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Davis-Mott and Tauc models of optical absorptien at the absorption edge in the high
absorption coefficient region (a > 10*cm™Y are carefully reviewed with regard to their
theoretical foundations, assumptions, mathematical derivations, and results. The full
implications of these models are exploited, and it is found that the Davis-Mott model for

L negligible matrix elements between localised states could account for the cubic power law
behaviour of & with photon energy hw of scme amorphous semiconductors such as a-Si. A
fractjonal power law to find the optical band gap E,p¢, of the form [oher o (huw Eop)™s
2 < r < 3] based on Davis-Mott model is proposed in which the index r can be a function
of disorder. The Tauc model has further been extended to the case of negligible matrix
elements between localised states, in which the same square power law for a vs. Aw
with the same meaning of the optical gap as in the original Tauc model has resulted. A
consideration of the case of unequal matrix elements for those transitions between localised
states and those between extended states is also included. The meaning of F,p¢ has been
re-assessed and it is emphasized that it is an extrapolation of delocalised states to the
zero of the density of states rather than a threshold energy for the onset of some kind of
optical transitions.

1. Introduction

The optical energy gap, Eope 1s one of the most important physical parameters
in semiconductors, which is usually deduced from the absorption spectrum of the
material at the absorption edge; where more or less a rapid rise in the absorption
coefficient o with increasing photon energy fw occurs in a narrow range of photon
cnergies,

In crystals, it is established that a(w} al angular frequency of radiation w, abeys
a simple power law of the form [1]

a = C{hw — Egpe), (1)

where r is an index characterising the type of optical transition, it is equal to 1/2
for direct allowed transitions and 2 for indirect allowed transitions, C' is a constant,
and Egp is the optical energy gap.

Theoretical models can predict most successfully the behaviour of o with hw
in crystals, so that there is no confusion concerning the physical meaning of Eope

*) This paper is cordially dedicated to Professor C. A. Hogarth who taught us the Physics of
amorphous materials,
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deduced from experiment; it is a well-defined threshold energy characterising a real
gap in the density of states, and ils determination is very crucial to any opto-
electronic application of crystalline semiconductors.

In amorphous semiconductors the situation is on shaky grounds, there is a con-
fusion in interpreting optical absorption data at the absorption edge, because there
is no well established theoretical model, due to the complexity of the behaviour of
electrons in disordered structures.

Althought it is assumed as in crystals, that o obeys a simple power law of the
form

ahw = B(hw — Eqp)". (2)

It is somewhat an empirical equation, because it is not based on a firm theoretical
model, consequently E,,; deduced experimentally is somewhat a vague parameter
that has no clear physical meaning, but its variation with preparation conditions,
temperature, pressure, etc. conveys a good deal of information about the material
of interest [2].

The two major models used to interpret the optical absorption behaviour at
the absorption edge in the high absorption region (@ > 10%m™!) in amorphous
semiconductors are Tauc [3] and Davis-Mott [4] models.

In this paper, these models are reviewed with respect to their theoretical founda-
tions, assumptions, mathematical derivations, results, and most importantly their
full implications have been exploited, where some new conclusions are drawn which
may elucidate our understanding of the meaning of E,p according to these mod-
els, and may offer us some alternative interpretations of the cbserved experimental
results.

2. Theoretical foundations

All models of optical absorption in semiconductors ate based on the Kubo-
Greenwood formula for the real part of the frequency dependent electrical con-
ductivity [5], which in amorphous semiconductors is [6]

3
Reo(w) = %f’%fsz)rvwmf A DEAE b, (3)

where N(E)} and N(E+ hw) are the densities of initial and final states, respectively,
| D% is the square of the matrix element of the operator d/dx, m the electron mass,
and {2 the specimen volume. The integral is calculated over all pairs of initial and
final states separated by an energy hw.

The absorption coefficient a(w) is defined in terms of Re ¢(w) by the following
relation from electromagnetic theory

4r
alw) = mﬂea(u), (4
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where n{w) is the refractive index of the material. Substituting Eq. 3 into Eq. 4,
we obtain
872e?h

mlag= n{w)em?

/N(E)N(E+hu)|D|’dE/hu {5)

The form of Eq. 5 implies that optical transitions should conserve energy through
the convolution of state densities by hw, but these transitions need not conserve
momentum as in crystals, because in disordered solids the uncertainty in the wave
vector Ak is of the order of the wave vector itself, so k-conservation selection rule
1s relaxed at least at the band edges, and k is not a good quantum number. These
transitions are called non-direct, they are in fact direct transitions, but non-vertical
and not accompanied by phonon emission or absorption to conserve & as in crystals.

Any modeling effort of interband optical absorption in amorphous semiconduc-
tors implies making reasonable assumptions about the functional dependence of
N(E) and D on energy E in the region of interest, in order to solve the integral of
Eq. 5; which are in these malerials neither justified by firm theoretical grounding
nor by reliable experimenta] findings. Therefore, these assumptions are usually
based on plausibility arguments or extensions from crystalline theories, and the
validity of these assumptions is decided by the degree of fit between theory and
experiment with respect to the dependence of & on hw (Eq. 2), which has a degree
of ambiguity as we shall see.

3. Tauc and Davis-Mott models

There is no fundamental difference between Tauc and Davis-Mott models ex-
cept for the proposed density of states distributions, so we shall adopt a unified
representation.

Figure 1 depicts the density of states distribution according to Mott-CFO model
(7]. Three types of optical transitions may contribute to interband absorption,
as shown in Fig. I: (1) transitions between initial and final localised states, (2)
transitions between initial localised (extended) and final extended (localised) states,
and (3} transitions between initial and final extended states.

The matrix elements for these transitions are related to the spatial overlap be-
tween initial and final states wavefunctions. Davis and Mott [4] showed that the
matrix elements for transitions between extended states (type 3), and those be-
tween weakly localised states and extended states (type 2) have the same value,
based on the argument that the enhancement of the normalisation factor of the
wave function due to localisation is exactly cancelled by the random phase contri-
bution of all local sites wave functions to the matrix element D, such that it keeps
the value of [ constant, and is equal to w\/a/f2, where a is the average interatomic
spacing. Hindley [8] showed that this equivalence comes from his random phase
model, so that no break in a(w) spectrum occurs at the mobility gap, provided that
the one electron approximation is valid and there is no electron-phonon coupling,
which is rather doubtful for localised states, but we think that the contribution
of electron-electron correlation and electron-phonen coupling may be negligible for
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Fig. 1. Density of states N(E) as a function of energy £ in amorphous semiconductors

according to the Mott-CFO model: 1,2, and & are the three possible types of optical

transitions, Ey is the optical gap when Dy = 0, and E; is the optical gap when D), =
Deyi, AE. and AE, are the band tails due to disorder.

weakly-localised states which may justify Davis-Mott argument.
Equation 5 becomes now as follows

_ 8rie2hda
" n(w)Cm?

alw) ]N(E)N(E + hw)dE/hw. (6)

For transitions between localised states (type 1), two alternative assumptions
are usually made, (a) the matrix elements for localised-localised transitions, Djo.
are equal to the matrix elements for the other two types, Dey, and (b) Dioe = 0.

Davis and Mott [4] argued that it is more plausible to neglect all transitions in
which both the initial and final states are localised on the argument that in the same
region of space there will be little chance of finding a localised state derived from
both the valence and condution bands. In their model they used both alternative
assumptions, whereas Tauc [3] used only the assumption that all transitions are of
equal probability.

These alternative assumptions will affect the way the optical energy gap is de-
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fined; it will be equal to Ep — Ep, if Deyy = Dige, and to E. — Eg or E5 — E,
which-ever is smaller, if Djoc = 0 (Fig. 1}, and hence will affect the limits of the
integral in Eq. 6.

If it is assumed that N(E) behaves like some power of E at the extremity of a
band, we will have been using the notation of Fig. 1 [4]

NAE) = N(E.) (EA—EE") i

Ny(E) = N(Ey) (EZEE)z ,

(7

If the bands are identical, so that ry = rp = r, N(E.) = N(E,), and AE, =
AE,(= AE); and under the assumption that Dioc = Deye, we will have [9]

s”ha B — EYE +hw— Eas)\ dE
afw) = T f (V(E: ]2( — ) £ @

Let y =(Ea — hw — E)/(Ea — hw — Ep), then Eq. 8 becomes

167%2ha

2 (Aw — Ey)*r+7
W[ (E) h(AA /[y(l 9)

The integral in Eq. 9 is a standard integral, its solution is [['(r + 1)]2/T(2r + 2).
Then Eq. § becomes

afw) =

87O min (Aw — E2) ! [I(r + 1)]?

o) = e RolAEY T(r 32

(10)

where By = Egp = Ea — Eg (Fig. 1) and omin = (27!’362ﬁ3(1/:’n2)[N(EC)]2 is the
minimum metallic conductivity.

Equation (10} is of general validity for any identical initial and final density of
states distributions provided that Djge = Dey:.

Tauc [3] assumed that the density of states distribution is parabolic (r = 1/2) as
in crystals, and found that ahw o (hw — E,'c,pt)2 in accord with what was observed
at that time for a-Ge.

If we let r = 1/2 in Eq. 10, we obtain

ahi e 72 Jmin — e (b — Ea)". (11)
n{w)cd
According to this model if Vohw vs. fw is a straight line, then E,;; which is
obtained from the extrapolation to hw-axis at ohw = 0 is equal E2 = (E4 — E£3),
this optical energy gap is considered as the extrapolation of the delocalised states
F. and E, to the zero of the density of states at £4 and Eg, though it may not be
a real zero in the density of states {see Fig. I).
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Davis and Mott [4] argued that the assumption in amorphous state that the
density of states is parabolic is improbable, although for states beyond E. and E|
it may be valid. They assumed that N{E) « E at band edges; according to Mott
[10] he gave reasons for believing that, if fluctuations in the interatomic distance
are small, N(E) in the region of localised states should be a linear function of E.

If we let r = 1 in Eq. 10, we will obtain the Davis-Mott expression for the cubic
dependence of a on hw

4% T nin

= In(@)aE)E ™ T

According to this model, if Vahw vs. hw is a straight line, then Eope = Ea — s
similar to the Tauc model.

This explained the experimental observations for certain multicomponent glasses,
and according to Cohen [3] he suggested that in these highly disordered systems,
the linear tails in Fig. 1 are important and may extend to an appreciable energy
range and are responsible for the observed r = J.

It remained for Davis and Mott to explain what was believed that the square
power law holds in most amorphous semiconductors.

They made the more plausible assumption that Dj,. may be neglected, and gave
the following formula

ahw Eq)R. (12)

ahw = D _(hw — Ep)E. (13)

The main difference between this expression and the Tauc expression apart from
the numerical factor is that here the optical energy gap is Ey = E.— Ep or £5 —E,
whichever is smaller (see Fig. 1).

If Dige = 0 and N(F) «x E, Eq. 6 becomes

Eg
/ (Ep — E)(E + hw — Ep)dE. (14)

Let y = (E. - hw — E)/(E; — hw — Eg), then Eq. 14 becomes

81|'0’m'm

ahe = VA

87 min

! IEC"_EA
uhu:m(hu—ﬁ'l)a [,/g y(l—y)dy-i-'[o m(l—y)dy . {15}

The final expression obtained here is

kg
ahw:Eﬁ%ﬁ(hw—E‘;)z[fw—El-J—B(EC—EA)]_ {16)
Under the assumption that the linearity of the density of states does not extend
appreciably beyond the band edge, it seems plausible to assume that 3{E. — Ea) >
> hw ~ Ey, and Eq. 16 leads to the Davis-Mott expression (Eq. 13) because
E.—E4= AFE.
We shall see that this assumption is in fact unnecessary and the full expression
(Eq. 16) with its richer content is more promising than the approximate square
power law (Eq. 13).

790 Czech. J. Phys. 44 (1994)

(]



0

Models of optical absorption in amorphous semiconductors . ..

4. Re-evaluation of the models

1t was believed especially in the seventies that in the majority of amorphous
semiconductors, including a-Si, the quadratic relation offers the best fit to optical
absorption data, except for some multicomponent glasses where the cubic law holds,
and a-Se where a linear law holds.

Vorlitek et al. [11], and Klazes et al. [12] found that the cubic law quite sig-
nificantly offers a better fit than the quadratic law for a-Si for unexpectedly wide
photon energy range beyond the absorption edge (0.3-1.3eV beyond the band gap
energy) (Fig. 2).
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Fig. 2. A plot of (ahwn)'/® and (ahwr)!’? against hw for an a-Si sample [12], sputtered
at 200°C in the presence of Ha.

Khawaja and Hogarth [13] found that the cubic law holds better for binary
vanadium oxides, and As;Sz (Fig. 3) and mentioned that it also holds for many
amorphous semiconductors, such as a-Si, a-Ge, Taz0s and GeqsTeg:Sbho Sy, whereas
the square law holds for chalcogenide glasses.

Both Klazes at al. [12], and Khawaja and Hogarth [13] explained the cubic fit
by a linear distribution of states near the band gap and equal matrix elements
for all transitions, based on the Davis-Mott model {Eq. 12). Klazes et al. also
made what we think an important statement that the cubic-root approximation
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Fig. 3. A plot of (ahu)”2 and (ahw)'’® against hw for a-As; S, [13].

has the practical advantage over the square-root approximation that it defines
unambiguously an optical band gap which depends little on the range of photon
energies above the band gap where absorption measurements are made.

It may deserve to note that the cubic law for As»Ss in Fig. 3 offers a better fit
than the square law less significantly than in the case of a-Si in Fig. 2.

We believe that the Davis-Mott model, under the plausible assumption of neg-
ligible matrix elements between localised states, has a greater potential to explain
experimental observations, through the full expression of Eq. 16.

whw = B(hw — 1) (hw ~ Ey + 3AE). (17)

If we plot the cubic reot of this function against fiw for a typical value of AE
in a-Si, say 0.1eV (Spear et at., 1981) (Fig. 4), we find that it is linear for a wide
range of hw values and its extrapolation to huw-axis is closer to £, than to E\, while
the plat of varhw vs. hw is not linear, and the extrapolated E value is neither close
to £ nor to Es.

The explanation of this behaviour as we found is that the factors (hw—FE)? (hw—
Ey 4+ 3AFE) and (hw — E2)® are related by the identity

(ho = E2) = (hw — E1)*(hw — By + 3AE) 4 3(hw — E\JAE)? + (AEY. (18)

Therefore, if AE < 1, the difference between the two factors J(hw—E1)YAE) 4
(AE)® will be very small provided that kw is not very large with respect to E;.

If we plot the factors (Aw — E»)?, (hw— By ) (hw ~ E1 + 3A E), and 3A E(fiw — E )?
against hw for AE = 0.15eV (Fig. 5), we find that (hw — Ey + 3AE) hw — E; ) =
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Fig. 4. A plot of (ahw)'’® and {ahw)'’? against hw for the function ahw =7 x 10° x
x(hw — 1.46)* (hw — 1.16) [Ey = 146eV, E; = 1.36eV, AE = 0.1eV].

2z {(hw — F»)° for a wide range of high hw values, but it does not approach the
assumed approximate value of 3AE(hw — E1)? for any range of hw values.
Therefore, we suggest that Eq. 16 and hence the Davis-Mott model for linear
density of states and Dy, = 0, has the potential to explain the cubic power law
without recourse to the less plausible assumption that Dige = Dext.
This leads us also to suggest that the best fit power law according to this model
is not exactly cubic or square, but may be fractional, and we propose the following:

ahw = B(hw — E1)*{hw — E) + 3AE) & B'(hw — Eop )", 2<r <3, (19)

where Eope deduced from the extrapolation to hw-axis of the best fit straight line
to hw-axis for some fractional index r, is not necessarily equal to £, pr Ez, but
generally will be closer to Ey if ris very close to 3, this is expected when the range
of localised states AE is sufficiently small (i.e.,, AEZ0.1eV).

To avoid any arbitrary assumption of the index r, we can make use of the method
proposed by Al-Ani [14].

The plot of the function

ohw _ hw — Fope

d{ahw)/dhw — r 2
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Fig. 5. A plot of the functions {hw — £2)* (-), (hw ~ E:)*(hw — E1 + 3AFE) (4), and
3AE(hw EI)2 (%) against hw for AF = 0.15eV, [Fy = 1eV, E = 1.15eV].

agalust hw gives immediately the value of F,,. from the extrapolation to hw-axis
at

ahw —0
dlafw)/dhw ~

and the value of the index r from the inverse siope.
Moreover, we can relate Eq. 20 to Eq. 16 as in the following:

ahw _hw—Eep  (hw— Ey)(hw — E1 +3AE)

dlahw)/dhw 1 3(hw — E1 + 2AE)

{21)

So r may become a measure of disorder AE, but is not expected to be a sensitive
one, however, we think that this point deserves further investigation.

These new prospects in the full expression of the Davis-Mott model for Dy, = 0,
tempted us to derive the expression for the case of parabolic density of states under
the same assumption of negligible matrix elements for transitions between localised
states; in this case, Eq. 6 becomes

. Bmowin
ahw = —s M)CAE / VE+ hw— Ex/Eg — E4E. (22)
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Let
_E-tw-F
Y= F.~hw-Fn
then .
87ra'min 2/ EC_EA
h = ———(hw - F Vi- —d 23
“ n(w)cAE( ¢ 1) et hw — Ey ¥ (23

0

and we get the following expression

2, .
T Omin

hw = —2
¢ 2n(w)cAE

(huw — E1 + AE), (24)

which most surprisingly leads to the same expression of Tauc apart from a factor
of 1/2 because AE = Ey — E», ie.,

_ 72 min
T 2n{w)cAE

ahw (hw — E3)%. (25)

Thus Eope 1s not the expected threshold energy Ey = E.—FEp but Ey = Ex—EB,
which confirms what was stated before, that it is the extrapolation of delocalised
states to the zero of the density of states,

We now consider the case of unequal matrix elements, i.e., Dige = Dexe for
completeness. It has been pointed out by Spear et al. [15], that, although the
matrix elements D, may be negligibly small, but this may not apply for states
close to the mobility edge, one would not expect an appreciable change in the
spatial overlap of states above and below K (or E,). Guided by Spear’s work, we
can write Eq. 6 for the case of Dige = Dext, N(E} x E, and hw > Ey:

E.—hw
] (E+ hw — Ea)(Ep — E)E

A=

BT min lDlocl2
{wI(AE)? | Dexs |2 .

ahw =

Eg
b [ (B he - BB - EXE, (26)
Eo—huw

where the first integral is for transitions between localised states, and the second

is for transitions between extended states (types £ and Fin Fig. 1). The first inte-
gral fEA::: can be divided into two already salved integrals (Lia—nw + gs—nw))

therefore the final expression is

47"":"m|n |£)loc|2 3 2 :
I - _ —_ hw —
afiw P REEN L |Dem]2[(hw E9)° — (hw — E1)*(hw — E; + 3AE)]
470 mi
— ™ (ko B hw - E AE). 27
oA B e s~ +OA4) (27)
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If AE is small and/or |Dyoc|?/| Dext|? < 1, the first integral is vanishingly small,
and this justifies the negligence of absorption due to localised states in the high
absorption region.

For parabolic density of states distribution, the general expression s,

772 Omin ,Dloclz
ahw = —
2 7(w)eAE \ | Doxe]?

¥ 1) (hw — Eq)?. (28)

It is a straightforward matter to show that the two special cases when Dj,c =
Dexe and Dy = 0 result from the general expressions of Eqs. 27 and 28,

There is one reservation about the general expressions when fw is larger than
the mobility gap (i.e., hw > E; + AE), the contribution from transitions between
localised states, i.e., the first term should vanish, and this is not implied in these
expressions, but this further justifies the negligence of this contribution in the region
of photon energies of interest in experimental investigations of the absorption edge,
where the linearity of the plot /ahw vs. fiw starts at about 0.1 eV or more beyond
the band gap energy (see Figures 2 and 3).

5. Conclusions

1. We associate the cubic dependence with linear density of states distributions
for both cases; Doy, = Dioe, and Dy, = 0, though not in a perfect manner for
the second case, but as AE is small in many amorphous semiconductors, such
as a-5i, a-Ge and As;8; [16] this approximation may apply to them, though to
varying degrees depending on A £, this possibly explains the different degrees
of significance of fit to the cubic law compared to the square law a-Si {Fig. 2)
and As;Sz (Fig. 3).

2. We associate the strict square power law dependence with parabolic density
of states distributions, and an imperfect square power law dependence may be
associated with linear density of states distribution for large enough degree
of disorder AE. In this we depart from the previous conclusion that the
strict square power law dependence may result either from parabolic density
of states according to the Tauc model or from the Davis-Mott model for the
case of Dy, = 0 (Eq. 13).

3. Eopt deduced experimentally, may not coincide with any threshold energy for
the onset of some kind of optical transitions, but may be an extrapolation to
the zero of the density of states (though not a real zero) as in the parabolic
case [N(E) o« v/EJ; or an extrapolated energy (E3) augmented by the degree
of disorder (AF), as in the linear case [N(E)  £] when Dy, = 0; even for
the case of Digc = Dey,, we speculate that only weakly localised states may
contribute significantly to optical absorption, and Eopt is still an extrapolated
energy E; to the zero of the deusity of states.

4. The dependence of a on hw for the Davis-Mott model when Dige = 0 may be
approximated as a fractional power law, where the magnitude of the index r
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may be a rough measure of disorder AE, and may be deduced experimentally
from

ahw
d{ahw)/dhw
vs, fw plot.

5. Experimental measurements of the absorption coefficient should be of high
accuracy, and cover a fairly wide range of photon energies beyond the absorp-
tion edge, say = 1.5eV, to assess more certainly the exact dependence of a
on hw, hence, choose the model which fits best the experimental data.
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