presented in [12]. It uses a two 

bit state mark table and a list of size of ¼ the image size to 

store the maximum value of zerotree set’s coefficients. 

MSPIHT has lower memory than NLS. However, it merges 

the sorting and the refinement passes into one pass. This leads 

to reduce the algorithm’s performance due to violating the 

embedding principle [7], [13].   

In this paper, we propose a new algorithm that is based on 

SPIHT. The new algorithm termed Single List SPIHT (SLS) 

makes use of a single list and a two bit state mark table only 

instead of the three lists that are used by the original SPIHT. 

In addition, the proposed SLS has simpler memory 

management because once a pixel is added to the list it will 

never be removed. This will permit to implement the list as a 

simple ordered 1-D array that is accessed sequentially in First 

In First Out (FIFO) manner which is the fastest memory 

access method [14]. 

The remainder of the paper is organized as follows: section 

II gives brief review for the SPIHT algorithm. Section III 

introduces the new SLS algorithm. Section IV gives an 

analytical study of the memory requirements of the SPIHT, 

NLS, MSPIHT and the SLS algorithms. Section V covers the 

experimental results of these algorithms. Finally, Section VI 

gives the concluding remarks of the paper. 

 

II. SPIHT 
The SPIHT algorithm [4] exploits the correlation between 

the wavelet coefficients that exists across the DWT image 

subbands (the inter-band correlation) by grouping the related 

coefficients into trees called Spatial Orientation Trees (SOTs). 

More specifically, every coefficient at a given resolution level 

(except the highest level) is related to four coefficients at the 

next level of similar orientation. The coefficient at the lower 

level is called the parent, and the four children at the next 

level are called the offspring and the set of all parent's children 

at all levels are called the descendent. The SOTs are 

constructed as follows: the pixels in LLK subband are formed 

into groups of 2×2 adjacent pixels. Out of these, the top-left 

pixel of each group, is not part of any tree, i.e. it has no 

offspring. Each of the other three pixels has four offspring in 

groups of 2×2 pixels in subbands LHK, HLK, and HHK 

respectively. Then, the pixels in LHk, HLk, and HHk, K ≥ k > 

1,  are linked with subbands at the next level LHk-1, HLk-1, and 

HHk-1 as follows: each pixel at coordinates (i, j) from the LHk, 

HLk, and HHk acts as a root for the pixels at coordinates (2i, 

2j), (2i+1, 2j), (2i, 2j+1), and (2i+1, 2j+1) in LHk-1, HLk-1 and 

HHk-1 respectively. Evidently, the LH1, HL1, and HH1 have no 

offspring. Figure (2) depicts part of the SOTs for the first 

group of 2×2 pixels in a DWT image with 2 decomposition 

levels. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SPIHT algorithm makes use of three linked lists, called 

List of Insignificant Sets (LIS), List of Insignificant Pixels 

(LIP), and List of Significant Pixels (LSP). In all lists each 

entry is identified by a coordinate (i, j), which in the LIP and 

LSP represents individual pixels, and in the LIS represents the 

roots of the SOTs. In addition to roots coordinates, every entry 

in LIS has a type field that makes the set of type A or B. A set 

of type A represents a root for all its descendants (a complete 

SOT) whereas a set of type B represents a root for all its 

descendants excluding its direct offspring.  

The algorithm consists of four stages: initialization, sorting 

 
Fig. 2. a part of the SOTs for a DWT image with 2 decomposition 

levels (from [2]) 

 



                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           14 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

pass, refinement pass, and quantization step update. At the 

initialization stage, it first computes the maximum bit-plane 

(n) based on the maximum value of the DWT image and it is 

given by: 
 

        ⌊                |   | ⌋                 (1)                                                

 

where I is the DWT Image, cij is a wavelet coefficient at 

location (i, j), and  x   is the nearest integer  ≤  x. Then, it 

initializes the LIP with the coordinates of all the pixels in the 

lowest resolution level (i.e. LLK subband), the LIS with all the 

coordinate of pixels in LLK subband that have offspring as 

type A sets, and the LSP as an empty list.  

At each bit-plane except the first (the maximum), the 

encoding consists of two passes: the sorting pass and the 

refinement pass. Only the sorting pass is made for the first bit-

plane. The sorting pass identifies the new SIG coefficients and 

the refinement pass codes the coefficients that are found SIG 

at previous passes. For a given bit-plane n, a coefficient cij is 

considered SIG with respect to n if  
 

               |   |        
                             (2)                                                                         

In the same way, a set of coefficients is considered SIG with 

respect to n if the set contains one or more SIG coefficients; 

otherwise it is ISIG.  

During the sorting pass, the entries in LIP (which represent 

the (i, j) coordinates of the corresponding pixels) are tested for 

significance with respect to n. If the pixel is ISIG, a (0) is 

transmitted to the compressed bit-stream. On the other hand, if 

the pixel is SIG, a (1) and a sign bit representing the sign of 

that pixel (e.g., 0 for positive and 1for negative pixel) are 

transmitted to the bit-stream, and the entry is removed from 

LIP and added to end of LSP to be refined in the next bit-

plane passes. Next, the entries in LIS (which represent the (i, 

j) coordinates of the roots of the SOTs) are tested. If the entry 

is of type A, its SOT is tested for significance. If the SOT is 

ISIG, a (0) is transmitted (i.e., the whole SOT is represented 

by a single bit). On the other hand, if the SOT is SIG, a (1) is 

transmitted, and the set’s four offspring are tested as follows: 

if an offspring is SIG then a (1), and its sign bit are 

transmitted, and its coordinates are added to the end of LSP. 

Otherwise (the offspring is ISIG), a (0) is transmitted and its 

coordinates are added to LIP. Finally, if the set has 

grandchildren, it is moved to the end of LIS as a type B set. 

The type B sets are tested for significance as follows: if any of 

the four offspring of the B set is SIG, a (1) is transmitted, the 

set is removed from LIS, and its four offspring are added to 

the end of LIS as type A sets to be tested in the current pass. 

On the other hand, if the B set has no SIG offspring, a (0) is 

transmitted and the set remains in LIS to be tested in next bit-

plane passes.  

In the refinement pass, all entries in the LSP, except those 

which have been added to it during the current pass, are 

refined by outputting its n
th

 MSB to the bit-stream. For the 

quantization step, n is decremented by 1 and the sorting and 

refinement passes begins again for the next bit-plane.  

From this brief description, we can deduce that SPIHT has 

the following drawbacks: 

 It needs a huge amount of memory due to using the lists. 

More precisely the LIP and LSP lists which store the (i, 

j) coordinates of individual pixels dominate the total 

storage. The maximum number of entries in each list is 

equal to the number of image pixels. On the other hand, 

the LIS has less memory requirement because it stores 

the (i, j) coordinates of the roots of the SOTs. In 

addition, the roots in the highest level (LH1, HL1, and 

HH1 subbands) are not stored because they don't have 

descendants. The size of these subbands is 3/4 the image 

size. Thus the maximum size of LIS is 1/4 the image 

size. Therefore, the maximum working memory of 

SPIHT is at least 2.25 times the image size.  

 It has complex memory management as the list nodes are 

added, deleted, or moved from one list to another. 

 The list sizes can't be pre-allocated. So, it may use either 

the slow dynamic memory allocation or initializing lists 

to the maximum size.  

 

III. THE PROPOSED SINGLE LIST SPIHT (SLS) ALGORITHM 

The proposed SLS overcomes the huge memory 

requirements and the complex memory management 

drawbacks of the original SPIHT. The basic idea of the new 

SLS is based on the fact that the LIP and LSP lists are 

constructed from the offspring (the four children) of a root that 

belongs to a SIG SOT. So, instead of storing the offspring in 

these lists, they can be recomputed in each pass. Evidently, 

this will increase the algorithms' complexity. On the other 

hand, the SLS algorithm greatly simplifies the memory 

management problem (as shown shortly). Consequently, this 

complexity increment is compensated by the reduced memory 

management overhead.      

The algorithm makes use of a single list termed the List of 

Root Sets (LRS). Like LIS, LRS stores the (i, j) coordinates of 

the roots of the SOTs. So LRS has exactly the same size as 

LIS. However, LRS differs by the following two points: 

 Once a set is added to LRS, it will be never removed. 

Thus LRS can be implemented as a simple 1-D array that 

is accessed sequentially in First In First Out (FIFO) 

manner. In contrast, the LIS must be implemented as a 

linked list that is accessed in random manner due to the 

continual process of adding and removing elements to 

and from it. 

 The type field is used differently. A set of type A is 

untested set or a set that has no SIG SOT whereas a set 

of type B has one or more SIG SOT. In other words, a set 

in LRS is initialized as type A and becomes of type B 

when one of its SOTs becomes SIG.      

In addition, SLS replaces the LIP and LSP lists (which 

dominate the total memory usage) by state mark bits. More 

specifically, each pixel in LLK is provided by a single status 

bit termed  that is initialized to 0 and updated to 1 when the 

pixel just becomes SIG. The pixels in all other subbands are 



                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           15 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

provided by two status bits termed  to determine the type of 

the pixel as follows:   

  = 0: New ISIG Pixel (NIP). A NIP is an ISIG pixel that 

is not yet tested. It may belong to the offspring of type A 

sets in LRS that just become SIG in the current bit-plane 

pass. 

  = 1: Visited ISIG Pixel (VIP). A VIP is a pixel that is 

tested ISIG in the previous passes. It may belong to the 

offspring of the sets of type B in LRS (i.e., sets that 

became SIG in the previous bit-plane passes). It should 

be noted that the SPIHT store the (i, j) coordinates of 

these VIPs in the LIP list that are coded in the sorting 

pass. 

   = 2: New SIG Pixel (NSP). A NSP is a pixel that just 

becomes SIG in the current bit-plane pass. 

  = 3: Visited SIG Pixel (VSP). A VSP is a pixel that is 

tested SIG in the previous passes . It may belong to the 

offspring of type B sets in LRS (i.e., sets that became 

SIG in the previous bit-plane passes). It should be noted 

that the SPIHT store the (i, j) coordinates of these VSP 

pixels in LSP that are coded in the refinement pass.  

The SLS algorithm consists of an initialization stage and 

several bit-planes coding passes. At the initialization stage, 

SLS first computes and outputs the maximum bit-plane n. 

Then it initializes the LRS to the (i, j) coordinates of the pixels 

in LLK subband that have offspring as type A sets.  

The first bit-plane pass starts by coding pixels in LLK 

subband. A pixel cij in LLK is coded by testing it for 

significance with respect to bit-plane n. If cij is still ISIG, a (0) 

is outputted to the bit-stream. On the other hand, if the pixel cij 

becomes SIG, a (1) and its sign bit are outputted to the bit-

stream and its status bit ij is updated to 1. Next, the sets of 

LRS (which are sets of type A) are sequentially processed as 

follows: the SOT of the set is tested for significance with 

respect to n. If the SOT is ISIG, a (0) is outputted (i.e., the 

whole SOT is represented by a single bit). On the other hand, 

if the SOT is SIG, a (1) is outputted, the set’s type is changed 

to type B set, and each one of the set’s four offspring (which is 

an NIP) is tested for significance with respect to n. If it is still 

ISIG, a (0) is outputted to the bit-stream, and it is marked as a 

VIP. On the other hand, if the pixel becomes SIG, and (1) and 

its sign bit are outputted to the bit-stream, and it is marked as a 

NSP. Finally, if the set has grandchildren, the four offspring 

are added to the end of LRS as type A sets to be coded in the 

current bit-plane pass.  

Each one of the next bit-plane coding passes starts by 

coding the pixels in LLK. These pixels are coded according to 

their types depending on the value of their status bits . If ij = 

0, the pixel cij is ISIG, it is coded in the same way as was done 

in the first pass, and if ij = 1 (the pixel is a SIG), it is refined 

by outputting its nth bit to the bit-stream. Notice that the 

sorting and refinement passes are merged for the pixels in LLK 

subband which may reduce the Peak Signal to Noise Ratio 

(PSNR) performance of the algorithm due to not preserving 

information ordering. However, since the size of LLK is small 

as compared to the size of the whole image, the reduction is 

very small.   

Next, the LRS list is scanned two times. In the first scan, 

only the sets of type B are processed by computing its four 

offspring. A type B set may contain the VIPs and pixel that 

are found SIG in the previous passes but that are still marked 

as (NSPs). A NSP is marked as VSP in order to refine it later 

in the second LRS scan pass. On the other hand, if the pixel is 

a VIP, it is coded exactly in the same way as coding a NIP. 

Notice that this step is equivalent to coding the pixels in the 

list LIP during the sorting pass in the original SPIHT. This 

means that both algorithms code the VIPs in the same order. 

Therefore, SLS has the same embedding properties as SPIHT.  

In the second LRS scan pass, all the sets in LRS are 

processed. If the set is of type A, it is processed exactly in the 

same way as was done in the first pass . On the other hand, if 

the set is of type B, only the VSPs of the set’s four offspring 

are refined by outputting their nth bit to the bit-stream. Finally 

n is decremented by 1 to start a new bit-plane coding pass. 

It should be noted that coding the VSPs of the type B sets 

in the second LRS scan pass is equivalent to refining the 

pixels in the list LSP during the refinement pass in the original 

SPIHT algorithm. This means that the proposed SLS 

algorithm merges the NIPs and the VSPs. In contrast, the 

MSPIHT algorithm [12] merges the VIPs and VSPs by 

merging the sorting and the refinement passes . It can be 

shown that the VIPs have highest effect on distortion 

reduction than the NIPs and VSPs (which have nearly the 

same distortion reduction effect) [7], [13]. Consequently, 

merging the VIPs and VSPs as done in [12] may result in 

PSNR reduction, whereas merging the NIPs and the VSPs 

slightly enhances the PSNR of the SLS algorithm (as will be 

shown next). 

   

IV. MEMORY AND COMPLEXITY ANALYSIS 

In this section we will compare the memory requirements of 

the auxiliary list(s) in the proposed SLS algorithm to that of 

SPIHT, NLS and MSPIHT algorithms. In addition, we will 

study the effects of the memory reduction on the complexity 

of the proposed SLS algorithms.  Let:  

I: an image of size M × N pixels. 

NLIP: number of entries in LIP. 

NLSP: number of entries in LSP. 

NLIS: number of entries in LIS. 

b: number of bits needed to store addressing information of a 

coefficient. 



                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           16 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

           b =  log2(M) +  log2(N)                (3) 

Then total memory required in SPIHT (in bits). 

          MSPIHT = b (NLIP + NLSP  + NLIS)            (4)                                                                   

In the worst case, 

NLIP = NLSP  = M × N 

NLIS = (M × N) / 4.  

Thus the maximum working memory requirement in SPIHT is 

[11]: 

                   
      (

   

 
)                               (5) 

The memory requirement of NLS and MSPIHT are fixed and 

are given by [12]: 

            (
  

 
  

  

  
)   

  

 
                   (6)                                                         

             (
  

 
)                              (7) 

Where W is the number of bits used to store the wavelet 

coefficient (e.g., 16 bits) 

The proposed SLS algorithm uses only the list LRS, a single 

status bit for pixels in LLk subband, and two status bits for 

pixels in the other subbands. However, as LLK has small size 

and in order to simplify the analysis , all pixels are assumed to 

have two status bits. So, the maximum working memory 

requirement in SLS is: 

           
      (

  

 
)                           (8)     

For instance, for grayscale image of size 512×512 pixels, b = 

2 × log2(512) = 18 bits and W = 16 bits . Hence the total 

memory required by the SPIHT, NLS, MSPIHT, and SLS are:  

       
       (

          

   
)      

               = 1327104 bytes = 1296 KB  

     
{  (

    

 
  

    

  
)  

    

 
}

 
  

         = 294912 bytes = 288 KB 

       

 
{  (

       
 

)                            }

 
 

             = 172032 bytes = 168 KB 

    
    

{  (
       

 )            }

 
 

       = 212992 bytes = 208 KB  

The memory ratio between the algorithms is 

       
                        

      

= 6.23:1.38:0.8:1 

It can be seen that the proposed algorithm has reduced the 

memory requirement by factors of 6.23, and 1.38 in 

comparisons to SPIHT, and NLS respectively. The other 

advantage of SLS over NLS is that the working memory of 

NLS is fixed whereas the working memory of SLS is variable 

and it depends on compression bit-rate. On the other hand, 

although the SLS has slightly higher memory requirement 

than MSPIHT, SLS has the advantage of preserving 

information ordering while the MSPIHT don’t have this 

characteristic because as mentioned before, it merges the 

sorting and refinement passes into one pass  which leads to 

reduce the algorithm’s performance [13].  

The second interesting feature of SLS over the other 

algorithms is the simple memory management. As shown, the 

LRS in SLS is easily implemented as 1-D array that is 

accessed in FIFO manner because the new nodes are added to 

the end of the array. In contrast, in SPIHT, the LIP and LIS 

must be implemented as linked lists that are accessed 

randomly due to the continued process of nodes removing and 

insertion (i.e., the added nodes must be put in the same 

position of the removed ones). It should be noted that adding 

an item to the end of an array is very simple process  that can 

be performed on fly because it requires a constant time 

regardless of the size of the array. On the other hand, the time 

needed to removing and insertion nodes randomly from and to 

a linked list increases with the size of the list [14]. It is worth 

to noting that the reduced complexity of SPIHT is mainly due 

to using the LIP and LSP lists as only the elements  in these 

lists (VIPs and VSPs) are tested and coded in the individual 

bit-plane passes. On the other hand, the SLS needs to re-

compute the offspring in each bit-plane pass in order to code 

the VIPs and VSPs. Evidently this process increases 

complexity of the SLS algorithm. From this analysis, we can 

deduce that the SLS and SPIHT have about the same 

complexity because the increased complexity of re-computing 

the offspring is compensated by the complexity reduction of 

the list management. The simulation results of the algorithms 

presented in the next section will demonstrate this  analysis. 

V.  EXPERIMENTAL RESULTS 

The proposed SLS algorithm is evaluated using C++ 

programming language. The test is performed using the 

famous grayscale 512×512 pixels "Lena" and "Barbara" test 

images. The bi-orthogonal 9/7 Daubechies (2-D) DWT with 5 

dyadic decomposition levels is performed on the image prior 

to coding. The performance is measured by the Peak Signal to 



                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           17 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

Noise Ratio (PSNR) versus the compression bit-rate (the 

average number of bits per pixel (bpp) for the compressed 

image). PSNR is given by: 

             
         

   
          (9) 

Where max_pix is the maximum value of the pixel and MSE is 

Mean-Squared Error between the original and the 

reconstructed images defined as: 

     
 

   
∑ ∑ [               ]

  
   

 
     (10) 

  where Io is the original image, Ir is the reconstructed image, 

and MN is the image size (number of pixels). Evidently, 

smaller MSE and larger PSNR values correspond to lower 

levels of distortion.  

Table (1) shows the PSNR versus bit-rate for the SPIHT and 

the proposed SLS algorithms. The results of SPIHT are 

obtained by implementing the Public License Matlab program 

presented by Dr. Mustafa Sakalli and Dr. William A. 

Pearlman [15] using the same test images. The table clearly 

depicts that SLS has slightly better PSNR than SPIHT for all 

bit-rates for the two images. These results demonstrate that the 

merging the bits of the New ISIG Pixels (NIPs) and the 

Visited SIG pixels (VSPs) by the adopted coding method 

increases the algorithms' efficiency. This feature is unique to 

the proposed algorithm because the other reduced memory 

algorithms have lower PSNR than SPIHT [7], [10], [13]. 

 

T ABLE I 
PSNR VS. BIT-RATE FOR "LENA" AND "BARBARA" 

IMAGES 

 PSNR (dB) 

Bit-

Rate 

(bpp) 

Lena Barbara 

SPIHT SLS SPIHT SLS 

0.125 29.39 30.01 24.03 24.61 

0.25 32.71 32.98 26.92 27.28 

0.5 36.13 36.26 30.88 31.10 
1 39.50 39.61 36.06 36.20 

 

As mentioned before, the complexity of the SLS algorithm 

is very close to that of the original SPIHT due to the 

simplification in memory management. In order to 

demonstrate this, the SLS and SPIHT are implemented under 

the same environments (using C++ and the same computer). 

Table (2) represents the complexity of the SLS and SPIHT 

represented by the processing time (measured in milliseconds 

(msec)) required by the algorithm to encode and to decode the 

"Lena" image at several bit-rates. The processing time of the 

2-D DWT is not computed since it is  the same for both 

algorithms. As it can be shown, the proposed SLS has a very 

slight increment in the processing time of coding and 

decoding with respect to the original SPIHT. These results 

verify our complexity analysis presented in the previous 

section.    

    T ABLE II 

 PROCESSING TIME VS. BIT-RATE FOR "LENA" IMAGE 

 Coding time 

(msec) 

Decoding time 

(msec) 

Bit-

Rate 

(bpp) 

SPIHT SLS SPIHT SLS 

0.125 15 16 5 7 

0.25 20 22 10 11 

0.5 26 28 20 22 

1 31 32 25 26 

 

VI.     CONCLUSION 

In this paper, we developed a low memory version of 

SPIHT algorithm. The proposed SLS make use of a single 

list with size of ¼ the image size. In addition it replaces the 

LSP and LIP lists (which have sizes of about 2 times the 

image size) by 2 bits state mark bitmap. The theoretical 

analysis and experimental results clearly showed that the 

proposed SLS algorithm has better PSNR than SPIHT and it 

has nearly the same coding time as the SPIHT. This means 

that we reduced the memory requirements by about six 

times and enhanced the performance of SPIHT without 

affecting its simplicity and without paying additional 

overhead cost. The reduced memory requirement and 

management of the SLS algorithm makes it very suitable for 

memory constrained portable hand held devices . 

Furthermore, as the SPIHT is extended to Multispectral 

[16], and to 3-D image compression systems [17], the 

current work can also be very useful for these image 

compression applications  benefiting from its reduced 

memory and simplicity.  

REFERENCES 

[1] Shi Y. Q. and Sun H., “ Image and Video Compression for 

Multimedia Engineering: Fundamentals, Algorithms, and 
Standards ,” 1

st
 edition, CRC Press, 2000. 

[2] Salomon D., “Data Compression: the Complete  Reference ,” 

third edition, Springer, 2004. 
[3] Lawson S. and Zhu J., “ Image Compression using Wavelets and 

JPEG2000: a Tutorial ,” IEE Electronic & Communication 
Journal, pp. 112-121, June 2002. 

[4] A. Said and W. A. Pearlman, “ A New, Fast, and Efficient Image 
Codec Based On Set Partitioning in Hierarchical Trees,” IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 

6, No. 3, pp. 243-250, June 1996. 
[5] A. Islam and W. A. Pearlman, “ An Embedded and Efficient 

Low-Complexity Hierarchical Image Coder,” Visual 



                 International Journal of  Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:02           18 

                                                                        
13107-8585-IJVIPNS-IJENS © April 2013  IJENS                                                                       

I J E N S 

Communications and Image Processing, Proceedings of SPIE, Vol. 
3653, pp. 294-305, January 1999. 

[6] Ranjan, K. et al, "Listless Block-tree Set Partitioning Algorithm 
for Very Low Bit-rate Embedded Image Compression ," 
Elsevier, International Journal of Electronics and Communications, 
pp 985-995, 2012. 

[7] Rabbani M. and Joshi R., “An Overview of the JPEG 2000 Still  
Image Compression Standard,” Signal Processing: Image 
Communication, Vol. 17, No. 1, pp. 3-48, Jan. 2002. 

[8] Taubman D., “Successive Refinement of Video: Fundamental 

Issues, Past Efforts and New Directions ,” Int. Symp. on Visual 
Communication and Image Processing, Vol. 5150, pp. 791-805, 
July 2003. 

[9] Chrysafis C. et al, “SBHP-A Low Complexity Wavelet Coder,” 

IEEE Int. Conf. Acoust., Speech and Sig. Proc. (ICASSP2000), 
vol. 4, pp. 2035-2038, June 2000. 

[10] F. W. Wheeler and W. A. Pearlman “ SPIHT Image Compression 

without Lists ,” Proceedings of IEEE International Conference on 
Acoustics, Speech and Signal Processing, ICASSP 2000, vol. 4, 
pp. 2047–2050, June 2000. 

[11] Latte, M. V., N. H. Ayachit, et al., "Reduced Memory Listless 

SPECK Image Compression ," IEEE Digital Signal Processing 
Vol. 16 No. (6), pp 817-824, 2006. 

[12] Jianjum, W. and Bo Liu, "Modified SPIHT Based Image 
Compression for Hardware Implementation," IEEE Computer 

Society, second International Workshop on Computer Science and 
Engineering, pp 572-576, 2009. 

[13] Ordentlich E. et al, “A Low-Complexity Modeling Approach for 
Embedded Coding of Wavelet Coefficients ,” Proc. IEEE Data 

Compression Conf. (Snowbird), pp. 408-417, March 1998. 
[14] Berman A. M., “Data Structures via C++: O bjects by 

Evolution ,” OXFORD University Press, 1
st
 edition, 1997. 

[15] http://www.cipr.rpi.edu/research/SPIHT  
[16] Zhong Cuixiang, Huang Minghe, "Further Improvement of 

SPIHT for Multispectral Image Compression ," IEEE 
International Forum on Information Technology and Applications, 

pp 337-340, 2010. 
[17] Shang-Hsiu Tseng and Aldo Morales, " A 3D SPIHT Low-

Memory Encoding Approach for Video Compression ," Digest 
of Technical Papers International Conference on Consumer 

Electronics, pp 1-2, 2009. 
 

http://www.cipr.rpi.edu/research/SPIHT

