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Abstract—In recent years the electric power generation has 

entered into a new development era, which can be described 
mainly by increasing concerns about climate change, through the 
energy transition from hydrocarbon to clean energy resources. In 
order to power system enhance reliability, efficiency and safety, 
renewable and nonrenewable resources are integrated together to 
configure so-called hybrid systems. Despite the experience 
accumulated in the power networks, designing hybrid system is a 
complex task. It has become more challenging as far as most 
renewable energy resources are random and weather/climatic 
conditions-dependant. 

In this challenging context, this paper proposes a critical 
state-of-the-art review of hybrid generation systems planning 
expansion and indexes multi-objective methods as strategies for 
hybrid energy systems optimal design to satisfy technical and 
economical constraints. 

 
Index Terms—Hybrid energy systems, renewable power 

generation, generation systems planning expansion, generation 
unit sizing, energy cost, power generation economics. 

 
I. INTRODUCTION 

 

In the last ten years production of electric power has 
significantly increased due to the increased load demand. World 
statistics indicate that the coming years will see a significant 
increase in power consumption, which requires the search for 
energy extra sources that should be of eco-friendly nature (i.e. 
renewable energies). Although renewable energy penetration in 
electricity is expected to have a spectacular growth in the 
forthcoming years, it still however has very low participation 
rate compared to other nonrenewable energies (Fig. 1) [1]. 

Renewable energies, such as solar, wind, marine, 
hydropower, geothermal, and biomass constitute a type of 
distributed electricity resources and have recently received 
much attention as alternatives for electricity generation. 

 

 
 

Fig. 1. World electricity energy generation [© IEA]. 
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They supply now somewhere between 15 to 20% of the world 
total energy demand. Many studies have investigated the 
potential contribution of renewables to global energy supplies, 
indicating that in the second half of the 21st century their 
contribution might range from the present figure of nearly 
20% to more than 50% with the right policies in place: About 
of 30% contribution to world energy supply from renewable 
energy sources by year 2020 as proposed in [2]. 

The main problems with the use of renewable energies have 
always been how to tap efficiently on the sources and produce 
sufficient energy for the load demand. Indeed, the energy 
production using renewable energy sources is often highly 
dependent on weather and nature conditions. For example, not 
all climates are suitable for tapping on solar energy; they are 
more suited for areas near the equator where energy from the 
sun is accessible all year round. Winds do not blow all the time 
during these periods. Wind farm turbines would therefore be left 
idle. To solve this problem and to enhance the energy system 
reliability, these generation unit should be working together in 
two or more sources in the so-called hybrid system concept. 
Hybrid power station concept is not new, but has gained 
popularity and rapid development in the recent year. There are 
many types of hybrid energy systems including renewable and 
nonrenewable sources that have been considered (Fig. 2). 
Indeed, they offer an alternative and emerging solution for areas 
where there are substantial resources, leading to a best 
electricity generating opportunities [3]. The main hybrid energy 
system layout use diversified renewable resources such as: (1) 
Diesel, wind turbine, storage battery; (2) Diesel wind turbine, 
photovoltaic, storage battery; (3) Hydro generation, wind 
turbine, photovoltaic, storage battery; (4) Wind turbine, marine 
turbine, photovoltaic, storage battery; (5) Wind turbine, 
photovoltaic, multi-storage energy; and (6) other configurations 
that uses classical gas turbine and furl cells. 

In this important energy context, this paper is therefore 
intended as a comprehensive critical state-of-the-art review. In 
particular, it will deal with a comparative study of methods 
carried-out to forecast Generation Expansion Planning (GEP) 
for small stand-alone power systems and general power grid. 
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Fig. 2. Hybrid generation systems general architecture. 
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The GEP problem is an important issue for decision makers in 
power utilities. Indeed, GEP specifies optimal sizing schemes, 
placement, and investments dynamics on generation units to 
meet the expected energy demand over long-term horizon. The 
GEP problem is well-known to be a constrained, nonlinear, 
and discrete optimization problem. Moreover, it inherently 
involves multiple, conflicting, and incommensurate objectives 
that should be considered simultaneously [4]. 

 
II. HYBRID GENERATION EXPANSION PLANNING METHODS 

 

The methods behind Hybrid Generation Expansion 
Planning (HGEP), for small autonomous and utility grid 
power systems, can be classified into three main categories, 
namely: Reliability analysis; Optimization; and Enumeration. 

 
A. Reliability Analysis 

 

Reliability analysis gathers all the constraints and 
limitations that are applied and developed in power systems 
the design to ensure balance between power source and load. 

There are many factors for reliability evaluation that are 
linked to the probability for imbalance between electricity 
supply and load. The main factors are the LPSP (Loss of 
Power Supply Probability), the ELF (Equivalent Loss Factor), 
the LOLP (Loss of Load Probability), and the LCE (Levelized 
Cost of Energy) model [5-6]. 

 
B. Optimization 

 

It consists of methods for the objective function 
representation in optimization equations that use a set of 
algorithmic steps. As example, for a wind/PV hybrid system 
optimal sizing and operation, many parameters are considered: 
wind turbine type, wind turbine capacity, PV panels best tilt 
angle, etc. Moreover, the followings could also be considered: 
minimizing the generation system annualized cost (capital 
cost, replacement cost, operation, and maintenance cost), 
reduce the fuel consumption while retaining the reliability 
requirement and CO2 emission limit, etc. [7-8]. 

 
C. Enumeration 

 

Enumeration method and programming algorithm 
considers various types of techniques to solve the objective 
function and expansion policy for a given period. There are 
many computational methods and algorithms to achieve the 
optimized solution [9-11]. 

 
III. HYBRID GENERATION SYSTEMS OPTIMIZATION MODEL 

 

Figure 3 illustrates hybrid generation system energy sources 
diversity. Indeed, it is clearly shown that there are many hybrid 
possibilities depending on the available renewable energy 
sources (i.e. solar, wind, etc.), as well as near or beyond the grid 
region. In addition to this diversity, there is also power system 
goals diversity such as size optimization, total coat reduction, 
gaseous emission reduction, etc. 

Hybrid generation system optimization general model is 
illustrated by Fig. 4. This model show that the objective function 
mainly depends the system building purposes (i.e. optimal sizing, 
optimal operation, fuel consumption reduction, etc.). 

SUPERVISIONSUPERVISION

 
 

(a) General overview. 
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(b) Different components. 
 

Fig. 3. General hybrid power system configuration. 
 

As shown in Fig. 3, a typical hybrid generation system 
comprises different power sources or units. These power units 
have different impacts on cost, environment, and reliability. In 
a hybrid generation system, they are integrated together and 
complement one another in order to serve the load while 
satisfying certain economic, environmental, and reliability 
criteria. The hybrid system can be operated autonomously or 
connected to the utility grid whose power is from the 
conventional fossil fuel-fired generators. 
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Fig. 4. Hybrid generation system optimization general model. 
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The optimum design of hybrid generation systems is 
related to the determination of the optimal configuration of the 
power system and optimal location, type and sizing of 
generation units, so that the system meets load requirements, 
while subjected to physical and operational 
constraints/strategies [6], [12-13]. 

 
A. Objective Function 

 

Hybrid generation systems design can be evaluated 
through its lifetime cost and emission. The lifetime cost 
typically consists of Capital Cost (CC) and Maintenance Cost 
(MC), together referred to as the fixed cost; in addition to the 
operational cost. The optimal hybrid generation system 
therefore seeks a combination of generator types and sizes that 
result in the lowest lifetime cost and/or emission. Among all 
possible hybrid system configurations that are optimally 
dispatched, the configuration with the lowest Net Present Cost 
(NPC) is supposed to be the optimal configuration or the 
optimal design [6]. 
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L
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Where L is the hybrid source number, Ni is the number of each 
hybrid energy source, and RC is the replacement cost. Ki 
allows converting replacement cost to present as 
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where l1 and l2 are the hybrid unit replacement time and 
lifespan, respectively (for sources, that lifespan is equal to the 
project one, Ki = 0), ir the interest rate (sometimes considered 
equal to 0.05 or 0.06). PWA is used to convert operation and 
maintenance annual costs to present as 
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          (3) 

 

where R is hybrid power system lifespan. 
The optimization methods aim is therefore minimizing the 

NPC objective function. 
 

B. Reliability Analysis 
 

Owing to the intermittence of renewable energy sources, 
power system reliability is considered as an important step in 
the hybrid power system design process. Power system 
reliability concept is extremely broad and covers the system 
ability aspects to satisfy load requirements. There is a 
reasonable subdivision of the concern designated as system 
reliability, which is represents two basic aspects of a power 
system: system adequacy and security. 

Reliability analyses generally involve LPSP, LOLP, and 
ELF, which implies the probability for imbalance between 
electricity supply and load [14-16]. 

1) LPSP. The most used approach to the application of 
LPSP in a hybrid system design uses probabilistic techniques 
to integrate the fluctuating nature of the resource and the load. 
LPSP, is in this case described by 

( )
0
Time ( ) ( )

T

available needed
t

P t P t
LPSP

T
=

<
=
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     (4) 
 

Where T is hours number (with hourly weather input). 
The power deficit time is defined as the time where the 

load demand is not satisfied by renewable energy sources and 
the storage is depleted (battery state of charge SOC falls below 
the allowed value SOCmin = 1 – DOD, where DOD is the depth 
of discharge). 

The needed power by the load side can be expressed as 
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and the available power generated from the hybrid source is 
given by 
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where C is a constant (0 for a battery charging process and 1 
for the discharging process), C'bat is the available or practical 
battery capacity, and SOC(t) is 
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σ is the self-discharge rate that depends on the accumulated 
charge and the battery state of health [17]. 

2) LOLP. It is a basis for accurate and consistent 
reliability evaluation of hybrid power systems, where 
component failure and load demand are stochastic in nature 
[18-19]. Hybrid renewable energy systems reliability analysis 
uses a capacity outage probability table, which is an array of 
capacity levels and the associated existence probabilities. This 
is achieved by combining the generating unit availability and 
unavailability using probability basic concepts. From the 
individual probability table, a cumulative probability one is 
derived. Figure 5, schematically shows the basic elements 
used to assed power generation adequacy [20]. 

A hybrid power system is considered to operate successfully 
as long as it has enough generating capacity to provide the load 
demand. The cumulative probability of a particular capacity 
outage state of X-MW after adding a 2-state unit of capacity C-
MW with a forced outage rate γ is given as [19], [21] 
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Fig. 5. Generation reliability evaluation basic elements. 
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( )'( ) 1 '( ) '( )P X P X P X C= − γ + γ −       (8) 
 

where P'(X) and P(X) denote the cumulative probabilities of the 
capacity outage state of X-MW before and after the unit is 
added. P(X) is also the capacity outage probability being greater 
or equal to X. The above expression is initialized by setting 

 

1 for 0
'( )

0 otherwise
X

P X
≤⎧

= ⎨
⎩

 

 
and the forced outage rate γ is given by 

 

Forced outage (hours)
Forced outage (hours) in service hours

γ =      (9) 

 
Equation (8) can be modified to include multi-state unit 

representations. 
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Where n is the unit states number, Ci is state i capacity outage 
for the unit being added, and pi is unit state i existence 
probability [19], [21] 
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where k is the required units minimum number and 
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The overall probability that the load demand will not be 
met, which is LOLP (loss of load probability on hour j for 
state i) is finally given by 
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where Lj is the forecast peak load on hour j and P is the loss of 
load probability on hour j. 

3) ELF. It is the ratio of the effective forced outage hours 
to the total number of hours [22]. 
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Where Q is the loss of load, D is the load demand, and H is the 
time step number. The ELF contains information about both 
the number of outages and their magnitude. 

 
C. Enumeration Methods 

 

There are many approaches to provide the above discussed 
optimal design criteria. Several approaches have been used for 
hybrid power systems optimal design; such as: linear 
programming [22], evolutionary algorithms [23], Artificial 
Neural Networks (ANN) [24-25], Fuzzy Logic (FL) [11], [21], 

[24], simplex algorithm, dynamic programming, stochastic 
approach [10] [25], iterative and probabilistic approaches [20], 
design space based approach, parametric and numerical 
approaches, response surface methodology, matrix approach, 
and quasi-Newton algorithm [6], [8]. 

For sizing hybrid renewable energy systems, it has been 
particularly proposed the so-called methaheuristic methods 
that include Genetic Algorithms (GAs) [7], [15], [25-26], 
Simulated Annealing (SA) [27], Tabu Search (TS) [27], and 
Particle Swarm Optimization (PSO) among others [9], [13]. 
Metaheuristics orchestrate an interaction between local 
improvement procedures and higher-level strategies to create a 
process capable of escaping from local optima and performing 
a robust search of a solution space. 

In addition to the above popular optimization techniques, 
some promising techniques have been recently indexed for 
future use in hybrid system sizing; among them: Ant Colony 
Optimization (ACO) [28], Artificial Immune System (AIS) 
[29], Artificial Bee Colony (ABC) [30]. 

Each sizing methodology has its own features and the 
recently proposed new methodologies have potential for future 
use to reach a techno-economically optimum hybrid renewable 
energy system. 

 
IV. HYBRID POWER SYSTEMS SAMPLE APPLICATIONS 

 

To illustrate the above presented techniques and methods, 
Table 1 shows a brief evaluation of the above presented hybrid 
renewable energy systems sizing approaches in relevant 
selected literature. This brief presentation clearly illustrate that 
selection of the suitable approach may change due to the 
application type, user requirements, etc. However, it is 
suggested that metaheuristics are particularly well-adapted for 
HGEP problem. 

 
V. CONCLUSION 

 

Hybrid renewable power generation systems optimal 
design is a very challenging task as far as most renewable 
energy resources are random and weather/climatic conditions-
dependant. In this challenging context, this paper has 
attempted to propose a state-of-the art review that should help 
in the optimal design of hybrid generation systems to satisfy 
technical and economical constraints. 
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