On a Subclass of Multivalent Functions Defined by Differential Operator

by
Zain AL-abideen Abbas Nassir

Department of Mathematics, College of Computer Science
and Mathematics, University of AL-Qadisiya, Diwaniya, Iraq.

E-mail:zain_alsafi67@yahoo.com

Abstract

In this paper, we introduce a class of multivalent functions defined by differential operator. We obtain some geometric properties, like, coefficient inequalities, distortion and growth theorem, closure theorem, extreme points and Hadamard product (or convolution).

Keyword: Multivalent functions, Differential operator, Extreme points and Hadamard product.

2019 Mathematics Subject classification: 30C45, 30C50.

1. Introduction

Let $\mathcal{A}(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}-\sum_{p+1}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \geq p+1, p \in \mathbb{N}=\{1,2, \ldots\}\right. \tag{1.1}
\end{equation*}
$$

which are p-valent in the unit disk $U=\{z \in \mathbb{C}:|z|<1\}$.
For a function $f(z)$ in the class $\mathcal{A}(p)$ we define

$$
\begin{gather*}
D_{p}^{0} f(z)=f(z) \\
D_{p}^{1} f(z)=D_{p} f(z)=\frac{z}{p} f^{\prime}(z) \\
D_{p}^{2} f(z)=D\left(D_{p} f(z)\right), \\
D_{p}^{\mu} f(z)=D\left(D_{p}^{\mu-1} f(z)\right)=z^{p}-\sum_{n=p+1}^{\infty}\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n}, \mu \in \mathbb{N} . \tag{1.2}
\end{gather*}
$$

For $p=1$, the differential operator D^{μ} was introduced by salagean [4].
Let $(f * g)(z)$ denote the Hadamard product of the functions $f(z)$ and $g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z^{p}-\sum_{n=p+1}^{\infty} b_{n} z^{n},\left(b_{n} \geq 0\right) \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
(f * g)(z)=z^{p}-\sum_{n=p+1}^{\infty} a_{n} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

For a function $f(z)$ of the form (1.1), we define the class $W_{p}^{\mu}(\beta, \alpha, u, v)$ as follows:

Definition (1.1): Let $f(z) \in \mathcal{A}(p)$ be given by (1.1). Then the class $W_{p}^{\mu}(\beta, \alpha, u, v)$ is

$$
W_{p}^{\mu}(\beta, \alpha, u, v)
$$

$$
=\left\{f \in \mathcal{A}(p):\left|\frac{z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}+(2-p)\left(D_{p}^{\mu} f(z)\right)^{\prime}}{(u+v+2 \beta)\left(D_{p}^{\mu} f(z)\right)^{\prime}+\beta z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}}\right|<\alpha, 0\right.
$$

$$
\begin{equation*}
\leq \beta<1,0<u \leq 1,0 \leq v<1, \mu, p \in \mathbb{N} \text { and } 0<\alpha<1\} \tag{1.5}
\end{equation*}
$$

The same properties have been found for other classes in [2], [3] and [1].

2. Coefficient inequality

The following theorem has given a necessary and sufficient condition for a function f to be in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$.

Theorem (2.1): Let a function $f(z) \in \mathcal{A}(p)$. Then $f(z) \in W_{p}^{\mu}(\beta, \alpha, u, v)$ if and only if

$$
\begin{align*}
\sum_{n=p+1}^{\infty} n[n+1+\alpha(\beta(n+1)+u+v)-p]\left(\frac{n}{p}\right)^{\mu} a_{n} \\
\leq p[1+\alpha(\beta(p+1)+u+1)] \tag{2.1}
\end{align*}
$$

where $0 \leq \beta<1,0<u \leq 1, \mu, p \in \mathbb{N}$ and $0<\alpha<1$.
Proof: Suppose that the inequality (2.1) holds true and $|z|=1$. Then, we have

$$
\begin{aligned}
& \left|z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}+(2-p)\left(D_{p}^{\mu} f(z)\right)^{\prime}\right| \\
& \quad-\alpha\left|(u+v+2 \beta)\left(D_{p}^{\mu} f(z)\right)^{\prime}+\beta z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\sum_{n=p+1}^{\infty} n(n-p+1)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1}-p z^{p-1}\right| \\
& -\mid \alpha p[\beta(p+1)+u+v] z^{p-1} \\
& \left.-\sum_{n=p+1}^{\infty} n \alpha(\beta(n+1)+u+v)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1} \right\rvert\, \\
& \leq \sum_{n=p+1}^{\infty} n(n-p+1)\left(\frac{n}{p}\right)^{\mu} a_{n}|z|^{n-1}-p z^{p-1} \\
& -\alpha p(\beta(p+1)+u+v)|z|^{p-1} \\
& +\sum_{n=p+1}^{\infty} n \alpha(\beta(n+1)+u+v)\left(\frac{n}{p}\right)^{\mu} a_{n}|z|^{n-1} \\
& =\sum_{n=p+1}^{\infty} n[n+1+\alpha(\beta(n+1)+u+v)-p]\left(\frac{n}{p}\right)^{\mu} a_{n} \\
& -p[1+\alpha(\beta(p+1)+u+v)] \leq 0,
\end{aligned}
$$

by hypothesis.
Hence, by maximum modulus principle, $f \in W_{p}^{\mu}(\beta, \alpha, u, v)$. Then from (1.5), we have

$$
\begin{aligned}
& =\left|\frac{z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}+(2-p)\left(D_{p}^{\mu} f(z)\right)^{\prime}}{(u+v+2 \beta)\left(D_{p}^{\mu} f(z)\right)^{\prime}+\beta z\left(D_{p}^{\mu} f(z)\right)^{\prime \prime}}\right| \\
& =\left|\frac{\sum_{n=p+1}^{\infty} n(n-p+1)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1}-p z^{p-1}}{p[\beta(p+1)+u+v] z^{p-1}-\sum_{n=p+1}^{\infty} n(\beta(n+1)+u+v)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1}}\right|
\end{aligned}
$$

Since $\operatorname{Re}(z) \leq|z|$ for all $z(z \in U)$, we get
$\operatorname{Re}\left\{\frac{\sum_{n=p+1}^{\infty} n(n-p+1)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1}-p z^{p-1}}{p[\beta(p+1)+u+v] z^{p-1}-\sum_{n=p+1}^{\infty} n(\beta(n+1)+u+v)\left(\frac{n}{p}\right)^{\mu} a_{n} z^{n-1}}\right\}<\alpha$.
Letting $z \rightarrow 1^{-}$, through real values, we obtain the inequality (2.1), so the proof is complete.

Corollary (2.1): Let $f \in W_{p}^{\mu}(\beta, \alpha, u, v)$. Then

$$
\begin{equation*}
a_{n} \leq \frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}, n=p+1, p+2, \ldots \tag{2.2}
\end{equation*}
$$

3. Distortion and Growth Theorem

Theorem (3.1): Let the function $f(z)$ defined by (1.2) be in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$. Then for $|z|=r<1$ and $n \geq p+1$, we have

$$
\begin{equation*}
\left|D_{p}^{\mu} f(z)\right| \geq\left[1+\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+2)+u+v)+2]} r\right] r^{p} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{p}^{\mu} f(z)\right| \leq\left[1-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+2)+u+v)+2]} r\right] r^{p} . \tag{3.2}
\end{equation*}
$$

The result is sharp for the function $f(z)$ is given by

$$
\begin{align*}
& f(z)=z^{p} \\
&-\frac{p[1+\alpha(\beta(p+2)+u+v)]}{\left(\frac{p+1}{p}\right)^{\mu}(p+1)[\alpha(\beta(p+2)+u+v)+2]} z^{p+1},(z \\
&\in U) . \tag{3.3}
\end{align*}
$$

Proof: Let $f \in W_{p}^{\mu}(\beta, \alpha, u, v)$. Then by Theorem (2.1), we get

$$
\begin{aligned}
& \left(\frac{p+1}{p}\right)^{\mu}(p+1)[\alpha(\beta(p+2)+u+v)+2] \sum_{n=p+1}^{\infty} a_{n} \\
& \quad \leq \sum_{n=p+1}^{\infty} n[n+1+\alpha(\beta(p+2)+u+v)-p]\left(\frac{n}{p}\right)^{\mu} \\
& \quad \leq p[1+\alpha(\beta(p+2)+u+v)]
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} a_{n} \leq \frac{p[1+\alpha(\beta(p+2)+u+v)]}{\left(\frac{p+1}{p}\right)^{\mu}(p+1)[\alpha(\beta(p+2)+u+v)+2]} \tag{3.4}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\left|D_{p}^{\mu} f(z)\right| & \leq|z|^{p}+\sum_{n=p+1}^{\infty}\left(\frac{n}{p}\right)^{\mu} a_{n}|z|^{n} \leq|z|^{p}+\left(\frac{p+1}{p}\right)^{\mu}|z|^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
& =r^{p}+\left(\frac{p+1}{p}\right)^{\mu} r^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
& \leq r^{p}+\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+1)+u+v)+2]} r^{p+1} \\
& =\left[1+\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+1)+u+v)+2]} r\right] r^{p} \tag{3.5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left|D_{p}^{\mu} f(z)\right| & \geq|z|^{p}-\sum_{n=p+1}^{\infty}\left(\frac{n}{p}\right)^{\mu} a_{n}|z|^{n} \geq|z|^{p}-\left(\frac{p+1}{p}\right)^{\mu}|z|^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
& =r^{p}-\left(\frac{p+1}{p}\right)^{\mu} r^{p+1} \sum_{n=p+1}^{\infty} a_{n} \\
& \geq r^{p}-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+1)+u+v)+2]} r^{p+1} \\
& =\left[1-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{(p+1)[\alpha(\beta(p+1)+u+v)+2]} r\right] r^{p} \tag{3.6}
\end{align*}
$$

From (3.5) and (3.6), we get (3.1) and (3.2) and the proof is complete.

Theorem (3.2): Let the function $f(z)$ defined by (1.2) be in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$. Then for $|z|=r<1$ and $n \geq p+1$, we have

$$
\begin{equation*}
\left|\left(D_{p}^{\mu} f(z)\right)^{\prime}\right| \geq\left[\frac{p}{r}+\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\alpha(\beta(p+1)+u+v)+2}\right] r^{p} \tag{3.7}
\end{equation*}
$$

and
$\left|\left(D_{p}^{\mu} f(z)\right)^{\prime}\right| \leq\left[\frac{p}{r}-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\alpha(\beta(p+1)+u+v)+2}\right] r^{p}$,
The result is sharp for the function f is given by (3.3).
Proof: The proof is similar to that of Theorem (3.1)

4. Closure Theorem

Let the function $f_{i}(z)(i=1,2, \ldots, m)$ be defined by

$$
\begin{equation*}
f_{i}(z)=z^{p}-\sum_{n=p+1}^{\infty} a_{n, i} z^{n},\left(a_{n, i} \geq 0\right) \tag{4.1}
\end{equation*}
$$

We shall prove the following results for the closure functions in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$.

Theorem (4.1): Let the functions $f_{i}(z)(i=1,2, \ldots, m)$ be defined by (4.1) be in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$. Then the function $h(z)$ defined by

$$
h(z)=\sum_{i=1}^{m} c_{i} f_{i}(z),\left(c_{i} \geq 0\right)
$$

is also in theclass $W_{p}^{\mu}(\beta, \alpha, u, v)$, where

$$
\sum_{i=1}^{m} c_{i}=1
$$

Proof: According to the definition of $h(z)$, it can be written as

$$
\begin{aligned}
& h(z)=\sum_{i=1}^{m} c_{i}\left[z^{p}-\sum_{n=p+1}^{\infty} a_{n, i} z^{n}\right] \\
& =\sum_{i=1}^{m} c_{i} z^{p}-\sum_{i=1}^{m} \sum_{n=p+1}^{\infty} c_{i} a_{n, i} z^{n} \\
& =z^{p}-\sum_{n=p+1}^{\infty} \sum_{i=1}^{m} c_{i} a_{n, i} z^{n}
\end{aligned}
$$

Furthermore, since the functions $f_{i}(z)(i=1,2, \ldots, m)$ are in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$, then

$$
\begin{aligned}
\sum_{n=p+1}^{\infty} n[n & +1+\alpha(\beta(n+1)+u+v)-p]\left(\frac{n}{p}\right)^{\mu} a_{n, i} \\
\leq & p[1+\alpha(\beta(n+1)+u+v)] .
\end{aligned}
$$

Hence

$$
\begin{gathered}
\sum_{n=p+1}^{\infty} n[n+1+\alpha(\beta(n+1)+u+v)-p]\left(\frac{n}{p}\right)^{\mu}\left(\sum_{i=1}^{m} c_{i} a_{n, i}\right) \\
=\sum_{i=1}^{m} c_{i}\left\{\sum_{n=p+1}^{\infty} n[n+1+\alpha(\beta(n+1)+u+v)-p]\left(\frac{n}{p}\right)^{\mu} a_{n, i}\right\} \\
\leq p[1+\alpha(\beta(n+1)+u+v)]
\end{gathered}
$$

which implies that $h(z)$ is in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$.
Corollary (4.1): Let the function $f_{i}(z)(i=1,2)$ defined by (4.1) be in the $\operatorname{class} W_{p}^{\mu}(\beta, \alpha, u, v)$.

Then the function $h(z)$ defined by
$h(z)=(1-\gamma) f_{1}(z)+\gamma f_{2}(z),(0 \leq \gamma<1), \quad$ is also in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$.

5. Extreme points:

Theorem (5.1): Let $f_{p}=z^{p}$ and

$$
\begin{equation*}
f_{p}=z^{p}-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} z^{n},(n \geq p+1 ; p \in \mathbb{N}) . \tag{5.1}
\end{equation*}
$$

Then the function $f(z)$ is in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$ if and only if it can be expressed in the form

$$
f(z)=\sum_{n=p+1}^{\infty} \sigma_{n} f_{n}(z)
$$

where

$$
\begin{equation*}
\sigma_{n} \geq 0 \text { and } \sum_{n=p}^{\infty} \sigma_{n}=1 \tag{5.2}
\end{equation*}
$$

Proof: Suppose that $f(z)$ is expressed in the form

$$
\begin{gathered}
f(z) \sum_{n=p}^{\infty} \sigma_{n} f_{n}(z) \\
=\sigma_{p} z^{p}+\sum_{n=p+1}^{\infty} \sigma_{n}\left[z^{p}-\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} z^{n}\right] \\
=z^{p}\left(\sigma_{p}+\sum_{n=p+1}^{\infty} \sigma_{n}\right)-\sum_{n=p+1}^{\infty} \frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} \sigma_{n} z^{n} \\
=z^{p}-\sum_{n=p+1}^{\infty} q_{n} z^{n},
\end{gathered}
$$

where

$$
q_{n}=\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} \sigma_{n} .
$$

Therefore $f \in W_{p}^{\mu}(\beta, \alpha, u, v)$, since

$$
\begin{gathered}
\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} q_{n} \\
=\sum_{n=p+1}^{\infty} \sigma_{n}=1-\sigma_{p} \leq 1
\end{gathered}
$$

Conversely, assume that $f \in W_{p}^{\mu}(\beta, \alpha, u, v)$, then by (2.1) we may set

$$
\sigma_{n}=\frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} a_{n}, n \geq p+1
$$

and

$$
1-\sum_{n=p+1}^{\infty} \sigma_{n}=\sigma_{p}
$$

Then

$$
\begin{gathered}
f(z)=z^{p}-\sum_{n=p+1}^{\infty} a_{n} z^{n} \\
=z^{p}-\sum_{n=p+1}^{\infty} \frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} z^{n} \\
=z^{p}-\sum_{n=p+1}^{\infty} \sigma_{n}\left(z^{p}-f_{\sigma}(z)\right)=z^{p}\left(1-\sum_{n=p+1}^{\infty} \sigma_{n}\right)+\sum_{n=p+1}^{\infty} \sigma_{n} f_{n}(z) \\
=z^{p} \sigma_{p}+\sum_{n=p+1}^{\infty} \sigma_{n} f_{n}(z) \\
=\sum_{n=p}^{\infty} \sigma_{n} f_{n}(z)
\end{gathered}
$$

This completes the proof.

6. Hadamard product:

Let the function $f_{i}(z)(i=1,2)$ defined by (4.1). The Hadamard product of the functions $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n, 1} a_{n, 2} z^{n} \tag{6.1}
\end{equation*}
$$

Theorem (6.1): Let the functions $f_{i}(z)(i=1,2)$ defined by (4.1) be in the class $W_{p}^{\mu}(\beta, \alpha, u, v)$ and $(n \geq p+1)$. Then $\left(f_{1} * f_{2}\right)(z) \in W_{p}^{\mu}(\beta, \delta, u, v)$, where

$$
\delta \leq \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]^{2}-(n+1-p) p[1+\alpha(\beta(p+1)+u+v)]^{2}}{(\beta(p+1)+u+v)\left(p[1+\alpha(\beta(p+1)+u+v)]^{2}-\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]^{2}\right)} .
$$

The result is sharp for the functions $f_{i}(z)$ given by

$$
\begin{equation*}
f_{i}(z)=\frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{p+1}{p}\right)^{\mu}(p+1)[\alpha(\beta(p+2)+u+v)+2]} z^{p+1},(i=1,2) . \tag{6.2}
\end{equation*}
$$

Proof: Since the functions $f_{i}(z)(i=1,2)$ belong to the class $W_{p}^{\mu}(\beta, \alpha, u, v)$, then from Theorem (2.1), we have

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} a_{n, 1} \leq 1 \tag{6.3}
\end{equation*}
$$

Employing the technique used earlier by Schild and Silverman [5], we need to find the largest δ such that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\delta(\beta(n+1)+u+v)-p]}{p[1+\delta(\beta(p+1)+u+v)]} a_{n, 1} a_{n, 2} \leq 1 \tag{6.4}
\end{equation*}
$$

By Cauchy - Schwarz inequality, we get

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} \sqrt{a_{n, 1} a_{n, 2}} \leq 1 \tag{6.5}
\end{equation*}
$$

Thus, it is sufficient to show that

$$
\frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\delta(\beta(n+1)+u+v)-p]}{p[1+\delta(\beta(p+1)+u+v)]} \sqrt{a_{n, 1} a_{n, 2}} \leq \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} a_{n, 1} a_{n, 2}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{[1+\delta(\beta(p+1)+u+v)][n+1+\alpha(\beta(n+1)+u+v)-p]}{[1+\alpha(\beta(p+1)+u+v)][n+1+\delta(\beta(n+1)+u+v)-p]} . \tag{6.6}
\end{equation*}
$$

But from (6.5), we have

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} \tag{6.7}
\end{equation*}
$$

Thus it is enough to show that

$$
\begin{aligned}
& \frac{p[1+\alpha(\beta(p+1)+u+v)]}{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]} \\
& \leq \frac{[1+\delta(\beta(p+1)+u+v)][n+1+\alpha(\beta(n+1)+u+v)-p]}{[1+\alpha(\beta(p+1)+u+v)][n+1+\delta(\beta(n+1)+u+v)-p]},
\end{aligned}
$$

which implies

$$
\delta \leq \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]^{2}-(n+1-p) p[1+\alpha(\beta(p+1)+u+v)]^{2}}{(\beta(p+1)+u+v)\left(p[1+\alpha(\beta(p+1)+u+v)]^{2}-\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]^{2}\right)} .
$$

This completes the proof.
Theorem (6.2): Let the functions $f_{i}(z)(i=1,2)$ defined by (4.1) be in the $\operatorname{class} W_{p}^{\mu}(\beta, \alpha, u, v)$. Then the function

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=p+1}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n} \tag{6.8}
\end{equation*}
$$

is in the class $W_{p}^{\mu}(\beta, \delta, u, v)$, where

$\delta \leq \frac{(n+1-p)[1+\alpha(\beta(p+1)+u+v)]-[n+1+\alpha(\beta(n+1)+u+v)-p]}{(\beta(n+1)+u+v)[1+\alpha(\beta(p+1)+u+v)]-(\beta(p+1)+u+v)[n+1+\alpha(\beta(n+1)+u+v)-p]}$.
The result is sharp for the functions $f_{i}(z)(i=1,2)$ given by (6.2).
Proof: From Theorem (2.1), we have

$$
\begin{gathered}
\sum_{n=p+1}^{\infty}\left(\frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]}\right)^{2} a_{n, i}^{2} \\
\leq\left(\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]} a_{n, i}\right)^{2} \leq 1
\end{gathered}
$$

it follows that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{1}{2}\left(\frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]}\right)^{2}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 \tag{6.9}
\end{equation*}
$$

But $h \in W_{p}^{\mu}(\beta, \delta, u, v)$ if and only if

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\delta(\beta(n+1)+u+v)-p]}{p[1+\delta(\beta(p+1)+u+v)]}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 \tag{6.10}
\end{equation*}
$$

the inequality (6.10) will satisfies if

$$
\frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\delta(\beta(n+1)+u+v)-p]}{p[1+\delta(\beta(p+1)+u+v)]} \leq \frac{\left(\frac{n}{p}\right)^{\mu} n[n+1+\alpha(\beta(n+1)+u+v)-p]}{p[1+\alpha(\beta(p+1)+u+v)]}, n \geq p+1
$$

so that

$$
\delta \leq \frac{(n+1-p)[1+\alpha(\beta(p+1)+u+v)]-[n+1+\alpha(\beta(n+1)+u+v)-p]}{(\beta(n+1)+u+v)[1+\alpha(\beta(p+1)+u+v)]-(\beta(p+1)+u+v)[n+1+\alpha(\beta(n+1)+u+v)-p]} .
$$

This completes the proof.

References:

[1] M. K. Aouf, on certain subclass of multivalent functions with negative coefficients defined by using a differential operator, Bulletin of Institute of Mathematics, 5(2) (2010), 181-200.
[2] M. K. About A. O. Msotafa, Certain class of p-valent functions defined by convolution, General Math., 20(1) (2012), 85-98.
[3] W. G. Atshan, S. R. Kulkarni, same application of generalized Ruscheweyh derivatives involving a general fractional derivative operator to a class of analytic functions with negative coefficient, surveys in Mathematics and its Applications, 5(2010), 35-47.
[4] G. S .Sặặgean, Subclass of univalent functions, Lecture Notes in Math.,Springer-verlag,1013,(1983),362-372.
[5] A.Schild and H.Silverman,Convolutions of univalent functions with negativecoefficients,Ann.Univ.Mariae curie-Sklodowska,sect.A,29(1975),99-107.

