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ABSRACT 

In this investigation and under the conception of measure concentration phenomenon we found 

that the enlargement of the neighborhood for an n – dimensional compact Riemannian manifolds 

(𝑀, 𝑔) relative to the eigenvalues 𝜆 of the Laplace operator ∆ on (𝑀, 𝑔). And we found that 

𝑟~
1

√𝜆
.                                                                                                                                                  

Keywords: r-enlargement, Isoperimetric Inequalities, Concentration of Measure, Laplace 

Operator, Eigenvalues of the Laplace operator.                                                                                           

 

 الملخص

ذلك باستخدام مفهوم تركيز الحجم. كما وجدنا أن نصف و  𝑛تجسيم الجوار لمتعدد الطيات المتراص في البعد  تناول هذا البحث

   على متعدد الطيات.   Δ لمؤثر لابلاس 𝜆لتجسيم الجوار لمتعدد الطيات يرتبط مع القيم الذاتية  𝑟القطر 

القيم الذاتية لمؤثر  ،مؤثر لابلاس ،تركيز الحجم ،متباينات متساوي المقاييس ،نصف قطر تجسيم الجوار :الكلمات المفتاحية

 .لابلاس

 

 

 

 

 

A R T I C L E  I N F O  
Article history: 

Received  03/11/2019 

Received in revised form   20/01/2020 
Accepted  29/04/2020 

Available online  15/06/2020 

 



ARID International Journal for Science and Technology (AIJST) VOL: 3, NO 5, June 2020 

 

 
 86 

ARID International Journal for Science and Technology (AIJST) 

 
 

1. Introduction:    

   The conception of  𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 was stood behind the concentration of measure 

phenomenon to estimate the local properties of the manifolds.  Since it measure the basic best 

neighborhood 𝑈 of points on the manifold. Let 𝐴 ⊂ ℝ𝑛+1, we can estimate the local geometry of 

𝐴 with measure concentration phenomenon which is basically depends on the best neighborhood 

of 𝐴 with best 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑛𝑒𝑡 and try to get the best topology of 𝐴. In this task we want get a 

relation between the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the manifold and its related eigenvalues of the 

Laplace operator on it.                                                                                                                 

   Berestycki and Nickl [1] have discussed the conception of concentration of measure 

phenomenon,  they had stated that, and for 𝐴 ⊆ 𝑆𝑛 ⊂ ℝ𝑛+1, and if 𝜇𝑛(A) = 𝜇𝑛(𝐵(𝑥, 𝑟)), then 

𝜇𝑛(Ar) ≥ 𝜇𝑛(𝐵(𝑥, 𝑟 + 𝜀)), where 𝐵 is an 𝑛 − 𝑏𝑎𝑙𝑙 and 𝜇𝑛 is standard measure on ℝ𝑛+1 and 𝐴𝑟 

is the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of 𝐴. This phenomenon affects at many fields such as learning theory, 

statistical learning, functional analysis, etc.   The basic principle of this phenomenon is to study 

and analyze geometrical features at n – dimensional spaces for 𝑛 → ∞. Benty [2] had gave more 

historical information about this phenomenon beginning and its extension to an 𝑛 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 manifolds.                                                                                                             

    F Chung and others had given the isoperimetric inequality related to eigenvalues on 

Riemannian Manifold and graphs [3].                                                                                      

    To the best illustration on this task and for the purpose of the paper and [from [1] (Sec 1.3)] 

we had,                                                                                                                                  
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1.1 Theorem (Spherical Isoperimetric)[1]: Let 𝐴 ⊆ 𝑆𝑛 ⊂ ℝ𝑛+1 be a set, and let 𝐴𝜀 = {𝑥 ∈

𝑆𝑛: 𝑑(𝑥, 𝑦) < 𝜀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ 𝐴}. Let 𝜇𝑛 be the uniform probability measure on 𝑆𝑛. Let 

𝜇𝑛(𝐴) ≥
1

2
. Then  

𝑝(𝑍 ∈ 𝐴𝜀) = 𝜇𝑛(𝐴𝜀) ≥ 1 − 𝑒−
(𝑛−1)𝜀2

2  

   The connections of isoperimetric inequalities and the eigenvalues of the Laplace operator had 

clarified at [4, 5, 6].   

                                                                                                               

1.2 Theorem [4]:  Let Ω ⊂ ℝ𝑛 be a bounded domain and B ⊂ ℝ𝑛 a ball with the same 

volume as Ω. Then, we have 

𝜆1(𝐵) ≤ 𝜆1(Ω) 

with equality hold if and only if Ω is equal to B up to a displacement.                                              

   Here 𝜆1 stands for the first eigenvalue of Laplace Operator. Many topics discussed the 

analyzation of Laplace eigenvalues to the geometric of the 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  manifold [4, 6, 7] 

of the neighborhood for the manifold   𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡section will describe the   ndOur 2    

and its relation to the notion of concentration of measure phenomenon explaining the basic 

section deals with the connection of the eigenvalues of the  rdtheorems and principles. The 3

Laplacian to the isoperimetric inequalities in the sense of geometric features and we get some 

corollaries under the notion of measure concentration. The fourth section describes the r – 

enlargement as concentration of measure principle try to fix up the theorem of the number of 

covering ball on the manifold (𝑀, 𝑔) and try to prove that it relates to the Weyl’s Asymptotic 

formula [6] as conjecture counting method for the series of eigenvalues of  the study and we seek 

our main theorem on the 
1

𝜆
 – enlargement  of the n – dimensional manifold. Lastly we had a brief 

discussion. Our theorems unfortunately are representing without a proof (not all of them). 
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Sometimes we get a proof in the context of the literature. The reader should refer for the standard 

proofs to the index reference front of it.                                                                                       

2. 𝒓 − 𝒆𝒏𝒍𝒂𝒓𝒈𝒆𝒎𝒆𝒏𝒕 of the Manifold and Concentration of Measure Phenomenon 

   The isoperimetric inequalities states that whenever 𝜇𝑛(𝐴) = 𝜇𝑛(𝐵) where 𝐴 ⊆ 𝑆 ⊂ ℝ𝑛+1and 

𝐵 is a ball on an 𝑆𝑛, then for every 𝑟 > 0 

𝜇𝑛(𝐴𝑟) ≥ 𝜇𝑛(𝐵𝑟)……(1) 

Where 𝐴𝑟 is the r – enlargement of 𝐴. In the context we set 𝑉 = 𝑉𝑜𝑙  and 𝜇𝑛 as the standard 

volume and standard measure respectively on an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑡𝑖𝑜𝑛𝑎𝑙 manifolds.                           

2.1 Theorem (Paul Levy’s isoperimetric inequality)[2]: Let 𝑆𝑐 denote the collection of all 

Borel sets in 𝑆𝑛 with fixed normalized measure 𝑐, where 𝑐 ∈ (0,1). Then, for any 𝑟 > 0 

sufficiently small and any set 𝐸𝑟 ∈ 𝑆𝑐 , we have that 𝑉(𝐸𝑟) ≥ 𝑉(𝐶𝑟), where 𝐶 denotes a 

spherical cap of measure 𝑐. 

    Theorem (2.1) concerns the geometric point of view of the isoperimetric inequality. Bates [7] 

had discussed the probability point of view of isoperimetric inequality.                                    

2.2 Theorem[7]: (Weak Law of Large Number)  For every 𝜀 > 0 

lim
𝑛→∞

𝑉𝑜𝑙(𝑆𝜀) = 1……(2) 

Equivalently,                                                                                                                                   

lim
𝑛→∞

𝑉𝑜𝑙 ({𝑥 ∈ 𝐶𝑛: |
𝑆𝑛(𝑥)

𝑛
| > 𝜀}) = 0……(3) 

Where 𝐶𝑛 is the n – dimensional Cube, and 𝑆𝜀 = {𝑥 ∈ 𝐶𝑛: |
𝑆𝑛(𝑥)

𝑛
| < 𝜀}. 

 Remark (1):  If we imagine Theorem (2.2), we get Standard Normal distribution 𝑁(𝑋; 𝜀)  on an 

n – dimensional space. Also, the quantity 𝜀 stands for the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the 
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neighborhood of the point 𝑥. By the other hand this quantity appears obviously in the context of 

the concentration function.                                                                                                               

2.3 Definition (Concentration function): Let (𝑋, 𝜇, 𝑑) be a metric space with metric 𝑑 and 

𝑑𝑖𝑎𝑚(𝑋) ≥ 1, which is equipped with a Borel probability measure 𝜇. Then the concentration 

function on 𝑋 is (isometric constant) 

𝛼(𝑋; 𝜀) = 1 − inf {𝜇(𝐴𝜀): 𝐴 𝑖𝑠 𝑎 𝐵𝑜𝑟𝑒𝑙 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑋, 𝜇(𝐴) ≥
1

2
}……(4) 

Where 𝐴𝜀 = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝐴) ≤ 𝜀} is the 𝜀 − 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 of 𝐴. And there exists one value 𝐿𝑓 such 

that:                                                                                                                                                    

𝜇(𝑥 ∈ 𝑋: |𝑓(𝑥) − 𝐿𝑓| ≥ 𝜀) ≤ 2𝛼(𝑋; 𝜀)……(5) 

Where 𝑓 is 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 function on 𝑋.                                                                                          

 The conception of 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 appears also in the fields of convex geometry to get 

appropriate normal distribution of the data in the space.                                                                    

2.4 Theorem: Let 𝐾 be strictly convex body with a modulus of convexity 𝛿(𝜀). Let 𝑆 = 𝜕𝐾 

be the surface of 𝐾 and let 𝐴 ⊂ 𝑆 be a set such that 𝑉(𝐴) ≥
1

2
. Then, for every 𝜀 > 0 such that 

𝛿(𝜀) ≤
1

2
 we have: 

𝑉{𝑥 ∈ 𝑆: 𝑑𝑖𝑠𝑡(𝑥, 𝐴) ≥ 𝜀} ≤ 2(1 − 𝛿(𝜀))
2𝑛

≤ 2𝑒−2𝑛𝛿(𝜀)……(6) 

   By the other hand, the relation which connect the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 and concentration of 

measure phenomena appears in a sense of isoperimetric inequality. Its take the form 

 𝑟 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑.                                                                                                     
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2.5 Proposition [2]: Let 𝐸𝑟 be the 𝑟 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of a great circle of 𝑆𝑛, 𝑛 ≥ 2. Then, 

𝜇(𝐸𝑟
𝑐) ≤ 2 exp (−

(𝑛−1)𝑟2

2
)……(7) 

  Where 𝐸𝑟
𝑐 denotes the complement of 𝐸𝑟 relative to 𝑆𝑛.                                                                 

                                                            

   See [8] for more details and theorems.                                                                                            

   Moreover, from Eq (7) we observe that the most important parameters in the concentration 

function (5) are dimension and the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the neighborhood as radius or length of 

the interval. Moreover from the Embedding theorem,                                                                   

2.6 Theorem: (Classical Devortzky’s Theorem)[8] Let 𝑋 be a normed space of dimension  

𝑛. There exist a function 𝐶(𝜀) such that, for all 𝑘 ≥ 𝐶(𝜀) log 𝑛, ℓ2
𝑘 ↪ 𝑋 which mean that 

‖𝑥‖ ≤ 𝐶√𝑘|𝑥|, where 𝑘 ≈ 𝐶(𝜀) log 𝑛. So  

𝑃(‖𝑥‖ ≤ 𝐶√𝑘|𝑥|) ≤ 𝐶1𝑒
−

𝑘𝐶2|𝑥|2

𝜎2  

The quantity 𝜎2 here is related to the variance on 𝑋.                                                                        

2.7 Theorem: For any 𝜀 > 0 and any positive integer 𝑘 there exists a positive integer 𝑁 =

𝑁(𝑘, 𝜀) such that for any normed space 𝑊 with dim 𝑊 ≥ 𝑁 there exists a 𝑘 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 

subspace 𝑉 of 𝑊 which is 𝜀 − 𝑐𝑙𝑜𝑠𝑒 to Euclidean space ℝ𝑛. 

   So, every normed space admits a locally Euclidean space. And this concern the feature of 𝑟 −

𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 as                                                                                                                       

‖𝑥‖𝑉 ≤ 𝑟|𝑥|ℝ𝑛 

This implies that, and with 0 ≤ 𝑟 ≤ 1 
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|
‖𝑥‖𝑉

|𝑥|ℝ𝑛
| ≤ 𝑟……(8) 

So,                   𝜇𝑛 (|
‖𝑥‖𝑉

|𝑥|ℝ𝑛
| ≤ 𝑟) ≤ 2𝑒

−
𝑛𝑟2

2𝜎2……(9) 

2.8 Corollary: Under the assumption of Theorems (2.6) (2.7),  Eq(9)and  for  𝑉 ⊂ 𝑊, then 

𝜇𝑛 (|
‖𝑥‖𝑉

|𝑥|ℝ𝑛
| ≤ 𝑟) ≤ 2 𝑒𝑥𝑝 (−

𝑁(𝑛,𝑟)

2𝜎2 )……(10) 

Where 𝑁(𝑛, 𝑟) as in Theorem (2,7). 

   The quantity |𝑥|ℝ𝑛 takes the value √𝑛 in many other papers [1, 8]. By the other hand, the 

exponential map which appears in the formula of concentration of measure function will 

represents the normal coordinates on the geodesic ball on manifold and that up to its Tylor 

expansion in the sense that (𝑥0 − 𝑥) ≡ 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡.                                                              

2.9 Definition (Injectivity Radius) [9]: Let 𝑀 be a Riemannian manifold, 𝑝 ∈ 𝑀. Then the 

injective radius of 𝑝 is  

𝑖𝑛𝑗(𝑝) = sup{𝜀 > 0, 𝑒𝑥𝑝𝑝 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝐵ℝ𝑛(0, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑎𝑛𝑑 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒} 

2.10 Corollary: The concentration function 𝛼(𝜀) define the normal coordinate on the geodesic 

ball 

𝐵𝑀(𝑥) = {𝑥 ∈ 𝑀: 𝑑(𝑥, 𝐴) ≤ 𝑖𝑛𝑗(𝑥)}……(11) 

Where, 𝜇𝑛(𝐴) ≥
1

2
 . And we had 

𝛼(𝜀) ≔ 𝑒−
(𝑑𝑖𝑚 𝑀−1)[𝑖𝑛𝑗(𝑥)]2

2 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊂ 𝐵𝑀(𝑥)……(12) 

Now, we have the Levy – Gromove corollary which had treat the extension of the isoperimetric 

inequality to an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 manifolds.                                                                               
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2.11 Corollary (Levy – Gromove): [2] Let 𝑀 be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 manifold and suppose 

that its Ricci curvature is everywhere greater than that of 𝑆𝑛. Let 𝑓: 𝑀 → ℝ be a 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 

function. Then there exists 𝑚 ∈ ℝ such that, for any 𝑡 ≥ 0, 

𝑉({𝑥 ∈ 𝑀, |𝑓(𝑥) − 𝑚| ≥ 𝑡}) ≤ 2𝑒
−

𝑡2

2𝐷2……(13) 

Where 𝐷 =
1

√𝑛−1
 and 𝑉 is the natural measure on  𝑀, normalized so that 𝑉(𝑀) = 1. 

2.12 Lemma:[9] Let (𝑀, 𝜇) be a Riemannian manifold with boundary of bounded geometry 

of dimension  𝑛. Then there exists 𝑅0 > 0 and a constants 𝑆1, 𝑆2 > 0 such that for all 𝑥 ∈ 𝑀 and 

𝑟 ≥ 𝑅0 one has 

𝑆1𝑟𝑚 ≤ 𝑉𝑜𝑙(𝐵𝑀(𝑥, 𝑟)) ≤ 𝑆2𝑟𝑚 

From (Lemma 52 of [6]) we deduce that 

2.13 Corollary: Let 𝐴 ⊆ 𝑆𝑛 ⊂ 𝑀 and let (𝑀, 𝜇) be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 manifold. Then there 

exists (𝑅0 = 𝑖𝑛𝑗(𝑥)) > 0 such that for any 𝑟 < 𝑅0 and all 𝑥 ∈ 𝑀 we had  

𝜇𝑛(𝑥: 𝑑(𝑥, 𝑦) < 𝑟; 𝑦 ∈ 𝐵𝑀(𝑥, 𝑟)) ≤ 𝐶𝑒−
(𝑛−1)𝑟2

2……(14) 

Where, 𝐶 is universal constant, and 𝜇𝑛 is the normalized measure on 𝑀. 

   The curvatures of the 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 manifold also effects on the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the 

points of 𝑀.                                                                                                                                    

2.14 Lemma:[9] Let 𝑀 has the curvature of radius  𝜌 > 0, we further assume that 

𝑘 ≔ 𝑖𝑛𝑓𝑥∈𝑀 𝑖𝑛𝑓𝑦∈𝑀/𝐵𝑀(𝑥,𝜋𝜌)‖𝑥 − 𝑦‖ 
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is non – zero. Then  𝐵ℝ𝑑 (𝑥,
𝑘

2
) ∩ 𝑀 ⊂ 𝐵𝑀(𝑥, 𝑘) ⊂ 𝐵𝑀(𝑥, 𝜋𝜌). Particularly, if 𝑥, 𝑦 ∈ 𝑀 and 

‖𝑥 − 𝑦‖ ≤
𝑘

2
, 

1

2
𝑑𝑀(𝑥, 𝑦) ≤ ‖𝑥 − 𝑦‖ℝ𝑑 ≤ 𝑑𝑀(𝑥, 𝑦) ≤ 𝑘  

Now, from Definition (2.9) and Corollary (2.13) and  (Eq (3) & Assumption (1) of [10] ) we 

deduce that 𝑘 ≔ 𝑖𝑛𝑗(𝑥)                                                                                                                      

2.15 Corollary: Let 𝑀 have a finite radius of curvature 𝜌 > 0, and let 𝑘 be as defined above, 

then we had 

𝛼(𝜀) = 𝑒−
𝐶(dim(𝑀))𝑘2

2……(15)  

Remark (2): The reader may be confused that denominator  of  Eqs(7,9, 10,12,13,14, 15) even 

that of statement of  Dvortzky Theorem are different? As we mentioned on Remark (1)The basic 

idea is stands behind  the normal distribution 𝑁(𝑋; 𝜇, 𝜎2) where the density function of this 

distribution takes the formula 𝑒
|𝑥−𝜇|

2𝜎2   with 𝜎2 =
∑ (𝑥−𝜇)2𝑛

𝑖=1

𝑛−1
 is the variance as on Eq (10) and 

Devortzky theorem. Concentration of measure behaves as the Standard normal distribution 

𝑁(𝑋; 0,1) where 𝜎2 = 1.                                                                                                                    

3. Eigenvalues of ∆ on the Manifold & Concentration of Measure Phenomenon 

   The spectrum of ∆ is not in general gets the geometry of the manifolds but we can give some 

geometric features from it. Canzani [6] had stated that Mark Kac in 1966 proved the formula 

∑ 𝑒−𝜆𝑖𝑡∞
𝑖=1 ~

1

4𝜋𝑡
(𝑎𝑟𝑒𝑎(Ω) − √4𝜋𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝜕Ω) +

2𝜋𝑡

3
(1 − 𝛾(Ω)))  
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Where 𝛾 is the genus of Ω. And, C.Yu Xia on [11] stated that “on 1979 Li and Yau proved that 

𝜆1 ≥
𝜋2

2𝐷2(𝑀)
 and Hersch in 1974 states that 𝜆1 ≤

8𝜋

𝐴(𝑆2)
 “.                                                                  

. In the feature of concentration phenomenon, we had                                                                       

3.1 Theorem: (Faber Krahn Inequality)[6] Let Ω ⊂ ℝ𝑛, and let 𝐵 denotes a ball satisfies 

𝑉(Ω) = 𝑉(𝐵). Then, 

𝜆1(Ω) ≥ 𝜆1(𝐵)  

Where 𝜆1(Ω) and 𝜆1(𝐵) are the first eigenvalues for the Dirichlete eigenvalues on (Ω) and (𝐵) 

respectively.                                                                                                                              

   By the other hand and for the connection between the first eigenvalue of the Δ and the diameter 

of the manifold we had                                                                                                                    

3.2 Theorem: (Li and Yau(1979))[4] Let (𝑀, 𝑔) be a compact n – dimensional Riemannian 

manifold without boundary. Suppose that 𝑅𝑖𝑐𝑐𝑖 curvature satisfies 𝑅𝑖𝑐𝑐𝑖(𝑀, 𝑔) ≥ (𝑛 − 1)𝑘 and 

that 𝑑 denotes the diameter of (𝑀, 𝑔). Then, if 𝑘 < 0 

𝜆1(𝑀, 𝑔) ≥
exp −(1+(1−4(𝑛−1))

2
𝑑2𝑘) 

1
2

2(𝑛−1)2𝑑2 ……(16) 

And if 𝑘 = 0, then                                                                                                                             

𝜆1(𝑀, 𝑔) ≥
𝜋2

4𝑑2  

Where, 𝑑 is the diameter of 𝑀. For simplicity the inequality (16) can be written as 

𝜆1(𝑀, 𝑔) ≥ 𝐶(𝑛)
𝑒−(2(𝑛−1)𝑑√𝑘)

𝑑2 ……(17) 
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3.3 Theorem: (Upper bound for 𝝀𝟏)[2] If 𝑀 is a compact 𝑛 − 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 with 𝑅𝑖𝑐𝑐𝑖 ≥

(𝑛 − 1)(−𝑘), 𝑘 > 0, then 

𝜆1 ≤
(𝑛−1)2

4
𝑘 +

𝑐𝑛

𝐷2(𝑀)
  

Where, 𝑐𝑛 is a positive constant depending on 𝑛.                                                                              

Now, and from (Proposition (1) and Corollary (3) of [6]) we deduce that                                       

3.4 Corollary: Let (𝑀, 𝑔) be a compact 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 Riemannian manifold with 

𝑅𝑖𝑐𝑐𝑖 ≥ (𝑛 − 1)𝑘, 𝑘 < 0. Then  

𝐶𝑛
𝑒−(2(𝑛−1)𝑑√𝑘)

𝑑2 ≤ 𝜆1(𝑀, 𝑔) ≤
(𝑛−1)2

4
𝑘 +

𝑐𝑛

𝑑2  

Where 𝑑 is the dimeter of 𝑀. So 𝜆1~
1

𝑑2  . 

   As a function the continuum of eigenvalues also affects the comparison inequalities in the 

feature of concentration of measure.                                                                                                  

3.5 Theorem: (continuity in the C0 – topology of matrices)[6]Let 𝑀 be a compact 

manifold and let 𝑔, 𝑔′ be two Riemannian metrics on 𝑀 that are close in the sense that there 

exists 𝜀 > 0, small making, 

(1 − 𝜀)𝑔′ ≤ 𝑔 ≤ (1 + 𝜀)𝑔′ 

Then, 

1 − (𝑛 + 1)𝜀 + 𝑂(𝜀2) ≤
𝜆𝑘(𝑔)

𝜆𝑘(𝑔′)
≤ 1 + (𝑛 + 1)𝜀 + 𝑂(𝜀2)  

3.6 Theorem: [6] Let 𝜆𝑘 be the kth eigenvalue of the Laplacian associated to 𝑔. 𝜆𝑘 is a 

continuous function on 𝑀 with respect to the 𝐶∞ topology. More precisely, 𝑑(𝑔, 𝑔′) < 𝛿 implies  
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exp(−(𝑛 + 1)𝛿) 𝜆𝑘(𝑔′) ≤ 𝜆𝑘(𝑔) ≤ exp((𝑛 + 1)𝛿) 𝜆𝑘(𝑔′)  

3.7 Corollary: Under the assumption of Theorems (3.5) & (3.6) we had 

𝜇𝑛 (|
𝜆𝑘(𝑔)

𝜆𝑘(𝑔′)
| ≤ (𝑛 + 1)𝑟) ≤ 2 𝑒𝑥𝑝 (−

(𝑛+1)𝑟2

2𝜎2
)……(18) 

4. 𝒓 − 𝒆𝒏𝒍𝒂𝒓𝒈𝒆𝒎𝒆𝒏𝒕 and Eigenvalues of ∆ on the Manifold  

        This section will describe our main results of this paper to get the relation between the 𝑟 −

𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the manifold and its Laplace eigenvalues.                                                       

4.1 Lemma:[12] Let (𝑀, 𝑔) be a complete Riemannian manifold whose 𝑅𝑖𝑐𝑐𝑖 curvature is 

bounded below, 𝑅𝑖𝑐𝑐𝑖 ≥ −(𝑛 − 1)𝑘, where 𝑘 ≥ 0, and Ω ⊂ 𝑀 be a pre compact domain that is 

star – shaped with respect to a point 𝑥 ∈ Ω. Then the quotient (
𝑉𝑜𝑙(𝐵(𝑥,𝑟)∩𝑀)

𝑉𝑜𝑙(𝐵𝑘(𝑟))
), where 𝐵𝑘(𝑟) is a 

ball in the space of constant curvature (−𝑘), is a non – increasing function in 𝑟 > 0. In 

particular, for any 0 < 𝑟 ≤ 𝑅 we have 

𝑉𝑜𝑙(𝐵(𝑥, 𝑅) ∩ 𝑀) ≤ 𝑒(𝑛−1)𝑅√𝑘 (
𝑅

𝑟
)

𝑛

𝑉𝑜𝑙(𝐵(𝑥, 𝑟) ∩ 𝑀)    

    More over and according to Lemma (2.14) we had 

4.2 Corollary: Under the assumption of Lemmas (2.14) and (4.1) and Corollaries (2.15) and 

(37), and for 

(𝐵ℝ𝑑 (𝑥,
𝑘

2
) ∩ 𝑀) ⊂ 𝐵𝑀(𝑥, 𝑘) ⊂ 𝐵𝑀(𝑥, 𝜋𝜌)  

We had 

𝜇𝑛 (
𝑉𝑜𝑙(𝐵

ℝ𝑑(𝑥,
𝑘

2
)∩𝑀)

𝑉𝑜𝑙(𝐵𝑀(𝑥,𝜋𝜌))
) ≤ 𝑒

(𝑛−1)√𝜋𝜌𝑘

2 (
𝑘

2𝜋𝜌
)

𝑛

……(19) 

Where 𝑥 ∈ 𝑀. Moreover, 



ARID International Journal for Science and Technology (AIJST) VOL: 3, NO 5, June 2020 

 

 
 97 

ARID International Journal for Science and Technology (AIJST) 

 
 

𝜇𝑛 (|
𝜆𝑘𝐵

ℝ𝑑

𝜆𝑘𝑀

− 1| ≤ (𝑛 + 1)𝛿) ≤ 2 exp − (
(𝑛+1)𝛿2

2
)……(20)  

Where,𝜆𝑘𝐵
ℝ𝑑

, 𝜆𝑘𝑀
 are the kth eigenvalues of the Laplace Operator on 𝐵ℝ𝑑 a ball on ℝ𝑑and on 

the manifold M respectively and  𝑑 (𝜆𝑘𝐵
ℝ𝑑

, 𝜆𝑘𝑀
) < 𝛿.And 𝜇𝑛 is the normalized measure. 

   In [6] Y. Canzani had stated that “The mathematician Lorentz in 1910 stated his conjecture 

𝑁(𝜆) = #
𝑎𝑟𝑒𝑎(Ω)

2𝜋
𝜆. And Hermann Weyl had Proved in 1911”.                                                        

4.3   Theorem: (Weyl’s Asymptotic formula)[6] Let 𝑀 be a compact Riemannian manifold 

with eigenvalues 0 = 𝜆0 ≤ 𝜆1 ≤ ⋯, each distinct eigenvalue repeated according to its 

multiplicity. Then for 𝑁(𝜆) ≔ #{𝑗: 𝜆𝑗 ≤ 𝜆}, we have  

𝑁(𝜆)~
𝜔𝑛

(2𝜋)𝑛 𝑉𝑜𝑙𝑔(𝑀)𝜆
𝑛

2 , 𝜆 → ∞  

In particular, 

𝜆𝑗~
√2𝜋

(𝜔𝑛𝑉𝑜𝑙(𝑀))
2
𝑛

𝑗
2

𝑛  

Where, 𝜔𝑛 defined the volume of the unit 𝑛 − 𝑏𝑎𝑙𝑙. 

   Now, and from Polya Conjecture on [8] we found that 

𝜆𝑘 ≥
4𝜋2

(𝜔𝑛𝑉𝑜𝑙(𝑀))
2
𝑛

𝑘
2

𝑛……(21)  

  Now we will discuss the eigenvalues of ∆ relative to the 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 of the 𝑛 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 geodesic ball 𝐵𝑀(𝑥, 𝑟). Jake Gipple in his paper [13] studied the volume of  𝑛 −

𝐵𝑎𝑙𝑙𝑠.                                                                                                                                       

4.4 Proposition:[13] For any natural number 𝑛 ≥ 1 and any real number 𝑟 > 0 

𝑉𝑜𝑙(𝐵𝑛(𝑟)) =
𝜋

𝑛
2

Γ(
1

2
𝑛+1)

𝑟𝑛 = 𝑉𝑜𝑙 (𝐵𝑛(1))𝑟𝑛   
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Where, 𝐵𝑛(𝑟) is the 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 ball of radius 𝑟 and 𝐵𝑛(1) is the unit 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 

ball.                                                                                                                                                  

4.5 Theorem:[9] Let (𝑋, 𝑑, 𝜇) be a complete locally compact metric measured space, where 

𝜇 is infinite measure. We assume that for all 𝑟 > 0, there exists an integer 𝑁(𝑟) such that each 

ball of radius 𝑟 can be covered by 𝑁(𝑟) balls of radius (
𝑟

2
). If there exist an integer 𝑘 > 0 and 

radius 𝑟 > 0 such that for each 𝑥 ∈ 𝑀, 

𝜇(𝐵(𝑥, 𝑟)) ≤
𝜇(𝑋)

4𝑁2(𝑟)𝑘
……(22) 

Then, there exists 𝑘 𝜇 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 subsets 𝐴1, … , 𝐴𝑘 of 𝑋 such that 𝜇(𝐴𝑖) ≥
𝜇(𝑋)

2𝑁(𝑟)𝑘
 and for 

𝑖 ≠ 𝑗, 𝑑(𝐴𝑖 , 𝐴𝑗) ≥ 3𝑟. 

Now, from Eq (21) we had         

𝑁(𝑟) ≤ (
𝜇(𝑋)

4𝜇(𝐵(𝑥, 𝑟)
)

1
2

 

If we replace 𝜇(𝑋) with 𝑉𝑜𝑙(𝑀) and as standard volume measure on an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 

manifold (𝑀, 𝑔) we had                                                                                                              

𝑁(𝑟) ≤ [
𝑉𝑜𝑙(𝑀)

4𝑉𝑜𝑙(𝐵𝑛(𝑟))
𝑘]

1

2
……(23) 

And from Eq (21) we had  

𝑉𝑜𝑙(𝑀) ≥
(4𝜋)𝑛

𝜆
𝑘    
𝑛/2

𝜔𝑛

𝑘……(24) 

Substitute Eq (24) in Eq (23), we had 
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𝑁(𝑟) ≤ [
(4𝜋)𝑛𝑘

4𝜆𝑘

𝑛
2𝜔𝑛𝑉𝑜𝑙(𝐵𝑛(𝑟))

]

1
2

 

And from Proposition (4.4) we get with 𝑉𝑜𝑙(𝐵𝑛(𝑟)) = 𝜔𝑛𝑟𝑛 that 

𝑁(𝑟) ≤ [
(4𝜋)𝑛𝑘

4𝜆𝑘

𝑛
2𝑟𝑘

𝑛[𝜔𝑛]2

]

1

2

  

Where 𝜔𝑛 = 𝑉𝑜𝑙 (𝐵𝑛(1)). This implies that 

𝑟𝑘
𝑛 ≤

(4𝜋)𝑛𝑘

4𝜆𝑘

𝑛
2 (𝑁(𝑟))

2
(𝜔𝑛)2

  

So we can deduce that 

𝑟𝑘 ≤ [
4𝜋(𝑘)

1
𝑛

4√𝜆𝑘(𝑁(𝑟)𝜔𝑛)2/𝑛
] ⟹ 𝑟𝑘 ≤ [

𝐶𝑘,𝑁(𝑟),𝜔𝑛

√𝜆𝑘
]  

4.6 Corollary: Let (𝑀, 𝑔) be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 compact Riemannian manifold. Let 

{𝜆𝑖}𝑖=1
𝑛  be its series of eigenvalues subjects to its Eigen function {𝜑𝑖}𝑖=1

𝑛 . Let 𝐵𝑛(𝑥, 𝑟𝑘) ⊂ 𝑀 for 

𝑟𝑘 > 0 be 𝑟𝑘 − 𝑛𝑖𝑒𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of 𝑀. Then we have 

𝑟𝑘 ≤ [
𝐶

√𝜆𝑘
]……(25) 

Where 𝐶 = 𝐶(𝑁(𝜆), 𝑁(𝑟), 𝜔𝑛). 

4.7 Theorem: [11] Let 𝑀 be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 complete Riemannian manifold with 

Ricci curvature 𝑅𝑖𝑐𝑐𝑖 ≥ (𝑛 − 1). If the first non – zero of the eigenvalues problem for 𝑀 

without boundaries (𝜕𝑀 = 0) is 𝑛, then 𝑀 is isometric to a unite 𝑛 − 𝑠𝑝ℎ𝑒𝑟𝑒.  
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4.8 Theorem: (The Maximal Diameter) [11] Let 𝑀 be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 complete 

Riemannian manifold with Ricci curvature 𝑅𝑖𝑐𝑐𝑖 ≥ (𝑛 − 1). If the diameter of 𝑀 satisfies 

𝑑(𝑀) ≥ 𝜋. Then 𝑀 is isometric to an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 unite sphere. 

  From Theorems (4.7) & (4.8) we deduce that 𝑉(𝑀) = 𝑉(𝐵𝑛(1)), and with Eq (1), and 

Theorems (3.5) & (3.6) we deduce                                                                                             

4.9 Corollary: Let (𝑀, 𝑔) be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 Riemannian manifold with 𝑅𝑖𝑐𝑐𝑖 ≥ (𝑛 −

1), and let (𝜕𝑀 = 0). Moreover, let 𝑑(𝑀) ≥ 𝜋. Then,  

𝜇(𝑀) ≥ 𝜇(𝐵𝑛(1))……(26) 

Moreover, if                                                                                                                                      

𝑒𝑥𝑝(−(𝑛 + 1)𝑟 ) 𝜆𝑘(𝑔𝐵1
𝑛) ≤ 𝜆𝑘(𝑔𝑀) ≤ 𝑒𝑥𝑝((𝑛 + 1)𝑟) 𝜆𝑘(𝑔𝐵1

𝑛) 

Then, and with Corollaries (2.10) and (4.6) and  Eq (18) and for 𝑟~
1

√𝜆
 we had 

𝜇𝑛 (|
𝜆𝑘(𝑔𝑀)

𝜆𝑘(𝑔𝐵1
𝑛)

| ≤
(𝑛+1)

√𝜆
) ≤ 𝑒𝑥𝑝 (−

(𝑛+1)

2𝜆
)……(27) 

Where, 𝑑(𝑔𝑀, 𝑔𝐵1
𝑛) ≤

1

√𝜆
. 

Now, we get our main corollary in our context                                                                           

4.10 Corollary: Let (𝑀, 𝑔) be an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 compact Riemannian manifold with or 

without boundaries, and with 𝑅𝑖𝑐𝑐𝑖 ≥ (𝑛 − 1)𝑘. Let 𝜇 be its probability measure. Moreover, let 

{𝜆𝑘}𝑘=1
𝑛  be the eigenvalues of the Laplacian 𝛥 on 𝑀. Let 𝐴 ⊂ 𝑀 with 𝜇(𝐴) ≥

1

2
. Let 𝐴𝑟𝑘

=

{𝑥 ∈ 𝐵𝑟
𝑛: 𝑑(𝑥, 𝐴) < 𝑟𝑘}, then we had according to Eq (27) 

𝜇(𝐴𝑟𝑘
) = 𝜇 (𝐴 1

√𝜆𝑘

) ≤ 𝑒𝑥𝑝 − [
(𝑛−1)

2𝜆𝑘
]……(28) 



ARID International Journal for Science and Technology (AIJST) VOL: 3, NO 5, June 2020 

 

 
 101 

ARID International Journal for Science and Technology (AIJST) 

 
 

Where 𝜆𝑘~
1

(𝑟𝑘)2
. 

5. Conclusion:  From the previous investigation we conclude that we can use the series of 

eigenvalues of the Laplacian to describe the geometry of the structure under consideration, 

with the notion of concentration of measure. Moreover, this eigenvalues works more 

effectively on the area of concentration of measure upon the isoperimetric inequalities of this 

eigenvalues. It has been found that 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡 relative to the eigenvalues of the 

Laplace operator and that is  ~
1

√𝜆
 . The main result is equivalent to the frequency of the 

simple harmonic motion(𝑆𝐻𝑀).  

 

 

List of abbreviations 

𝑉, 𝑉𝑜𝑙: Standard Volume on ℝ𝑛+1. 

𝜇𝑛, 𝜇: Standard measure on ℝ𝑛+1. 

𝑟: 𝑟 − 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑚𝑒𝑛𝑡. 

𝜆: Eigenvalue of the Laplace operator. 

Δ: Laplace Operator on the Manifold 

M: Manifold on ℝ𝑛+1. 

𝑔: Standard metric on the Manifold 

𝑆𝐻𝑀: Simple Harmonic Motion 
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