academicJournals

Vol. 11(14), pp. 178-182, 30 July, 2016 DOI: 10.5897/IJPS2016.4507 Article Number: AE571BA59847 ISSN 1992 - 1950 Copyright ©2016 Author(s) retain the copyright of this article http://www.academicjournals.org/IJPS

Full Length Research Paper

Measurement of natural radioactivity in selected samples of medical plants in Iraq

Abdulhussein Abdulameer Kareem¹, Heiyam Najy Hady¹ and Ali Abid Abojassim^{2*}

¹Physics Department, Education Faculty for Girls, University of Kufa, Iraq. ²Physics Department, Faculty of Science, University of Kufa, Al-Najaf-Iraq.

Received 22 May, 2016; Accepted 4 July, 2016

In present study, natural levels of radiation in some selected medical plants existing in the Iraqi stores were estimated to determine any activity concentration, radium equivalent and internal hazard index due to radionuclide, of 238U, 232Th as well as 40K, which occurs naturally. This activity concentration was identified by gamma-ray spectroscopy (Nal(TI)). The findings indicate that, the rate of activity concentration for Uranum-238, Thorium-232 and Potasium-40 in the medical plants were (4.953 ± 0.37) Bq.kg⁻¹, (2.916 ± 0.12) Bq.kg⁻¹ and (219.134 ± 2.24) Bq.kg⁻¹ respectively. The values of the radium equivalent ranged from (6.081 ± 0.09) Bq.kg⁻¹ to (44.608 ± 0.46) Bq.kg⁻¹ with the rate of (20.278 ± 0.38) Bq.kg⁻¹, while the values of the internal hazard index ranged from (0.016) to (0.135) with the rate of (0.060). The natural radionuclides and activity of the radium equivalent in the medical plant samples were far below the world for the ingestion of naturally occurring radionuclide provided in UNSCEAR 2000 report. Also there was calculated the internal hazard index for all samples that were less than unity. The samples under study were analysed and discharged, therefore they can no be consumed anymore.

Key words: Natural radioactivity, medical plants, gamma-ray spectroscopy, radium equivalent and Iraqi markets.

INTRODUCTION

Natural radioactive decay like ²³⁸U and ²³²Th series in addition to radionuclide that occurs singly such as ⁴⁰K is found in the atmosphere and the earth in varied levels. The radioactivity in the agricultural land and in soil may transfer to the plants around. The radionuclide available in the environment is transferred to plants by two ways, first of which is the indirect method uptake from soil through roots. When food plants are developed in a polluted soil, the activity is switched to the roots from the

soil and then in shoots. At the end, it transfers to the human diet Ramiza et al. (2010). This radionuclide can get into the plants during mineral uptake along with the nutrients and accrue in different areas and even it could reach the edible parts Brianna (2011). First, the direct method absorption; it occurs through aerial plant areas. A variety of workers have reviewed the presence of radioactivity in the plant organs Pooja and Rishi (2014). Herbs used as medicines for living beings may be called

*Corresponding author. E-mail: ali.alhameedawi@uokufa.edu.iq.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u> medical plant. Some of these plants are used as raw materials for the manufacture of drugs Kalač (2001). The level of natural radioactivity in some of these herbs is interesting taken from different viewpoints as, for instance, from the environmental point of view Kalač (2001). Viewed differently, medical plants are excluded from the edible plant group under study possibly due to the fact that the absorption of radioactive material through consumption has not been recognized or was considered insignificant (Ele Abiama et al., 2012). A medical plant with high levels of natural radioactivity can lead to health problems because they are usually consumed for long time.

There are many studies about the concentration of radioactivity in medical plants from different countries Desideri et a. (2010), Oni et al. (2011), Tettey et al. (2013) and Fahad et al. (2014). There was clear data base on natural radioactivity levels in medical plant samples despite the wide intake of these kinds of plants as medical treatment. The aim of the present study is to measure the naturally occurring levels of radioactivity (²³⁸U, ²³²Th and ⁴⁰K) in some selected herbs usually used in Iraq, and calculate the radiological hazard of the use of these herbs such as radium equivalent activity and internal hazard indices.

MATERIALS AND METHODS

Preparation and collection of samples

In September 2015, forty different samples of medical plants were collected from the local markets in various places in Najaf city as shown in Table 1. It is consist of the cursor in front of each sample represents the sample code, trade name, scientific name, Part used and country of origin.

After collecting the samples, each one was put in a plastic bag and given a label to show its name. The samples have been dried, ground homogenization and sieved. The samples are dried before radioactivity measurement for (2-4) days at a temperature of (42-44)°C to avoid any humidity adsorption, and to maintain the actual weight. The dried samples under study were have been ground and milled using a blender to obtain an equal size particles. Later, equal weight (0.75) kg of each sample (using a high sensitive digital weighting balance with a percent of $\pm 0.01\%$). Then the samples have been kept in the containers. These samples were put into a 1 liter polyethylene plastic Marinelli beakers of a fixed volume to reach a geometric homogeneity all around the detector, then the net weights were measured and recorded with a highly sensitive digital weighing balance at $\pm 0.01\%$.

Laboratory procedure

Measurements are carried out by adopting systems of gamma spectrometry from ORTEC, equipped with a high efficiency scintillation detector, an Nal(TI) detector of (3"x3") crystal dimension, with resolution 9.2% for ¹³⁷Cs (661.7 keV). A lead shield of ten cm thickness was put around the detector to lessen the background, with a 0.3 cm layer of copper to weaken x-rays emitted by the lead shield. The spectra are analyzed off-line using the ORTEC Maestro-32 data acquisition and analysis system. The activity concentration is expressed in (Bq.kg⁻¹) dry weight

depending on the sample type. The detector is energy calibrated using the standard source of known energies like ²²Na, ⁶⁰Co and ¹³⁷Cs. The specific activity of ⁴⁰K was directly identified from the peak areas at 1460 keV. The activity concentrations of ²³⁸U and ²³²Th were measured presuming secular equilibrium with their decay products. To measure the activity concentration of radioisotope in the ²³⁸U-series, gamma transition lines of ²¹⁴Bi (1765 keV) were employed. Also, radioisotope activity concentrations in the ²³²Th-series were identified by applying gamma transition lines of ²⁰⁸TI (2614 keV). The average counting time is 24 hour for each sample, to ensure a good statistical significance.

Calculations

Activity concentration (A_c) can be determined as follows (Al-Hamidawi, 2014):

$$A_{c} = \frac{C - BG}{\varepsilon \% M. t. I_{y}}.....(1)$$

where Ac means the activity concentration, C refers to the spot under the photo peaks, BG is background, ϵ % is energy efficiency percentage, M means mass of sample, t is counting time and I γ means the percentage of gamma-emission probability for the radionuclide under consideration.

Radium equivalent activity (Ra_{eq}) is utilized to evaluate the risks of materials that contain ²³⁸U, ²³²Th and ⁴⁰K in Bq.kg⁻¹ (Nasim et al., 2012), which is identified by presuming that 370 Bq.kg⁻¹ of ²²⁶Ra or 260 Bq.kg⁻¹ of ²³²Th or 4810 Bq.kg⁻¹ of ⁴⁰K produce the same gamma dose rate.

The Ra_{eq} of a sample in (Bq.kg⁻¹) can be achieved using the following relation (Ali Abid et al., 2014; Yu et al. 1992; El-Arabi, 2007; Quindos et al., 1987):

$$Ra_{eq.} = A_U + (1.43 A_{Th}) + (0.077 A_K) \dots \dots$$
(2)

The internal hazard index can be quantified by the internal hazard index (H_{in}). This is given by the following equation (Ali Abid et al., 2014; Yu et al., 1992; El-Arabi, 2007; Quindos et al., 1987):

The internal hazard index has to be less than one as well to provide safe radionuclide levels in medical plants.

RESULTS AND DISCUSSION

The activity concentration due to ²³⁸U, ²³²Th, and ⁴⁰K in different kinds of medical plant samples has been measured (Table 2). The ²³⁸U activity concentration was turned to be within the scope of (<BDL) Bq.kg⁻¹to (12.59±0.43) Bq.kg⁻¹ with an average of (4.68±0.26) Bq.kg⁻¹, ²³²Th from (<BDL) Bq.kg⁻¹to (14.63±0.24) Bq.kg⁻¹ with an average of (2.91±0.12) Bq.kg⁻¹ and ⁴⁰K from (78.56±1.15) Bq.kg⁻¹to (579.32±5.21) Bq.kg⁻¹ within an average of (219.13±2.24 Bq.kg⁻¹. The radium equivalent and internal hazard indices were calculated for the whole samples in this research as in Table 3. The Ra_{eq} and (H_{in}) varied from (0.016) to (0.135) with (0.060) average and from (6.08±0.09) Bq.kg⁻¹ to (44.61±1.08) Bq.kg⁻¹ at an average of (20.27±0.38) Bq.kg⁻¹ respectively. When

Table 1. Medical plant samples.

S/N	Sample code	Traditional name	Scientific name	Part used	Country of origin
1	H1	Senna	Cassai senna L.	Leaves	Saudi Arabia
2	H2	Safflower	Carthamus tinctorius	Flowers	Iran
3	H3	Ziziphus	Ziziphus spina-Christi L.	Leaves	Iraq
4	H4	Hops	Humulus Lubulus L.	Peduncle	Iran
5	H5	Pepper mint	Mentha piperita L.	Leaves	Iraq
6	H6	Balanitea	Balanites aegyptiaca (L.) Del.	Fruits	Egypt
7	H7	Aelchenan	Anabasis	Leaves	Iraq
8	H8	Green tea	Camellia sinensis	Leaves	China
9	H9	Fenugreek	Trigonella foenum-graecum L.	Seeds	India
10	H10	Sweet marjoram	Origanum majvrana	Aerial parts	Middle east
11	H11	Ginger	Zingiber officinale Roscoe.	Roots	India
12	H12	Grea plantain	Plantago major L.	Peel fruits and seeds	India
13	H13	Hawthorn	Crataegus spp.	Leaves	USA
14	H14	Mahleb	Prunus vinginiana	Seeds	Azerbaijan
15	H15	Myrtle	Myrtus Communis L.	Leaves	Iraq
16	H16	Barberry	Thuja occidentalis L.	Fruits	Syria
17	H17	Rosemary	Rosmarinus officinalis L.	Aerial parts	Mediterranean sea
18	H18	Chicory	Cichorium intybus L.	Roots,stalk and leaves	Iraq
19	H19	Chamomile	Matricaria chamomilla L.	Flowers	Syria
20	H20	Sage	Salvia Officinalis	Leaves	India
21	H21	Maidenhair fern	Abiantum capillus-Veneris L.	Leaves and stalk	USA
22	H22	Leaf mustard	<i>Brasica nigra</i> (L.) Koch	Seeds	China
23	H23	Cyperus	Cyperus esculentus	Seeds	Egypt
24	H24	Rose-Mallow	Althaea rosea L.	Flowers	India
25	H25	Blinko	Ocimumba silicum	Seeds	Iran
26	H26	Bay leaves	Laurus nobilis	Leaves	Syria
27	H27	Corn Mint	Mentha hapolcaltt	Aerial parts	India
28	H28	Black cumin	Nigella sativa L.	Seeds	India
29	H29	Roselle	Hibiscuc sabddariffa L.	Flowers	Iraq
30	H30	Horse tail	Equisetium arvense L.	Aerial parts	Egypt
31	H31	African rue	Ruta chalepensis L.	Aerial parts	Saudi Arabia
32	H32	Flax	Linum Usitatissimum L.	Seeds	Iran
33	H33	Stout bien	Angelica archangelica L.	Each herb	China
34	H34	Yarrow	Achillea nillefolium (Forssk)Sh-Bip	Aerial parts	Iran
35	H35	Nutgrass	Cyperus rotundus L.	Roots and leaves	Saudi Arabia
36	H36	Colocynth	Citrullus colocynthis (L.) Shradc	Fruits	Iraq
37	H37	Primrose	Primula vulgris L.	Flowers	west Asia
38	H38	Alkanet	Borago officinalis	Flowers	Iran
39	H39	Coltsfoot	Tassilago Farfar	Leaves and flowers	North Asia
40	H40	Rose of jericho	Anastatica Hierochuntica L.	Branches	Palestine

compared to the obtained results with the world wide average recommended by UNSCEAR (2000), we have found that ²³⁸U and ²³²Th are lower but higher in the case of ⁴⁰K in some samples such as H18, H30, H36 and H38 UNSCEAR (2000). The highest allowable activity concentration in some samples because increase in the concentration of potassium nuclide in some areas of the reason is due to the existence of agricultural land and areas containing phosphate fertilizers in which the focus increasingly peer-potassium (40 K). The values for the radium equivalent activity (Ra_{eq}) are found to be within the world average allowed maximum value of 370 Bq.kg⁻¹ UNSCEAR (2000). All values of internal hazard indices are lower than the international permissible value of unity UNSCEAR (2000). However, comparing these results with earlier studies (Table 4) indicates that the levels of

Table 2. Activity concentration	of 238U	²³² Th a	and ⁴⁰	⁰ K in	medical	
plant samples.						

 Table 3. Radium equivalent internal hazard index in medical samples in this study.

0	Activity concentration in (Bq.kg ⁻¹)			Sample code	Ra _{eq} (Bq.kg ⁻¹)	H _{in}
Sample code	²³⁸ U	²³² Th	⁴⁰ K	H1	14.35±0.37	0.048
H1	3.58±0.25	BLD	139.90±1.63	H2	21.13±0.31	0.057
H2	BLD	BLD	274.51±2.925	H3	24.25±0.43	0.076
H3	4.09±0.26	BLD	261.73±2.19	H4	11.39±0.43	0.038
H4	2.96±0.23	BLD	108.79±1.49	H5	20.67±0.49	0.062
H5	2.61±0.23	BLD	234.57±2.33	H6	12.30±0.22	0.038
H6	1.98±0.13	BLD	133.96±1.18	H7	26.68±0.47	0.084
H7	4.42±0.23	BLD	289.03±1.94	H8	22.66 <u>+</u> 0.62	0.080
H8	7.11±0.34	1.86±0.10	167.49±1.72	H9	13.68 <u>+</u> 0.28	0.043
H9	2.45±0.17	BLD	144.60±1.40	H10	14.32 <u>+</u> 0.36	0.038
H10	BLD	BLD	186.02±2.02	H11	24.12 <u>+</u> 0.59	0.073
H11	3.13±0.23	3.17±0.14	213.77±2.00	H12	30.20±0.73	0.115
H12	12.59±0.43	2.24 <u>+</u> 0.12	187.05±1.75	H13	9.16 <u>+</u> 0.25	0.024
H13	BLD	BLD	119.03±1.84	H14	6.47 <u>±</u> 0.09	0.017
H14	BLD	BLD	84.10±1.28	H15	13.00 <u>+</u> 0.28	0.038
H15	1.08±0.14	BLD	154.74±1.80	H16	6.73 <u>+</u> 0.08	0.018
H16	BLD	BLD	87.46±1.08	H17	8.94 <u>+</u> 0.13	0.024
H17	BLD	BLD	116.19±1.79	H18	44.60±0.46	0.120
H18	BLD	BLD	579.32 <u>+</u> 5.21	H19	26.09±0.27	0.070
H19	BLD	BLD	338.94 <u>+</u> 3.57	H20	16.07 <u>+</u> 0.23	0.043
H20	BLD	BLD	208.82±3.03	H21	32.79±1.08	0.119
H21	11.47±0.62	2.10±0.16	237.860±2.95	H22	9.34±0.25	0.028
H22	1.17±0.14	BLD	106.05±1.40	H23	8.08±0.21	0.021
H23	BLD	1.43±0.09	78.56±1.15	H24	25.60±0.36	0.069
H24	BLD	1.29±0.10	308.44 <u>+</u> 2.78	H25	12.59 <u>+</u> 0.23	0.033
H25	BLD	1.46±0.08	136.353±1.43	H26	10.43 <u>+</u> 0.19	0.028
H26	BLD	BLD	135.561±1.61	H27	24.81±0.36	0.067
H27	BLD	1.35±0.10	297.128±2.74	H28	10.03 <u>+</u> 0.22	0.027
H28	BLD	BLD	130.36±1.53	H29	28.54 <u>+</u> 0.47	0.083
H29	2.38±0.16	3.02±0.11	283.65±1.91	H30	36.91±0.50	0.099
H30	BLD	1.62 <u>+</u> 0.13	449.231±3.96	H31	8.38±0.15	0.022
H31	BLD	BLD	108.94±1.39	H32	6.08±0.09	0.016
H32	BLD	BLD	78.98±1.17	H33	30.62 <u>+</u> 0.41	0.082
H33	BLD	1.49 <u>+</u> 0.11	370.10 <u>+</u> 3.18	H34	22.83 <u>+</u> 0.38	0.061
H34	BLD	BLD	296.57±3.21	H35	41.42 <u>+</u> 0.76	0.135
H35	8.89 <u>+</u> 0.31	14.63 <u>+</u> 0.24	150.24 <u>+</u> 1.34	H36	33.91±0.34	0.091
H36	BLD	BLD	440.43±3.12	H37	20.13 <u>+</u> 0.59	0.054
H37	BLD	2.739 <u>+</u> 0.23	211.11±3.48	H38	31.51±0.44	0.085
H38	BLD	BLD	409.26±4.02	H39	22.66±0.78	0.074
H39	4.95±0.37	2.39±0.15	185.68±2.40	H40	27.45 <u>+</u> 0.51	0.081
H40	2.75±0.22	BLD	320.99±4.09	Average	20.27 <u>+</u> 0.38	0.060
Average	4.68±0.26	2.91±0.12	219.13 <u>+</u> 2.24			

natural radioactivity in this study are moderate, where Table 4 shows a comparison between the average value of the current work and the average values for medical plants sample in some countries.

Conclusions

The values of activity concentration of ²³⁸U, ²³²Th and ⁴⁰K in samples of medical plants are found to be lower than the world average allowed maximum values 32, 30 and 400 Bq.kg⁻¹ respectively, except the activity concentration

Country	Activit	y concentration (B	Defense		
Country	²³⁸ U	²³² Th	40 K	- Reference	
Iraq	4.68	2.91	219.1	This work	
Italy	0.4	-	654.7	Desideri et al. (2010)	
Brazil	-	21.7	976.3	Scheibel and Appoloni (2007)	
Nigeria	-	35.1	171.7	Njinga et al. (2015)	
Ghana	31.8	56.2	839.8	Tettey-Labri et al. (2013)	
Serbia	2.6	7.4	589.6	Milutin et al. (2011)	

Table 4. Comparison of the activity concentrations in the medical plants.

of 40K that found to be higher in samples H18, H30, H36 and H38. This can be explained by the soil ails that come as a result of an abundance of this isotope concentration. The values for the radium equivalent activity (Ra_{eq}) are turned to be within the international average allowed maximum value of 370 Bq.kg⁻¹. This study could be of help as a data base for radionuclide concentration and radium equivalent activity. The value of hazard internal is lower than the international permissible value of unity. In general terms, it can be concluded that the implemented technique show good results when matched with other literature data. Also it can be concluded that samples under study, which have been analyzed, are safe for human consumption because their radioactivity levels are less than the maximum permitted level.

Conflict of Interests

The authors have not declared any conflict of interest.

REFERENCES

- Ali Abid A, Husain HA-G, Suha HK (2014). Estimated the radiation hazard indices and ingestion effective dose in wheat flour samples of Iraq markets. Int. J. Food Contam. 1(6):1-5.
- Al-Hamidawi A (2014). Assessment of Radiation Hazard Indices and Excess Life time Cancer Risk due to Dust Storm for Al-Najaf, Iraq. WSEAS Trans. Environ. Dev. 10:312.
- Brianna R (2011). Radioactivity Smoke. Sci. Am. Rep. pp. 79-81.
- Desideri D, Meli MA, Roselli C, (2010). Natural and artificial radioactivity determination of some medical plants. J. Environ. Radioact. 101:751-756.
- El-Arabi A (2007). ²²⁶Ra, ²³²Th and ⁴⁰K concentrations in igneous rocks from eastern desert, Egypt and its radiological implication. Radiat. Meas. 42:94-100.
- Ele Abiama P, Ben-Bolie GH, Amechmachi N, Najib F, El Khoukhi T, Ateba OP (2012). Annual intakes of 226Ra, 228Ra and 40K in staple foodstuffs from a highbackground radiation area in the southwest region of Cameroon. J. Environ. Radioact. 110:59-63.
- Fahad SM, Abdin MJ, Hasan MM, Rahman MO, Islam SMA, Akramuzzaman MM, Russell M (2014). Study of Elemental Profile of Some Medical Plants of Bangladesh. J. Nucl. Part. Phys. 4:1-6.
- Kalač P (2001). A review of edible mushroom radioactivity. Food Chem. 75(1):29-35.
- Milutin J, Natasa L, Snezana P, Milan O (2011). Radionuclide concentrations in samples of medical herbs and effective dose from ingestion of 137Cs and natural radionuclides in herbal tea products from Serbian market. Isotopes Environ. Health Stud. 47(1):87-92.

- Nasim A, Sabiha J, Tufail M (2012). Enhancement of natural radioactivity in fertilized soil of Faisalabad, Pakistan. Environ. Sci. Pollut. Res. 19:3327-3338.
- Njinga RL, Jonah SA, Gomina M (2015). Preliminary investigation of naturally occurring radionuclides in some traditional medical plants used in Nigeria. J. Radiat. Res. Appl. Sci. 8(2):208-215.
- Oni OM, Isola GA, Oni FGO, Sowole O (2011). Natural Activity Concentrations and Assessment of Radiological Dose Equivalents in Medical Plants around Oil and Gas Facilities in Ughelli and Environs, Nigeria. Environ. Nat. Resour. Res. 1:201-206.
- Pooja C, Rishi PC (2014). Variation in alpha radioactivity of plants with the use of different fertilizers and radon measurement in fertilized soil samples. Chauhan and Chauhan J. Environ. Health Sci. Eng. 12(70):120-127.
- Quindos L, Fernandez P, Soto J (1987). Building materials as source of exposure spectrometry. Radiat. Meas. 39:431-439.
- Ramiza MY, Hussain MR, Nasim A (2010). Quantitative Measurement of Natural Radioactivity in Vegetable and Meat Before and After Cooking. Pak. J. Agri. Sci. 47(2):153-156.
- Scheibel V, Appoloni CR (2007). Survey of natural radioactivity levels in paraguariensis (St. Hil.) by Gamma-ray spectrum. Braz. Arch. Biol. Technol. 50(5):901-904.A38.
- Tettey-Labri L, Darko EO, Schandorf C, Appiah AA (2013). Natural Radioactivity Levels of Some Medical Plants Commonly Used in Chana. SpringerPlus 2:157-185.
- UNSCEAR (2000). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR: New York, NY. U.S.A.
- Yu K, Guan Z, Stoks M, Young E (1992). The assessment of natural radiation dose committed to the Hong Kong people. J. Environ. Radioact. 17:31-48.