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ABSRACT

In this investigation and under the conception of measure concentration phenomenon we found
that the enlargement of the neighborhood for an n — dimensional compact Riemannian manifolds

(M, g) relative to the eigenvalues A of the Laplace operator A on (M, g). And we found that

T~

=L

Keywords: r-enlargement, Isoperimetric Inequalities, Concentration of Measure, Laplace

Operator, Eigenvalues of the Laplace operator.
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1. Introduction:

The conception of r — enlargement was stood behind the concentration of measure
phenomenon to estimate the local properties of the manifolds. Since it measure the basic best
neighborhood U of points on the manifold. Let A ¢ R™*1, we can estimate the local geometry of
A with measure concentration phenomenon which is basically depends on the best neighborhood
of A with best r — enlargemnet and try to get the best topology of A. In this task we want get a
relation between the r — enlargement of the manifold and its related eigenvalues of the

Laplace operator on it.

Berestycki and Nickl [1] have discussed the conception of concentration of measure
phenomenon, they had stated that, and for A € ™ ¢ R™?, and if u™(A) = u™(B(x,1)), then
u™(AL) = u"(B(x,r + e)), where B is an n — ball and u™ is standard measure on R"** and A4,
is the r — enlargement of A. This phenomenon affects at many fields such as learning theory,
statistical learning, functional analysis, etc. The basic principle of this phenomenon is to study
Benty [2] had gave more and analyze geometrical features at n — dimensional spaces for n — co.
historical information about this phenomenon beginning and its extension to an n —

dimensional manifolds.

F Chung and others had given the isoperimetric inequality related to eigenvalues on

Riemannian Manifold and graphs [3].

To the best illustration on this task and for the purpose of the paper and [from [1] (Sec 1.3)]

we had,
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1.1  Theorem (Spherical Isoperimetric)[1]: Let A € S™ c R"*! be a set, and let A, = {x €
S™d(x,y) < e forsomey € A}. Let u™ be the uniform probability measure on S™. Let
u"(4) = . Then

(n—1)e?

p(ZEA)=p"(A)=1—e 2

The connections of isoperimetric inequalities and the eigenvalues of the Laplace operator had

clarified at [4, 5, 6].

1.2 Theorem [4]: Let Q c R™ be a bounded domain and B ¢ R™ a ball with the same
volume as Q. Then, we have
A1(B) = ,(Q)
with equality hold if and only if Q is equal to B up to a displacement.
Here A, stands for the first eigenvalue of Laplace Operator. Many topics discussed the

analyzation of Laplace eigenvalues to the geometric of the n — dimensional manifold [4, 6, 7]

Our 2" section will describe the r — enlargement of the neighborhood for the manifold
and its relation to the notion of concentration of measure phenomenon explaining the basic
theorems and principles. The 3" section deals with the connection of the eigenvalues of the
Laplacian to the isoperimetric inequalities in the sense of geometric features and we get some
corollaries under the notion of measure concentration. The fourth section describes the r —
enlargement as concentration of measure principle try to fix up the theorem of the number of
covering ball on the manifold (M, g) and try to prove that it relates to the Weyl’s Asymptotic

formula [6] as conjecture counting method for the series of eigenvalues of the study and we seek
our main theorem on the % —enlargement of the n — dimensional manifold. Lastly we had a brief

discussion. Our theorems unfortunately are representing without a proof (not all of them).
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Sometimes we get a proof in the context of the literature. The reader should refer for the standard

proofs to the index reference front of it.

2. 1 — enlargement of the Manifold and Concentration of Measure Phenomenon
The isoperimetric inequalities states that whenever u™(A4) = u"™(B) where A € S ¢ R"*1and
B is aball on an S™, then for every r > 0
------ (Du™(Ar) = u™(By)
Where A, is the r — enlargement of A. In the context we set V = Vol and p™ as the standard
volume and standard measure respectively on an n — dimenstional manifolds.
2.1  Theorem (Paul Levy’s isoperimetric inequality)[2]: Let S, denote the collection of all
Borel sets in S™ with fixed normalized measure c, where ¢ € (0,1). Then, forany r > 0
sufficiently small and any set E,. € S, , we have that V(E,) = V(C,.), where C denotes a

spherical cap of measure c.

Theorem (2.1) concerns the geometric point of view of the isoperimetric inequality. Bates [7]

had discussed the probability point of view of isoperimetric inequality.

2.2  Theorem[7]: (Weak Law of Large Number) Forevery € > 0
...... (2)lim Vol(S,) =1
n—-oo
Equivalently,

...... (3)lim Vol ({x eC™

n—-oo

20915 ) =

Where C™ is the n — dimensional Cube, and S, = {x eEC™

) <o)

Remark (1): If we imagine Theorem (2.2), we get Standard Normal distribution N(X; ) on an

n — dimensional space. Also, the quantity e stands for the r — enlargement of the
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neighborhood of the point x. By the other hand this quantity appears obviously in the context of

the concentration function.

2.3  Definition (Concentration function): Let (X, u, d) be a metric space with metric d and
diam(X) = 1, which is equipped with a Borel probability measure u. Then the concentration

function on X is (isometric constant)
...... @aX;e) =1— inf{u(Ag):A is a Borel subset of X,u(A) = %}

Where A, = {x € X:d(x,A) < €} is the e — extension of A. And there exists one value Ly such

that:
...... Su(x € X:|f(x) — Lf| = &) < 2a(X; €)
Where f is 1 — Lipschitz function on X.

The conception of r — enlargement appears also in the fields of convex geometry to get

appropriate normal distribution of the data in the space.

2.4  Theorem: Let K be strictly convex body with a modulus of convexity §(¢). Let S = 0K

be the surface of K and let A c S be a set such that V' (4) > % Then, for every € > 0 such that

6(e) < %We have:

...... (6)V{x € S:dist(x,A) = &} < 2(1 — 5(3))2" < 2¢-2n8(e)

By the other hand, the relation which connect the r — enlargement and concentration of

measure phenomena appears in a sense of isoperimetric inequality. Its take the form

r —neighborhood.
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2.5  Proposition [2]: Let E, be the r — neighborhood of a great circle of S™, n > 2. Then,

...... (Du(ED) < 2exp (-5 )rz)

Where Ef denotes the complement of E, relative to S™.

See [8] for more details and theorems.

Moreover, from Eq (7) we observe that the most important parameters in the concentration
function (5) are dimension and the r — enlargement of the neighborhood as radius or length of

the interval. Moreover from the Embedding theorem,

2.6 Theorem: (Classical Devortzky’s Theorem)[8] Let X be a normed space of dimension
n. There exist a function C(¢) such that, for all k > C(¢)logn, £¥ X which mean that

llx|l < CVk|x|, where k = C(¢)logn. So

kCa|x|?

P(llxll < CVklx]) < Cre™ o

The quantity o2 here is related to the variance on X.

2.7  Theorem: For any € > 0 and any positive integer k there exists a positive integer N =
N (k, €) such that for any normed space W with dim W > N there exists a k — dimensional

subspace V of W which is € — close to Euclidean space R".

So, every normed space admits a locally Euclidean space. And this concern the feature of r —

enlargement as
lIxlly < 7lx|ge

This implies that, and with 0 <r < 1
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lxlly
...... (8 )||x| -
Il nr?
So, u (lleZ <) < 2e727(9)

2.8 Corollary: Under the assumption of Theorems (2.6) (2.7), Eq(9)and for V < W, then

...... o (2] < ) < 2 (~222)

202
Where N(n,r) as in Theorem (2,7).

The quantity |x|g» takes the value vn in many other papers [1, 8]. By the other hand, the
exponential map which appears in the formula of concentration of measure function will
represents the normal coordinates on the geodesic ball on manifold and that up to its Tylor

expansion in the sense that (x, — x) = r — enlargement.

2.9  Definition (Injectivity Radius) [9]: Let M be a Riemannian manifold, p € M. Then the

injective radius of p is
inj(p) = sup{s > 0, exp, is defined on Bgn(0, p)and injective}

2.10 Corollary: The concentration function a (&) define the normal coordinate on the geodesic

ball
...... (11)By(x) = {x € M:d(x,A) < inj(x)}
Where, u"(A) = % . And we had

(dim M—1)[inj(x)]?

...... (12)a(e) =e 2 ,forall A c By(x)

Now, we have the Levy — Gromove corollary which had treat the extension of the isoperimetric

inequality to an n — dimensional manifolds.
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2.11 Corollary (Levy — Gromove): [2] Let M be an n — dimensional manifold and suppose
that its Ricci curvature is everywhere greater than that of S™. Let f: M — R be a1 — Lipschitz

function. Then there exists m € R such that, for any t > 0,

t2

...... (13)6W({x e M,|f(x) —m| =t}) < 2e 20?2

Where D = \/% and V is the natural measure on M, normalized so that V(M) = 1.

2.12 Lemma:[9] Let (M, n) be a Riemannian manifold with boundary of bounded geometry
of dimension n. Then there exists R, > 0 and a constants S;, S, > 0 such that for all x € M and

r = R, one has
Sirm < Vol(BM(x, r)) < S,r™
From (Lemma 52 of [6]) we deduce that

2.13 Corollary: Let A € S™ ¢ M and let (M, u) be an n — dimensional manifold. Then there

exists (R, = inj(x)) > 0 such that for any r < R, and all x € M we had

(n-1)r2

...... (14)u™(x:d(x,y) <15y € By(x,1)) < Ce™ 2

Where, C is universal constant, and u™ is the normalized measure on M.

The curvatures of the n — dimensional manifold also effects on the r — enlargement of the

points of M.

2.14 Lemma:[9] Let M has the curvature of radius p > 0, we further assume that

k= infrem innyM/BM(x,np)”x =l
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is non — zero. Then Bpa (x, g) N M c By (x,k) € By (x,mp). Particularly, if x,y € M and

k
— < =
llx =yl <3,

~dy(6,Y) < llx = yliga < dy(x,y) < k

Now, from Definition (2.9) and Corollary (2.13) and (Eq (3) & Assumption (1) of [10] ) we

deduce that k = inj(x)

2.15 Corollary: Let M have a finite radius of curvature p > 0, and let k be as defined above,

then we had

c(dim(M))k?

...... (15) a(e) = e 2

of Egs(7,9, 10,12,13,14, 15) even Remark (2): The reader may be confused that denominator
that of statement of Dvortzky Theorem are different? As we mentioned on Remark (1) The basic
idea is stands behind the normal distribution N(X;u,o?) where the density function of this

i S Ge-p)?

distribution takes the formula e 202 with o2 = is the variance as on Eq (10) and

Devortzky theorem. Concentration of measure behaves as the Standard normal distribution

N(X;0,1) where g2 = 1.
3. Eigenvalues of A on the Manifold & Concentration of Measure Phenomenon

The spectrum of A is not in general gets the geometry of the manifolds but we can give some

geometric features from it. Canzani [6] had stated that Mark Kac in 1966 proved the formula

© e Mt~ ﬁ (area(Q) — Vantlength(0Q) + % (1- y(Q)))
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Where y is the genus of Q. And, C.Yu Xia on [11] stated that “on 1979 Li and Yau proved that

77'.Z
2D2(M)

and Hersch in 1974 states that 1, < ——

Al 2 - A(Sz) *

. In the feature of concentration phenomenon, we had
3.1  Theorem: (Faber Krahn Inequality)[6] Let Q c R™, and let B denotes a ball satisfies
V(Q) = V(B). Then,

A1(Q) = 4,(B)

Where 1,(Q) and A,(B) are the first eigenvalues for the Dirichlete eigenvalues on (Q) and (B)

respectively.

By the other hand and for the connection between the first eigenvalue of the A and the diameter

of the manifold we had

3.2  Theorem: (Li and Yau(1979))[4] Let (M, g) be a compact n — dimensional Riemannian
manifold without boundary. Suppose that Ricci curvature satisfies Ricci(M,g) = (n — 1)k and

that d denotes the diameter of (M, g). Then, if k <0

1
2

exp—(1+(1—4(n—1))2d2k)
2(n—-1)2d?

...... (16)A,(M, g) =

And if k = 0, then
71'2
LM, g) ==

Where, d is the diameter of M. For simplicity the inequality (16) can be written as

e—(2(n-1)aVk)
...... (17)11(1\4,‘9) = C(n) —az
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3.3 Theorem: (Upper bound for 4,)[2] If M is a compact n — manifold with Ricci >

(n—1)(=k),k > 0, then

Where, c,, is a positive constant depending on n.

Now, and from (Proposition (1) and Corollary (3) of [6]) we deduce that

3.4  Corollary: Let (M,g) be a compact n — dimensional Riemannian manifold with

Ricci = (n— 1)k, k < 0. Then

Cn
7 Kta

—(2(n-1)dvk) _1)2
<A (Mg) <D

n d2
Where d is the dimeter of M. So /’11~d—12 .

As a function the continuum of eigenvalues also affects the comparison inequalities in the

feature of concentration of measure.

3.5  Theorem: (continuity in the C° — topology of matrices)[6]Let M be a compact
manifold and let g, g’ be two Riemannian metrics on M that are close in the sense that there
exists € > 0, small making,

(1-8g'<sg=s+eyg

Then,

1—(n+1)£+0(€2)Sjk(—(j,))ﬁl-i-(n-i-l)s-i-O(ez)
k

3.6 Theorem: [6] Let A, be the kth eigenvalue of the Laplacian associated to g. 4, is a

continuous function on M with respect to the C* topology. More precisely, d(g, g') < & implies
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exp(—(n+ 1)8) 4, (g") < 4 (g9) < exp((n+ 1)8) 4 (g")

3.7 Corollary: Under the assumption of Theorems (3.5) & (3.6) we had

(n+1)r?

...... 18" (|22 < (n+ ) < 2exp (- 55)

4. r — enlargement and Eigenvalues of A on the Manifold

This section will describe our main results of this paper to get the relation between the r —

enlargement of the manifold and its Laplace eigenvalues.

41  Lemma:[12] Let (M, g) be a complete Riemannian manifold whose Ricci curvature is

bounded below, Ricci > —(n — 1)k, where k > 0, and Q c M be a pre compact domain that is

Vol(B(x,r)NM)

Vol(B) ) where By (1) is a

star — shaped with respect to a point x € Q. Then the quotient (

ball in the space of constant curvature (—k), is a non — increasing function in » > 0. In

particular, for any 0 < r < R we have

Vol(B(x,R) N M) < e(~DRVE (§)n Vol(B(x,r) N M)

More over and according to Lemma (2.14) we had

4.2  Corollary: Under the assumption of Lemmas (2.14) and (4.1) and Corollaries (2.15) and

(37), and for
(BRd (x, g) n M) C By (x, k) € By(x,mp)
We had

2mp

n (Vol(BRd(x,g)nM)> - e(n-l)zJﬂ_Pk( K )n

vol(By(x,mp)) 21p
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Mg g (n+1)62
i G —
. 1‘ <(n+ 1)6) < 2exp ( )

2

Where, Ay, d,/lkM are the kth eigenvalues of the Laplace Operator on Ba a ball on R%and on
R

the manifold M respectively and d (AkB d,/’lkM) < 6.And u™ is the normalized measure.
R

In [6] Y. Canzani had stated that “The mathematician Lorentz in 1910 stated his conjecture

area(Q)
2T

N = #

A. And Hermann Weyl had Proved in 1911”.

4.3 Theorem: (Weyl’s Asymptotic formula)[6] Let M be a compact Riemannian manifold
with eigenvalues 0 =4, <A, <---, each distinct eigenvalue repeated according to its
multiplicity. Then for N(1) := #{j: 4; < A}, we have

Wn

o) Volg(M)Az,A — o0

N~

In particular,

V2m

2
A~ — s jin

(wpVol(M))n
Where, w,, defined the volume of the unit n — ball.

Now, and from Polya Conjecture on [8] we found that

2 2
...... Q) A = —F— kn
(@nVol(M))n

Now we will discuss the eigenvalues of A relative to the r — enlargement of the n —
dimensional geodesic ball By, (x,r). Jake Gipple in his paper [13] studied the volume of n —

Balls.

4.4  Proposition:[13] For any natural number n > 1 and any real number r > 0

n

Vol(B”(r)) =7 2

T2
(%n+ 1)

r™ = Vol (B™(1))r"
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Where, B™(r) is the n — dimensional ball of radius r and B™(1) is the unit n — dimensional

ball.
45  Theorem:[9] Let (X, d, u) be a complete locally compact metric measured space, where
w is infinite measure. We assume that for all » > 0, there exists an integer N(r) such that each
ball of radius r can be covered by N(r) balls of radius G) If there exist an integer k > 0 and

radius r > 0 such that for each x € M,

p(x)
...... @u(B(x, 1) < 1w

u(Xx)

NI and for

Then, there exists k u — measurable subsets Ay, ..., A, of X such that u(4;) =
i #j,d(A;,4;) = 3r.

Now, from Eq (21) we had

wx
N < <4u(B(x, r))

If we replace u(X) with Vol(M) and as standard volume measure on an n — dimensional

manifold (M, g) we had

...... Q3)N(r) < [ Volth) k]

4vol(B™(1))

And from Eq (21) we had

(4m™"

...... (Q4Vol(M) = -k

Substitute Eq (24) in Eq (23), we had

-ln.-:-.-—-:- ~ —."---4—"\
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N[

NG < _ (4m)"k

422 w,Vol(B™(r))

And from Proposition (4.4) we get with Vol(B™(r)) = w,r™ that

1

N()<[ (4m)k r

412 TR Mwnl?

Where w,, = Vol (B™(1)). This implies that

(4m)"k

N . —
4/’12(N(r)) (wn)?

So we can deduce that

- 4n(k)n = r [ kN (),0n
k= Tt e ke =

46  Corollary: Let (M,g) be an n — dimensional compact Riemannian manifold. Let
{A;}2, be its series of eigenvalues subjects to its Eigen function {¢;}i=,. Let B™(x, ) € M for

1 > 0 be r, — nieghborhood of M. Then we have

Where C = C(N(A),N(r), wy,).

4.7  Theorem: [11] Let M be an n — dimensional complete Riemannian manifold with
Ricci curvature Ricci = (n—1). If the first non — zero of the eigenvalues problem for M

without boundaries (M = 0) is n, then M is isometric to a unite n — sphere.

-ln.-:-.-—-:- ~ —."---4—"\
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4.8  Theorem: (The Maximal Diameter) [11] Let M be an n — dimensional complete
Riemannian manifold with Ricci curvature Ricci > (n —1). If the diameter of M satisfies

d(M) = m. Then M is isometric to an n — dimensional unite sphere.

From Theorems (4.7) & (4.8) we deduce that V(M) = V(B™(1)), and with Eq (1), and

Theorems (3.5) & (3.6) we deduce

4.9  Corollary: Let (M, g) be an n — dimensional Riemannian manifold with Ricci > (n —

1), and let (M = 0). Moreover, let d(M) = . Then,
...... 26)u(M) = u(B™(1))
Moreover, if
exp(—(n+ Dr) 4(gpp) < () < exp((n+ Dr) A (g5r)

Then, and with Corollaries (2.10) and (4.6) and Eq (18) and for r~ \/% we had

Ax(gm)
Ak (g BQ‘)

Vi 21

...... (27);1”( < (n+1)> < exp (_ (n+1))

1

Where, d(gu, 957) < 7=

Now, we get our main corollary in our context

4.10 Corollary: Let (M, g) be an n — dimensional compact Riemannian manifold with or

without boundaries, and with Ricci = (n — 1)k. Let u be its probability measure. Moreover, let
{Ax}r=1 be the eigenvalues of the Laplacian 4 on M. Let A € M with u(A4) = % Let A,, =

{x € B*: d(x, A) < i}, then we had according to Eq (27)

B (n—-1)
...... 28u(Ar,) = p (AJ%) S exp— [ 27k

k
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1
ri?

Where A, ~

5. Conclusion: From the previous investigation we conclude that we can use the series of
eigenvalues of the Laplacian to describe the geometry of the structure under consideration,
with the notion of concentration of measure. Moreover, this eigenvalues works more
effectively on the area of concentration of measure upon the isoperimetric inequalities of this

eigenvalues. It has been found that r — enlargement relative to the eigenvalues of the

Laplace operator and that is N\/ii . The main result is equivalent to the frequency of the

simple harmonic motion(SHM).

List of abbreviations

: Standard Volume on R**1.V, Vol

: Standard measure on R™**1.u™, u

i —enlargement.r

: Eigenvalue of the Laplace operator.A
: Laplace Operator on the ManifoldA

: Manifold on R**1.M

: Standard metric on the Manifoldg

: Simple Harmonic MotionSHM
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